TEXT-BOOK OF
OPHTHALMOLOGY

BY

DR. ERNEST FUCHS
PROFESSOR OF OPHTHALMOLOGY IN THE UNIVERSITY OF VIENNA

AUTHORIZED TRANSLATION, REVISED FROM THE
SEVENTH ENLARGED AND IMPROVED GERMAN EDITION

BY A. DUANE, M. D.
ASSISTANT SURGEON OPHTHALMIC AND AURAL INSTITUTE
NEW YORK

WITH TWO HUNDRED AND SEVENTY-SEVEN
ILLUSTRATIONS

SECOND AMERICAN EDITION

NEW YORK
D. APPLETON AND COMPANY
1899
PREFACE TO FIRST EDITION.

No apology seems needed for presenting to American readers the translation of a book so well and so favorably known as Prof. Fuch's Lehrbuch der Augenheilkunde. The care and judicious spirit governing the selection and presentation of facts, the thoroughness and freshness of the information, and the scientific accuracy which characterize the original, have won for it the first place among ophthalmological text-books. To these essential properties there is superadded one scarcely less important in a book of this character, namely, a clear, concise, and pleasing style. In the endeavor to make his version worthy of the original in this important regard, the translator has taken considerable liberties with the German text, and has not hesitated to alter grammatical relations, substitute and interpolate words, and in other ways depart from the strict letter of his model whenever it has seemed to him that clearness and the necessities of the English idiom required the change. Upon this point he is glad to say that he has the entire approval of Dr. Fuchs, who has not only given his authorization to the work of translation, but has been good enough to look over and indulgent enough to commend that portion of the book submitted to his inspection.

In consonance with his views of a translator's duties, the author of the present version has made only such additions as seemed necessary to adapt the book to American readers. These additions are everywhere distinguished by being inclosed in brackets, and, in the case of footnotes, by having the letter D appended to them. The translator alone is responsible for such insertions; at the same time, it is but fair to state that a number of them have been submitted to Dr. Fuchs and have received his approval.

The appendix containing the cuts of instruments is also matter inserted by the translator. These cuts (and also the two on page 722)
PREFACE TO THE FIRST EDITION.

have been kindly furnished by Tiemann & Co., and by E. B. Meyrowitz, the well-known instrument makers of this city, to whom the translator desires here to make suitable acknowledgments for the courtesy extended.

It is the hope of the translator that he has succeeded in faithfully reproducing a work the many excellences of which should command for it a wide circulation in this country, as they have already done in Europe.

A. DUANE, M. D.

25 EAST THIRTY-FIRST STREET, NEW YORK, July 6, 1892.
PREFACE TO THE SECOND EDITION.

Since the first edition of this book was published five German editions have been issued. Each of these has been characterized by the addition of important new matter and by the thorough revision of the old. This is particularly the case with the last or seventh edition, which, in addition to the merits of lucidity, judicious treatment of the subject, and excellence of proportion and balance, that have always characterized Prof. Fuchs's treatise, bears everywhere the marks of the most thorough revision, of additions and corrections, bringing the book up to date in all its parts, so that it presents an excellent summary of ophthalmological science as we know it to-day.

Although alterations will be found on almost every page, the most marked changes will be met with in the sections on functional examination, the pathology of corneal and conjunctival diseases (especially the parts relating to ulcus serpens and diphtheria), and the diseases of the fundus. Over eighty illustrations have been added.

The translator has thought it proper to insert two new sections: § 125 A (page 616) upon heterophoria, and § 148 A (page 724) upon the use of homatropine and other cycloplegics and the general subject of the correction of refractive errors. For these insertions, as well as all others of his own (distinguished as in the first edition by being inclosed in brackets) the translator is wholly responsible.

In view of the favorable reception accorded the first edition of this work in this country, the translator has little hesitation in offering the second, particularly as it represents an essentially improved form of a work which has already proved to be of value to so many—and of a work, moreover, which, in matter, scope, and treatment, contains so much that appeals both to the professed ophthalmologist and to the general practitioner.

ALEXANDER DUANE.

49 East Thirty-fifth Street, New York,
March 1, 1899.
CONTENTS.

PART I.
EXAMINATION OF THE EYE.

CHAPTER I.
OBJECTIVE EXAMINATION OF THE EYE.

Examination of the eyes ............................................. 1
Ophthalmoscopy ..................................................... 4
Principle of the ophthalmoscope .................................... 5
Method of examination .............................................. 6
Luminosity of the pupil .............................................. 8
Application of the ophthalmoscope—characters of normal fundus 9
Examination of the refracting media .............................. 16
Determination of the refraction by objective methods (ophthalmoscope,
skiascopy) ..................................................... 18

CHAPTER II.
FUNCTIONAL TESTING.

Central and peripheral vision ....................................... 27
Examination of the field of vision ................................. 28
Extent of the field of vision ....................................... 31
Light sense .......................................................... 34
Simulation of blindness ............................................. 35

PART II.
DISEASES OF THE EYE.

CHAPTER I.
DISEASES OF THE CONJUNCTIVA.

Anatomy of the conjunctiva ......................................... 38
Conjunctivitis catarrhalis .......................................... 44
Acuta .............................................................. 44
Chronica ............................................................ 50
Follicularis ......................................................... 53
Conjunctivitis blennorrhoea acuta ................................ 54
Blennorrhoea adultorum ........................................... 55
Blennorrhoea neonatorum .......................................... 62
CONTENTS.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjunctivitis trachomatosa</td>
<td>64</td>
</tr>
<tr>
<td>Conjunctivitis diphtherica</td>
<td>86</td>
</tr>
<tr>
<td>Crouppous membranes on the conjunctiva</td>
<td>90</td>
</tr>
<tr>
<td>Conjunctivitis eczematosa</td>
<td>92</td>
</tr>
<tr>
<td>Acute exanthemata associated with conjunctivitis</td>
<td>102</td>
</tr>
<tr>
<td>Chronic exanthemata associated with conjunctivitis</td>
<td>102</td>
</tr>
<tr>
<td>Acne rosacea conjunctivae</td>
<td>102</td>
</tr>
<tr>
<td>Pemphigus conjunctivae</td>
<td>102</td>
</tr>
<tr>
<td>Lupus conjunctivae</td>
<td>106</td>
</tr>
<tr>
<td>Vernal catarrh</td>
<td>108</td>
</tr>
<tr>
<td>Amyloid degeneration of the conjunctiva</td>
<td>108</td>
</tr>
<tr>
<td>Tuberculosis of the conjunctiva</td>
<td>107</td>
</tr>
<tr>
<td>Ulcers of the conjunctiva</td>
<td>107</td>
</tr>
<tr>
<td>Injuries of the conjunctiva</td>
<td>107</td>
</tr>
<tr>
<td>Pterygium</td>
<td>112</td>
</tr>
<tr>
<td>Pseudo-pterygium</td>
<td>116</td>
</tr>
<tr>
<td>Symblephonon</td>
<td>117</td>
</tr>
<tr>
<td>Xerosis</td>
<td>120</td>
</tr>
<tr>
<td>Extravasation of serum and blood beneath the conjunctiva</td>
<td>122</td>
</tr>
<tr>
<td>Tumors of the conjunctiva</td>
<td>124</td>
</tr>
<tr>
<td>Affections of the plica semilunaris and caruncle</td>
<td>129</td>
</tr>
</tbody>
</table>

CHAPTER II.

DISEASES OF THE CORNEA.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy of the cornea</td>
<td>130</td>
</tr>
<tr>
<td>Clinical examination of the cornea</td>
<td>134</td>
</tr>
<tr>
<td>Inflammation of the cornea</td>
<td>138</td>
</tr>
<tr>
<td>General statement</td>
<td>138</td>
</tr>
<tr>
<td>Subdivision of keratitis</td>
<td>144</td>
</tr>
<tr>
<td>Suppurative keratitis</td>
<td>145</td>
</tr>
<tr>
<td>Ulcer of the cornea</td>
<td>145</td>
</tr>
<tr>
<td>Ulcer serpens cornea</td>
<td>145</td>
</tr>
<tr>
<td>Keratitis e lagophthalmo</td>
<td>174</td>
</tr>
<tr>
<td>Keratomaclacia</td>
<td>173</td>
</tr>
<tr>
<td>Keratitis neuroparalytica</td>
<td>177</td>
</tr>
<tr>
<td>Non-suppurative keratitis</td>
<td>180</td>
</tr>
<tr>
<td>Pannus</td>
<td>180</td>
</tr>
<tr>
<td>Keratitis with the formation of vesicles (herpes febrilis, herpes zoster, and keratitis vesiculosa)</td>
<td>181</td>
</tr>
<tr>
<td>Keratitis punctata superficialis</td>
<td>183</td>
</tr>
<tr>
<td>Parenchymatous keratitis</td>
<td>184</td>
</tr>
<tr>
<td>Keratitis profunda</td>
<td>194</td>
</tr>
<tr>
<td>Sclerosing keratitis</td>
<td>165</td>
</tr>
<tr>
<td>Keratitis springing from the posterior surface of the cornea</td>
<td>195</td>
</tr>
<tr>
<td>Deep keratitis in irido-cyclitis</td>
<td>196</td>
</tr>
<tr>
<td>Deep serofulose infiltrates</td>
<td>196</td>
</tr>
<tr>
<td>Keratitis marginalis profunda</td>
<td>197</td>
</tr>
<tr>
<td>Striate opacity of the cornea</td>
<td>197</td>
</tr>
<tr>
<td>Injuries of the cornea</td>
<td>198</td>
</tr>
<tr>
<td>Foreign bodies in the cornea</td>
<td>198</td>
</tr>
<tr>
<td>Solutions of continuity of the cornea</td>
<td>199</td>
</tr>
</tbody>
</table>
## CONTENTS

<table>
<thead>
<tr>
<th>Injuries of the cornea by caustic agents and burns</th>
<th>301</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opacities of the cornea</td>
<td>208</td>
</tr>
<tr>
<td>Ectasia of the cornea</td>
<td>213</td>
</tr>
<tr>
<td>Staphyloma of the cornea</td>
<td>213</td>
</tr>
<tr>
<td>Keratectasia</td>
<td>223</td>
</tr>
<tr>
<td>Keratoconus</td>
<td>223</td>
</tr>
<tr>
<td>Keratoglobus</td>
<td>224</td>
</tr>
<tr>
<td>Tumors of the cornea</td>
<td>225</td>
</tr>
</tbody>
</table>

## CHAPTER III.

### DISEASES OF THE SCLERA.

<table>
<thead>
<tr>
<th>Anatomy of the sclera</th>
<th>226</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation of the sclera</td>
<td>227</td>
</tr>
<tr>
<td>Superficial forms of scleritis (episcleritis)</td>
<td>227</td>
</tr>
<tr>
<td>Deep forms of scleritis</td>
<td>229</td>
</tr>
<tr>
<td>Injuries of the sclera</td>
<td>233</td>
</tr>
<tr>
<td>Foreign bodies in the eye</td>
<td>235</td>
</tr>
<tr>
<td>Ectasia of the sclera</td>
<td>244</td>
</tr>
<tr>
<td>Ulcers and tumors of the sclera</td>
<td>250</td>
</tr>
</tbody>
</table>

## CHAPTER IV.

### ANATOMY AND PHYSIOLOGY OF THE UVEA—EMBRYOLOGY OF THE EYE.

<table>
<thead>
<tr>
<th>Anatomy of the uvea</th>
<th>251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris</td>
<td>251</td>
</tr>
<tr>
<td>Ciliary body</td>
<td>256</td>
</tr>
<tr>
<td>Choroid</td>
<td>259</td>
</tr>
<tr>
<td>Circulation and metabolism of the uvea</td>
<td>265</td>
</tr>
<tr>
<td>Blood-vessels</td>
<td>265</td>
</tr>
<tr>
<td>Lymph-passages</td>
<td>268</td>
</tr>
<tr>
<td>Nutrition of the eye</td>
<td>270</td>
</tr>
<tr>
<td>Intra-ocular pressure</td>
<td>273</td>
</tr>
<tr>
<td>Participation of the uvea in the visual act</td>
<td>274</td>
</tr>
<tr>
<td>Function of iris; reaction of pupil; mydriatics and miotics; function of ciliary body and choroid</td>
<td>274</td>
</tr>
<tr>
<td>Development of the eye</td>
<td>288</td>
</tr>
</tbody>
</table>

## CHAPTER V.

### DISEASES OF THE IRIS AND OF THE CILIARY BODY.

<table>
<thead>
<tr>
<th>Inflammation (iritis, cyclitis, irido-cyclitis)</th>
<th>289</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms of iritis</td>
<td>289</td>
</tr>
<tr>
<td>Symptoms of cyclitis</td>
<td>293</td>
</tr>
<tr>
<td>Differential diagnosis between iritis and cyclitis</td>
<td>297</td>
</tr>
<tr>
<td>Course and termination of iritis and cyclitis</td>
<td>302</td>
</tr>
<tr>
<td>Etiology and varieties of iritis and cyclitis; sympathetic irritation and ophthalmia</td>
<td>306</td>
</tr>
<tr>
<td>Treatment of iritis and cyclitis</td>
<td>317</td>
</tr>
<tr>
<td>Injuries of the iris</td>
<td>322</td>
</tr>
<tr>
<td>Tumors of the iris and ciliary body (including cysts and tuberculosis)</td>
<td>326</td>
</tr>
</tbody>
</table>
CONTENTS.

Disorders of motility of the iris .......................... 381
  Mydriasis ........................................... 382
  Miosis ............................................... 382
  Paralysis of the sympathetic .......................... 383
  Hippus .............................................. 383
Congenital anomalies of the iris .......................... 384
  Persistent pupillary membrane .......................... 384
  Coloboma iridis ...................................... 384
  Irideremia .......................................... 385
  Ectopia pupillae ..................................... 385

CHAPTER VI.

DISEASES OF THE CHORIOID.

Inflammation of the choroid .............................. 387
  Chorioiditis exudativa ................................ 388
  Chorioiditis and irido-chorioiditis suppurativa; metastatic ophthalmia; atrophy and phthisis of eyeball ...................................................... 346
Detachment of the choroid ................................ 352
Rupture of the choroid .................................. 352
Tumors of the choroid .................................. 353
Tuberculosis of the choroid ................................ 356
Congenital anomalies of the choroid ...................... 357
  Albinism ............................................. 361

CHAPTER VII.

GLAUCOMA.

General considerations .................................... 362
Primary glaucoma ........................................ 367
Glaucoma inflammatorium .................................. 367
Glaucoma simplex ........................................ 373
Hydrophthalmus .......................................... 374
Theories of glaucoma ..................................... 376
Anatomy of glaucoma ..................................... 383
Treatment of primary glaucoma ............................ 385
Secondary glaucoma ...................................... 391
Diminution of the intra-ocular pressure .................. 392

CHAPTER VIII.

DISEASES OF THE LENS.

Anatomy of the lens ..................................... 394
Opacities of the lens, cataract .......................... 397
  General considerations ................................ 397
Clinical forms of cataract ............................... 402
  Anterior polar cataract ................................ 402, 406
  Posterior polar cataract ................................ 403, 406
  Circumscribed opacities ................................ 403
  Perinuclear (or lamellar) cataract ...................... 404, 407
  Cortical cataract ...................................... 406, 408
  Progressive cataracts (senile cataract) ................ 408
CONTENTS.

Etiology of cataract ........................................... 417
Treatment of cataract ......................................... 422
Changes of position of the lens .............................. 425
Lenticous ......................................................... 430

CHAPTER IX.

DISEASES OF THE VITREOUS.

Anatomy of the vitreous ....................................... 431
Opacities of the vitreous ...................................... 431
Liquefaction of the vitreous .................................. 432
Foreign bodies in the vitreous; persistent hyaloid artery; entozoa ... 433

CHAPTER X.

DISEASES OF THE RETINA.

Anatomy and physiology of the retina ...................... 437
Inflammation of the retina; retinitis ....................... 440
Hyperemia of the retina ..................................... 443
Anemia of the retina; quinine amaurosis .................... 443
Hemorrhages into the retina ................................ 443
Embolism of the central artery .............................. 445
Thrombosis of the central vein .............................. 447
Varieties of retinitis; uremic amaurosis; retinal disease of infants ... 449
Atrophy of the retina; retinitis pigmentosa ................ 454
Anatomical changes in inflammation and atrophy of retina ...... 457
Detachment of the retina .................................... 458
Glioma of the retina ......................................... 464
Injuries of the retina ........................................ 466

CHAPTER XI.

DISEASES OF THE OPTIC NERVE.

Anatomy of the optic nerve .................................. 469
Intra-ocular division ......................................... 469
Orbital division ............................................... 471
Intracranial division ......................................... 473
Continuation of the fibers to the cerebral cortex; decussation of the optic nerves; hemiopia ......................... 473
Inflammation of the optic nerve .............................. 481
Neuritis intra-ocularis; hyperemia of optic nerve; neuro-retinitis ... 482
Retrobulbar neuritis; tobacco amblyopia and other toxic amblyopias ... 488
Strychnine in eye diseases .................................. 491
Atrophy of the optic nerve .................................. 491
Injuries of the optic nerve .................................. 493
Tumors of the optic nerve .................................. 493
Anatomy of affections of the optic nerve ................... 494
Disturbances of vision without apparent lesion ............ 495
Congenital amblyopia ......................................... 495
Amblyopia ex anopsia ......................................... 496
Hemeralopia and nyctalopia .................................. 496
Amblyopia and amaurosis of central origin .................. 499
CONTENTS.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scintillating scotoma</td>
<td>499</td>
</tr>
<tr>
<td>Hysterical amblyopia and asthenopia</td>
<td>500</td>
</tr>
<tr>
<td>Color blindness</td>
<td>501</td>
</tr>
</tbody>
</table>

CHAPTER XII.

DISEASES OF THE LIDS.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy and physiology of the lids</td>
<td>509</td>
</tr>
<tr>
<td>Inflammation of the skin of the lids</td>
<td>518</td>
</tr>
<tr>
<td>Exanthemata (erysipelas, herpes zoster, eczema)</td>
<td>518, 522</td>
</tr>
<tr>
<td>Phlegmonous inflammation</td>
<td>521</td>
</tr>
<tr>
<td>Ulcers of the skin of the lids</td>
<td>522</td>
</tr>
<tr>
<td>Elephantiasis of the lids</td>
<td>523</td>
</tr>
<tr>
<td>Chromodrosis</td>
<td>523</td>
</tr>
<tr>
<td>Edema of the lids</td>
<td>523</td>
</tr>
<tr>
<td>Inflammation of the border of the lids</td>
<td>526</td>
</tr>
<tr>
<td>Hyperemia</td>
<td>526</td>
</tr>
<tr>
<td>Blepharitis squamosa and ulcerosa</td>
<td>526</td>
</tr>
<tr>
<td>Phthiriasis palpebrarum</td>
<td>531</td>
</tr>
<tr>
<td>Diseases of the palpebral glands</td>
<td>532</td>
</tr>
<tr>
<td>Hordeolum</td>
<td>532</td>
</tr>
<tr>
<td>Chalazion</td>
<td>532, 533</td>
</tr>
<tr>
<td>Infarcts of the Meibomian glands</td>
<td>533</td>
</tr>
<tr>
<td>Affections of the tarsus</td>
<td>538</td>
</tr>
<tr>
<td>Anomalies of position and connection of lids</td>
<td>538</td>
</tr>
<tr>
<td>Trichiasis and distichiasis</td>
<td>537</td>
</tr>
<tr>
<td>Entropion</td>
<td>539</td>
</tr>
<tr>
<td>Ectropion</td>
<td>541</td>
</tr>
<tr>
<td>Ankyloblepharon</td>
<td>544</td>
</tr>
<tr>
<td>Syblepharon</td>
<td>544</td>
</tr>
<tr>
<td>Blepharophimosis</td>
<td>544</td>
</tr>
<tr>
<td>Lagophthalmus</td>
<td>546</td>
</tr>
<tr>
<td>Diseases of the palpebral muscles</td>
<td>548</td>
</tr>
<tr>
<td>Spasm of the orbicularis (blepharospasm)</td>
<td>548, 551</td>
</tr>
<tr>
<td>Paralysis of the orbicularis</td>
<td>549</td>
</tr>
<tr>
<td>Paralysis of the levator palpebræ superioris (ptosis)</td>
<td>550, 553</td>
</tr>
<tr>
<td>Spasm and paralysis of Müller's muscle</td>
<td>553</td>
</tr>
<tr>
<td>Injuries of the lids</td>
<td>554</td>
</tr>
<tr>
<td>Tumors of the lids</td>
<td>556</td>
</tr>
<tr>
<td>Congenital anomalies of the lids (coloboma, epicanthus, etc.)</td>
<td>558</td>
</tr>
</tbody>
</table>

CHAPTER XIII.

DISEASES OF THE LACHRYMAL ORGANS.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy and physiology</td>
<td>560</td>
</tr>
<tr>
<td>Blephorrhoea of the lachrymal sac</td>
<td>564, 572</td>
</tr>
<tr>
<td>Dacryocystitis</td>
<td>570, 574</td>
</tr>
<tr>
<td>Diseases of the lachrymal gland</td>
<td>571</td>
</tr>
<tr>
<td>Affections of puncta and canaliculi</td>
<td>572</td>
</tr>
<tr>
<td>Trachoma and tuberculosis of lachrymal sac</td>
<td>573</td>
</tr>
<tr>
<td>Treatment of lachrymal disease</td>
<td>573</td>
</tr>
<tr>
<td>Epiphora and increase of lachrymal secretion</td>
<td>578</td>
</tr>
<tr>
<td>Abolition of lachrymal secretion</td>
<td>578</td>
</tr>
</tbody>
</table>
CONTENTS.

CHAPTER XIV.

DISTURBANCES OF MOTILITY OF THE EYE.

| Anatomy and physiology of the ocular muscles | 576 |
| Anatomy of muscles | 576, 585 |
| Action of muscles | 578, 586 |
| Orientation and diplopia | 580, 580 |
| Measurement of excursions of eyes; field of fixation | 587 |
| Nerves of ocular muscles | 588 |
| Binocular and stereoscopic vision; overcoming of prisms; divergence and convergence | 590 |
| Paralysis of the ocular muscles | 594 |
| Latent disturbances of equilibrium; heterophoria | 612, 616 |
| Squint | 627 |
| Nystagmus | 638 |
| Tonic spasms of ocular muscles | 640 |

CHAPTER XV.

DISEASES OF THE ORBIT.

| Anatomy of the orbit | 641 |
| Position of the eyeball in the orbit; exophthalmus | 642 |
| Enophthalmus | 645 |
| Inflammation | 645 |
| Inflammation of the bony wall and the periosteum | 645, 648 |
| Inflammation of the cellular tissue; cellulitis | 647 |
| Thrombosis of the cavernous sinus | 649 |
| Tenonitis | 649 |
| Injuries of the orbit | 650 |
| Contusion of the eye; summary of appearances | 652 |
| Bosedow's disease | 653 |
| Tumors of the orbit; pulsating exophthalmus | 655 |
| Dilatation of the cavities adjoining the orbit | 659 |

PART III.

ANOMALIES OF REFRACTION AND ACCOMMODATION.

Introduction | 661

CHAPTER I.

THE THEORY OF GLASSES.

Varieties and properties of lenses | 662 |
Numbering of glasses | 666

CHAPTER II.

OPTICAL PROPERTIES OF THE NORMAL EYE.

Refraction | 669 |
Visual acuity | 670 |
Accommodation | 674 |
Measurement of accommodation | 679 |
Changes of the accommodation in age; presbyopia | 686
## CONTENTS.

### CHAPTER III.
#### MYOPIA.
- Nature and determination ........................................ 600
- Typical myopia ..................................................... 604

### CHAPTER IV.
#### HYPERMETROPIA.
- Nature and determination ........................................ 705
- Typical hypermetropia ............................................ 710

### CHAPTER V.
#### ASTIGMATISM—THE CORRECTION OF REFRACTIVE ERRORS.
- Regular astigmatism ............................................. 716, 721
- Irregular astigmatism .......................................... 720
- Determination of astigmatism .................................. 721
- Cycloplegics and the correction of refractive errors ...... 724
- Anisometropia ...................................................... 726

### CHAPTER VI.
#### ANOMALIES OF ACCOMMODATION.
- Paralysis of accommodation .................................... 728
- Spasm of accommodation ........................................ 731

## PART IV.
### OPERATIONS.

#### CHAPTER I.

##### GENERAL REMARKS.
- The antiseptic method in eye operations ..................... 733, 740
- Anesthesia in operations ....................................... 735
- Instruments for supporting the lids ......................... 735
- Character and shape of incisions in the eyeball .......... 735, 741
- Maintenance of proper position of the iris ............... 736, 743
- Hemorrhage in operations ...................................... 737, 745
- After-treatment of operations ................................ 738, 745
- Regular healing of operation wounds ....................... 738
- Irregular healing of operation wounds ..................... 739
- Suppuration of wound after operations ..................... 740
- Inflammation of the uvea after operations ............... 740
- Collapse of the cornea .......................................... 744

#### CHAPTER II.

##### OPERATIONS UPON THE EYEBALL.
- Paracentesis of the cornea .................................... 746
- Paracentesis of the sclera; sclerotomy ..................... 747
- Iridectomy ......................................................... 748
* CONTENTS. *

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iridotomy</td>
<td>755</td>
</tr>
<tr>
<td>Discussion of soft cataract</td>
<td>756</td>
</tr>
<tr>
<td>Discussion of membranous cataract</td>
<td>758</td>
</tr>
<tr>
<td>Extraction of cataract</td>
<td>760</td>
</tr>
<tr>
<td>Simple linear extraction</td>
<td>762</td>
</tr>
<tr>
<td>Flap extraction</td>
<td>781</td>
</tr>
<tr>
<td>Early operations for cataract</td>
<td>787</td>
</tr>
<tr>
<td>Depression</td>
<td>787</td>
</tr>
<tr>
<td>Reclination</td>
<td>787</td>
</tr>
<tr>
<td>David's operation</td>
<td>788</td>
</tr>
<tr>
<td>Beer's operation</td>
<td>788</td>
</tr>
<tr>
<td>The operations of Von Graefe and others</td>
<td>788</td>
</tr>
<tr>
<td>Erythropsia</td>
<td>771</td>
</tr>
</tbody>
</table>

CHAPTER III.

OPERATIONS UPON THE ADNEA BULBI.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squint operations; tenotomy and advancement</td>
<td>773</td>
</tr>
<tr>
<td>Enucleation of the eyeball</td>
<td>780</td>
</tr>
<tr>
<td>Artificial eye</td>
<td>782, 784</td>
</tr>
<tr>
<td>Exenteratio bulbi</td>
<td>784</td>
</tr>
<tr>
<td>Optico-ciliary neurotomy</td>
<td>783</td>
</tr>
<tr>
<td>Exenteration of the orbit</td>
<td>785</td>
</tr>
<tr>
<td>Operations for trichiasis</td>
<td>788</td>
</tr>
<tr>
<td>Canthoplasty</td>
<td>792</td>
</tr>
<tr>
<td>Tarsorrhaphy</td>
<td>798</td>
</tr>
<tr>
<td>Operations for entropion</td>
<td>795</td>
</tr>
<tr>
<td>Operations for ectropion</td>
<td>797</td>
</tr>
<tr>
<td>Blepharoplasty</td>
<td>798</td>
</tr>
<tr>
<td>Operations for ptosis</td>
<td>801</td>
</tr>
</tbody>
</table>

APPENDIX.

INSTRUMENTS USED IN OPHTHALMOLOGY:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruments for opening the eye and keeping it in place</td>
<td>805</td>
</tr>
<tr>
<td>Instruments for operations upon the lids</td>
<td>806</td>
</tr>
<tr>
<td>Instruments for strabismus and enucleation</td>
<td>807</td>
</tr>
<tr>
<td>Instruments for lachrymal stricture</td>
<td>808</td>
</tr>
<tr>
<td>Instruments for removing foreign bodies</td>
<td>809</td>
</tr>
<tr>
<td>Tattooing needles</td>
<td>809</td>
</tr>
<tr>
<td>Instruments for iridectomy and iridotomy</td>
<td>810</td>
</tr>
<tr>
<td>Instruments for paracentesis and discission</td>
<td>811</td>
</tr>
<tr>
<td>Instruments for cataract extraction</td>
<td>812</td>
</tr>
<tr>
<td>Ophthalmoscopes</td>
<td>814</td>
</tr>
<tr>
<td>Instruments for skiascopy</td>
<td>816</td>
</tr>
<tr>
<td>The ophthalmometer and keratoscope</td>
<td>818</td>
</tr>
<tr>
<td>The perimeter</td>
<td>819</td>
</tr>
<tr>
<td>Instruments for muscle-testing</td>
<td>820</td>
</tr>
</tbody>
</table>
PART I.

EXAMINATION OF THE EYE.

CHAPTER I.

OBJECTIVE EXAMINATION OF THE EYES.

1. The examination of a patient’s eyes is begun after establishing the history of the case. In making this examination too much stress cannot be laid upon the necessity of proceeding systematically, since otherwise important matters can very readily be overlooked. We first examine the patient with regard to his general physical condition as well as with regard to the expression of his countenance, and then, in observing the eyes themselves, proceed gradually from the superficial parts—lids, conjunctiva, and cornea—to the deeper portions.

In respect to the lids, there are to be considered their position and mobility, the breadth of the fissure between them and their power of closing. The character of the skin lining the lids is examined, and especially at their margins, where pathological changes are most often found. Apart from the symptoms of inflammation, which are localized with especial frequency at the borders of the lids, the things that we must look for are whether the palpebral edges have not possibly lost their sharply defined form and outline, whether the cilia are correctly placed, and also whether the puncta dip properly into the lacus lacrymalis. At the same time, we must not neglect to investigate the region of the tear sac. Should simple inspection disclose no alteration, it is yet often possible, by pressure with the fingers in this region, to make the contents of the diseased sac exude through the puncta.

The examination of the eyeball itself is often rendered very difficult by strong spasm of the lids—blepharospasm. This is especially the case in children who, the more the physician attempts to draw the lids apart, squeeze them the more tightly together. In these cases the forcible separation of the lids calls for the greatest caution, since, if this is not observed, and a deeply penetrating ulcer is present, it is easy to cause a sudden perforation of the cornea, nay, even the extrusion of the lens from the eye. By dropping a solution of cocaine between the
EXAMINATION OF THE EYE.

slightly parted lids we try to diminish their sensitiveness; and for the separation of the lids we can, with advantage, use Desmarre's elevator, with which we shall less readily inflict an injury than we should do if, in using the fingers, we exerted too great a pressure upon the eyeball. Finally, in many cases it is only by means of narcosis that we can obtain a sufficiently satisfactory view of the eyes. In spite of all these difficulties we should not be deterred from insisting upon an exact examination of the eyes at the patient's first visit, in order to establish the diagnosis and prognosis and to determine the treatment.

In regard to the eyeball itself, we must first satisfy ourselves whether its situation in the orbit, its position in respect to the other eye, its size, and its mobility are normal or not.

The *conjunctiva* of the lids can be brought into view by evert ing the latter. With the lower lid, it is sufficient for this purpose to simply draw it down, while the patient is told at the same time to look up. With the upper lid, eversion requires a certain degree of skill, which must be obtained by practice. It is the more important to acquire this facility, since it is just the conjunctiva of the upper lid that generally affords the best evidence for the diagnosis of conjunctival diseases: the thickening of the conjunctiva, the uneven surface, the formation of cicatrices, which are characteristic of trachoma, are here most easily to be perceived. Further, the eversion of the upper lid is very frequently necessary for the removal of foreign bodies.

In the examination of the *cornea*, besides a careful inspection (if need be, with a magnifier, such as that of Hartnack), there are two main artifices in use—examination of the corneal reflex and lateral illumination. To examine the corneal reflex signifies nothing more than to direct the eye in such a manner that the reflection of a window placed opposite it is visible upon the cornea (in Fig. 30 the image of four window panes is seen upon the upper and outer quadrant of the cornea). By causing the eye to follow the movements of a finger held before it, the reflection is gradually brought upon different portions of the corneal surface, of whose curvature and smoothness we in this way obtain an impression.

*Lateral illumination* consists in the concentration of light upon a certain portion of the cornea by means of a convex lens. This important method, although already employed by Himly, Mackenzie, and Sanson, was yet very little known formerly, and first obtained general currency through the efforts of Helmholtz. A light (candle or lamp) is placed beside and somewhat in front of the patient. Then, by the aid of a strong convex lens (of 15–20 D.), the rays are concentrated to a cone of light, whose apex is made to fall upon the portion of the cornea to be examined. This method is designated as focal illumination, because the point to be illuminated is brought into the focus of the lens. This point stands out with special distinctness because, on
the one hand, a great quantity of light is concentrated upon it, and because, on the other hand, the parts immediately surrounding it remain almost completely in darkness. On this latter ground, lateral illumination gives the most advantageous result if in its application the room is darkened. By lateral illumination we can recognize opacities in the cornea which are perceptible in no other way. The iris, too, and the lens as well, can be examined in this way by varying the depth to which the light is projected. By so doing we have not merely the advantage of getting very sharp images, but also, from the fact that we can at will vary the depth to which the apex of the conical sheaf of rays is projected, we get information as to the depth at which the changes that we observe are situated. A handier method of lateral illumination is furnished by the lamp of Priestley Smith. This carries in its center a small candle as a source of light; a strong convex lens let into the side of the lamp serves for the production of the cone of light.

In addition to the appearance of the cornea we have further to examine its sensitiveness, which is best done by touching it with the point of a thread.

The *anterior chamber* must be examined more especially in respect to its depth—that is, whether it is shallower or deeper, as a whole, or whether possibly it is of unequal depth. Further, we look for any abnormal matters which may be present in the chamber, such as an exudate, blood, foreign bodies, etc.

In the *iris* its color as well as the clearness of its markings must be observed. For the recognition of adhesions the instillation of atropine is often requisite. We inspect the active movements (reaction) of the iris as well as any passive movement that may be present (tremulousness of the iris in movements of the eyeball). In order to determine the reaction of the iris to light, we first cover the eye by holding the hand before it, and then see whether, upon suddenly removing the hand, the pupil contracts (direct reaction). Then we see if the pupil of the eye under examination reacts when the other eye is alternately illuminated and shaded (consensual reaction). To keep the eye still while being thus tested, the patient is directed to fix it upon some distant object. Furthermore, we must test the reaction of the pupil to convergence and accommodation. Lastly, we determine whether the pupil is circular, of normal width, centrally placed, and of pure black hue.

Of the *lens* we see under ordinary circumstances only the small section of the anterior surface, which lies free in the pupil. If we wish to examine the lens more extensively, we dilate the pupil with homatropine and use lateral illumination. As long as the lens is still transparent, the ophthalmoscope gives us the best conclusions in regard to its constitution. Whether the lens is present in the eye at
all or not can be determined by investigating the Purkinje-Sanson reflex images. If a candle is placed before the eye and somewhat to one side of it, two brilliant reflections are observed. One of these at once attracts our attention by its size and brilliancy; it is the corneal reflex—that is, the erect image of the flame reflected from the anterior surface of the cornea (Fig. 1, a). It is this reflex which even from a distance is visible in every eye, and gives to the latter its fire and luster. The second reflex is quite as bright, but so small that we have to search for it in order to find it. It presents the very small inverted image of the flame which is reflected from the posterior surface of the lens (posterior lenticular reflex, Fig. 1, b). It is distinguished by moving in the contrary sense to the source of light when the position of the latter is shifted; if the candle is depressed, the shining point rises, and vice versa, in opposition to the corneal reflex, which moves in the same sense as the candle flame. It is this posterior lenticular image that is used in doubtful cases to demonstrate the presence of the lens in the eye. If the image is visible, the lens is present; if the image is not seen, either the lens is absent from its place or else is more or less opaque, so that a reflection can no longer be developed on its posterior surface. (Fig. 1 also shows a third reflex image, c, placed between the other two and originating from the anterior surface of the lens. The latter gives an erect image larger than the others, but so faint that it can be made out only with difficulty.)

Finally, before proceeding to an examination with the ophthalmoscope, the tension of the eye is to be tested. The eye is closed and palpation is made by means of the two index fingers, which are placed upon the upper lid. Here, as in all the previously mentioned methods of examination, the best measure for any variation from the normal is obtained by a comparison with the other eye, it being presupposed that the latter is healthy.

Examination with the Ophthalmoscope (Ophthalmoscopy).

2. The invention of the ophthalmoscope by Helmholtz in the year 1851 was one of the most beneficent achievements in modern medicine. It has made the interior of the eye accessible to investigation; blood-vessels and nerves, which in the rest of the body are exposed only by surgical manipulation, here lie unveiled before us and permit us to study their minutest variations. In ophthalmology, the ophthalmos-
scope has produced a complete revolution, since it has thrown light into the dark region of what was formerly called black cataract, and has acquainted us with the manifold morbid processes which lie at the root of this dreaded malady. Many of these processes, if diagnosed correctly and in time, would, at the present day, receive successful treatment. Furthermore, in general medicine the ophthalmoscope has become an indispensable aid to diagnosis, since many internal disorders produce characteristic changes in the fundus of the eye.

**Principle of the Ophthalmoscope.**—In order to see the fundus of an eye, we must throw light by the aid of suitable apparatus through the pupil and upon the fundus, and receive the light reflected from the latter into our own eye and unite the rays to form a sharp image. In the original ophthalmoscope of Helmholtz this end was obtained in the following way: Before the eye under investigation (A, Fig. 2) a glass plate, \( P P \), is placed in an oblique position. A source of light, \( L \), placed to one side of the eye, throws upon the glass plate rays, part of which are reflected at the surface of the plate and pass through the pupil into the eye, \( A \). The rays reflected from the fundus, \( a \), arrive once more at the glass plate and are there in part reflected to the source of light, \( L \), while another part goes through the glass plate and enters the observer’s eye, \( B \), which unites the rays upon its retina into a well-defined image, \( b \). In order to increase reflection at the surface of the plate and thereby illuminate the background of the eye more intensely, Helmholtz placed three such plates one behind the other. A later modification consisted in increasing the reflecting power of the glass plate by lining its posterior surface with a mirror coating, a round hole through the plate or at least through the mirror coating enabling the observer to see through it. Of this sort are the coated plane mirrors, or mirrors of feeble illumination which are now

![Fig. 2.—Principle of Helmholtz's Ophthalmoscope.](image)
employed. As mirrors of strong illumination we designate concave mirrors, which are also coated and are perforated through the center (first employed by Ruete). These, from the fact that they render convergent the rays springing from the source of light, throw a still greater quantity of light through the pupil into the observed eye. An apparatus is placed on the posterior surface of the mirror, which renders it possible to bring different sorts of lenses before the aperture. In this way it is possible to give the rays of light which fall into the observer's eye any path that may be necessary in order to unite them into a sharp image upon the retina.

Method of Examination.—The examination is conducted in a darkened room. The patient sits opposite the physician, and has on the side of the eye to be investigated a lamp as a source of light. Then there are two different methods to be employed for seeing clearly the fundus of the eye. In order to make the explanation of them simpler, we first presuppose that both the patient and the physician have a normal refraction (emmetropia, see § 137). In the examination with the erect image (direct method), the physician places himself and his mirror directly in front of the eye that he is observing. If now he holds the mirror obliquely in such a manner that he throws the light of the lamp into the pupil of the observed eye, he will immediately get a clear view of the patient's fundus. For (Fig. 3) a certain portion of the fundus of the eye, $A$, is illuminated by the mirror, $S S$. The rays reflected from any point, as $a$ of this illuminated region of the retina, leave the eye in a parallel direction, pass through the central aperture of the mirror, and fall into the observer's eye, $B$. Here they are again united at a single point, $b$, upon the retina of this eye, so that here there is produced a sharp image of the point $a$. Since the same pro-
cess is repeated for all the other points of the illuminated region of
the retina of the eye, \( A \), a sharp image of this portion of the retina is
formed in the eye of the observer.

The examination with the inverted image, or by means of the indirect method (Ruete), is conducted with the aid of a strong convex
lens of about six cm. focus. This lens, \( L \) (Fig. 4), is held at a distance
of about six cm. from the eye (\( A \)) under examination. The fundus of

\[ \text{FIG. 4.—OPHTHALMOSCOPIC EXAMINATION WITH THE INVERTED IMAGE.} \]

The illumination of the fundus is accomplished by means of the source of light, \( L \), from which
the cone of rays, \( k \), falls upon the mirror, \( SS \), and from this is thrown into the eye, \( A \). In
order not to confuse the representation, these rays are not shown, but only those which pass out of the eye, \( A \), again.

this eye is now illuminated by means of the mirror \( SS \). The rays
reflected from the illuminated region, \( a \), of the retina pass out in a par-
allel direction, fall upon the lens and are united at the focus, \( f \), of the
latter. Thus there is formed at this spot an image of the point \( a \). In
like manner images from the other points of the illuminated region of
the retina are produced in the focal plane of the lens, so that there is formed here an inverted image of this portion of the fundus. The
observer’s eye, \( B \), now through the aperture, \( o \), of the mirror examines
this image at the ordinary reading distance (about thirty cm.), for
which purpose the observer, unless he is myopic, must use a certain
accommodative effort, or else a corresponding convex glass.

Each of these two methods has its advantages. The erect image
is highly magnified—about fourteen times—as opposed to the inverted
image, which is magnified but little (about four times). The direct
method is therefore particularly adapted for the recognition of the
finer details. The indirect method, on the other hand, affords a larger
field of view, and therefore gives a better general prospect. The indi-
rect method gives a more luminous image, and hence, when the re-
fracting media are turbid, will still render the fundus visible when it is
no longer to be seen in the direct image; and in myopia of high degree
the indirect method is the only one practicable. In most cases, both methods are applicable, and then it is advisable to conduct the examination with the aid of both.

Luminosity of the Pupil.—Under ordinary circumstances the pupil appears black. This was formerly ascribed to the absorption by the dark background of the eye of all the light entering the pupil from the outside. In reality, however, the cause of this phenomenon is as follows: If (Fig. 5) light

![Fig. 5.—Path of the Rays when the Eye is focused for the Source of Light.](image)

from a source of light, \( L \), enters the eye, \( A \), and the latter is accurately focused for the source of light, the rays coming from \( L \) are united to form a sharp image upon the retina at \( l \). \( L \) and \( l \) are called conjugate foci. For these the law holds good that they can be substituted for each other—that is, if the rays should start from the posterior focus, \( l \), they would come together again at the anterior focus, \( L \). Accordingly, the rays reflected from the illuminated portion of the retina, \( l \), are returned to the source of light, \( L \), and could be seen by an observer only in case the latter was in identically the same spot as the source of light. The solution of this problem is another of the ingenious discoveries of Helmholtz.

The conditions are different when the eye is not focused for the source of light before it. Suppose, for example, that the eye is hypermetropic (Fig. 6). Then the rays springing from the illuminated portion of the retina, \( l \), leave

![Fig. 6.—Explanation of Luminosity of the Eye.](image)

the eye as a divergent beam, so that only a part of the rays are returned to the source of light, \( L \), while another part passes to the side of the latter and can be seen by an observer stationed near it. Hence comes the striking luminosity of the pupil in so-called amaurotic cat’s eye (see § 99), in which a markedly hypermetropic condition of the refraction is produced by the pushing
forward of the retina. In like manner, luminosity is frequently apparent in eyes which are deprived of their lens by the operation for cataract and are therefore strongly hypermetropic. Moreover, the enlargement of the pupil, which is at the same time present, and which is due to the iridectomy, renders it still easier to observe the luminosity. The luminosity of the eyes of many beasts, especially the carnivora, is also in part to be ascribed to the hypermetropic character of their refraction, although here the presence of a strongly reflecting layer (the so-called tapetum) in the choroid of these eyes contributes to this result.

The luminosity of the pupils of albino's eyes is to be explained in a different way. In such eyes the light passes not only through the pupil, but also through the unpigmented iris, and even through the sclera. Accordingly, in these eyes, not simply a limited district of the retina, but the whole fundus, is flooded with diffused light; and therefore rays from the different portions of the fundus pass out of the pupil in every direction and can very readily be caught up by the observer's eye. That this explanation is the correct one is proved by the fact that the pupil of an albino's eye looks black as soon as we hold before the eye a screen having an aperture that corresponds in size to the pupil. This shuts off from the eye any light which might enter it through other media than the pupil, and in this respect makes the eye of an albino like that of a normal person.

3. Application of the Ophthalmoscope.—In the ophthalmoscopic examination of the eye we invariably proceed by carefully investigating the eye by means of lateral illumination first, next testing the transparency of the refracting media with the ophthalmoscope, and not going on to the examination of the fundus itself until last of all. This last examination is best made first with the inverted, afterward with the erect image; and in examining the latter the refraction can be determined at the same time. If the pupil is narrow, the tyro will do well to dilate it with cocaine or homatropine. Before doing so he must make sure that there is no reason to suspect glaucoma, in which case artificial dilatation of the pupil might have dangerous results, and therefore must not be employed.

For testing the transparency of the refracting media light is thrown by the ophthalmoscope, held at the ordinary reading distance, into the eye under examination. If the refracting media are perfectly clear, the pupil shines with a uniform red luster. If there are places in the refracting media that are opaque, such stand out upon the red background of the illuminated pupil as dark points or spots. For example, the rays which correspond to the opaque spot $t$ (Fig. 7) are cut off on their return from the fundus, $a$, so that this spot is not illuminated and hence looks black. This is the case even when the opacities are actually, as seen by light thrown directly upon them, light colored—that is, white or gray. So also even a piece of chalk looks black if it is held in front of a flame.

In making a systematic examination of the fundus we begin at the papilla. In order to bring the latter into view at once, we make the
patient look, not straight in front of him, but a little inward (toward his nose). For the entrance of the optic nerve does not lie at the posterior pole of the eye, but on the nasal side of it, and hence is brought directly opposite the observer only after a corresponding rotation of the eye inward. It then comes into view as a bright disk, whose color is a light grayish or yellowish red, contrasting strangely with the red of the rest of the fundus (Fig. 8). The shape of the papilla is circular or oval; in the latter case generally an erect oval. Its size apparently varies quite a good deal, which, however, is due to the varying degree of enlargement under which the papilla is seen. The true size of the papilla, measured in enucleated eyes, is, as a matter of fact, almost always the same—that is, about 1.5 mm. in diameter. On account of this constancy we use the papilla for taking measurements in the fundus; we say, for example, that a diseased area is 2 papilla-breathths in diameter.

_Circumscribing the papilla,_ we very often (especially in making the examination with the erect image) recognize two rings distinct in color. The inner ring, lying next the border of the papilla, is white (Fig. 9 A between c and d; see also Figs. 8 and 11), and is called the _scleral ring_, because it owes its white color to the fact that the sclera is here exposed to view. It is present when the canal in the sclera, through which the optic nerve passes, is narrowest, not as is often the case, at its anterior orifice, but somewhat farther back, so that the foremost portion of the canal forms a funnel with the base forward. The wall of this funnel, which is formed of white sclera (Fig. 9 B between c and d), appears when seen with the ophthalmoscope in perspective foreshortening, as a narrow white ring. At the margin of the aperture in the choroid that gives passage to the optic nerve, the choroid is often marked by a larger accumulation of pigment, by which the second, exterior ring is formed. This is apparent as a black, narrow, sometimes complete, sometimes incomplete, ring, which is designated as the _choroidal ring_ or pigment ring (Fig. 9, d, and Fig. 8, where it is visible especially at the outer border of the papilla).
OBJECTIVE EXAMINATION OF THE EYES.

The demarcation of the outline of the papilla, produced in this way, is generally much less sharp on the nasal than on the temporal side; for at the nasal side a greater number of nerve fibers pass over the margin of the papilla and thus obscure it. For the same reason the inner half of the papilla looks redder, the outer half paler, because the layer of nerve fibers in the latter situation being thinner, allows the lamina cribrosa to show through more.

The optic disk under normal conditions lies in the plane of the retina, and does not therefore form a projection upon it as the name papilla would lead one to suppose. On the contrary, it very frequently contains in its center a depression, which is produced by the fibers of the optic nerve separating from each other comparatively early and thus leaving a funnel-shaped space between them (vascular funnel,

![Diagram of the normal fundus of the left eye, seen in the erect image.](image)

**Fig. 8.—Normal Fundus of the Left Eye, seen in the Erect Image.**

The optic disk, which is somewhat oval longitudinally, has the point of entrance of the central vessels somewhat on the inner side of its center. That portion of the papilla lying to the inner side of the point of entrance of the vessels is of darker hue than the outer portion; the latter shows, directly to the outside of the vascular entrance, a spot of lighter color, the physiological excavation with fine grayish stippling, representing the lacuna of the lamina cribrosa. The papilla is surrounded, first by a light-colored ring, the scleral ring, and externally to this by an irregular black stripe, the choroidal ring, which is especially well marked on the temporal side. The central artery and vein divide immediately after their entrance into the eye into an ascending and descending branch. These branches, while still on the papilla, split into a number of smaller divisions, and fine offshoots from them run from all directions toward the macula lutea, which itself is devoid of vessels, and is distinguished by its darker color. In its center a bright punctate reflex, \( j \), is visible.

Fig. 9 B, b). The central vessels ascend on the inner wall of the funnel. The color of the vascular funnel seems white to us because we see the white lamina cribrosa at its bottom. Often, instead of a small funnel-shaped depression, a large excavation (physiological excavation) is present. This is situated in the outer half of the papilla, to whose external border it often reaches. The blood-vessels come out upon the inner border of the excavation (Fig. 8), and at the bottom of the latter are seen grayish dots, the lacunae of the lamina cribrosa. With the brilliant white of the excavated exterior half of the papilla the grayish-
red hue of the unexcavated interior half is in vivid contrast. Sometimes the physiological excavation is so large that it takes in the larger part of the papilla, but it never takes in the whole; there is always a part (though it may be a small part) of the papilla that escapes it. By this circumstance the physiological is distinguished from the pathologi-
cal excavation, which affects the entire papilla (total excavation, cf. § 81).

The central vessels of the optic nerve divide at the head of the nerve into a number of larger and smaller branches, which pass over its edge into the retina, where they keep on branching after the fashion of a tree trunk. They can readily be distinguished into arteries and veins. The former are of a brighter red, narrower, and run a straight course (Figs. 8 and 9, a a); the latter are darker, of greater caliber, and more crooked (Figs. 8 and 9, v v). The arrangement of the vessels in the retina is not always the same; most frequently it happens that two main branches run upward and two downward, while only small and short twigs pass to the outer and inner sides of the disk (Fig. 8). The region of the macula lutea is devoid of larger vessels; the larger trunks, running to the outside above and below, encircle it and send finer branches in toward it.

In the larger vessels we notice a shining white streak running along the center of the vessels. This streak, which is more distinctly visible in the arteries (Fig. 9 A, a a) than in the veins (v v), is called the reflex streak (Jäger).

A pulsation is frequently observed in the vessels at the spot where they first come to view upon the papilla. A venous pulse is a physiological occurrence: in the same eye it is sometimes present, sometimes absent. In the latter case, slight pressure upon the eye with the finger suffices to produce it.

Donders gives the following explanation of the venous pulse: At each systole of the heart an additional quantity of blood is driven into the arteries of the interior of the eye, and the blood pressure in these arteries is consequently heightened. This increase in the arterial tension reacts at once upon the general intra-ocular tension, heightening the latter, so that it acts more vigorously upon the retinal veins and compresses them. It does this most at the spot where the blood pressure in the veins is lowest, which is at their point of emergence upon the papilla, since the blood pressure in the veins diminishes in proportion as we approach the heart and get farther away from the capillaries. The veins consequently are constricted at the spot where they dip down into the vascular funnel, while the portion of the veins directly adjacent swells up, because the blood is dammed up in it. But as a result of this damming, the blood pressure in the veins rises rapidly to the point where it is able to overcome the compression—doing this the more readily as now the diastole of the heart sets in, and with this the intra-ocular pressure diminishes.

An arterial pulse is present under pathological conditions only. In order to produce it artificially in a healthy eye, no inconsiderable pressure must be exerted upon the eyeball. When this is done, the person under examination notices a simultaneous obscuration of the
field of vision, amounting finally to complete abrogation of sight, as a result of the obstruction to the retinal circulation produced by the pressure. In like manner a rise in pressure produced by pathological conditions (glaucoma) causes an arterial pulsation. The explanation of this is as follows: As a result of the increased pressure in the interior of the eye, the blood is able to enter the vessels of the retina only during the systole of the heart; during the diastole, when the pressure in the arteries becomes somewhat lower, the latter are occluded by the intra-ocular pressure. Such a disproportion between the intra-ocular pressure and the pressure of the blood in the central artery may also, of course, be produced by the fact that while the former remains normal, the latter is diminished. Accordingly, an arterial pulsation is observed in general anemia and when syncope is imminent; also in local compression of the central artery within the optic nerve (e. g., in optic neuritis). Lastly, in some cases—e. g., in insufficiency of the aortic valves and in Basedow's disease—the presence of an arterial pulse in the eye is but one of the symptoms of an abnormally extended diffusion of the pulse wave in all parts of the body.

Since in healthy living eyes the retina is transparent, we see no part of it with the ophthalmoscope except the blood-vessels. At most we find the red fundus in the immediate neighborhood of the papilla covered by a delicate gray veil which shows a radiating fine striation and which is the representative of the layer of nerve fibers of the retina, which in this situation is still quite pronounced. In children vivid reflexes often exist which are especially pronounced along the vessels, change their place with every movement of the mirror, and give the retina a luster like that of watered silk. We must avoid regarding these as pathological opacities of the retina. The region of the retina that is most important for vision, the macula lutea, with the fovea centralis, is just the part that has very few distinctive ophthalmoscopic features. We find it with the ophthalmoscope, if we go a distance of 1½ to 2 diameters of the papilla outward from the outer border of the papilla. Here we come upon a region devoid of vessels which is somewhat darker than the rest of the fundus. Directly in its center, corresponding to the situation of the fovea centralis, we see a bright point or a small, crescentic spot (Fig. 8, f). In the inverted image the macula lutea is represented by a fine white line which forms a horizontal oval of about the size of the papilla. The region inclosed by the line is colored a dark brownish red and sometimes has in its center a little bright dot. These appearances are nothing more than reflexes produced by the light on the inner surface of the retina, and are by no means constantly present. When the pupil is dilated they become less marked or disappear altogether.

The red background on which the appearances above described are visible is made by the choroid. This owes its red color to the
blood circulating in the chorioidal vessels, and especially in the capillaries. That the individual vessels are not themselves recognized, that on the contrary the fundus appears uniformly red, is due to the fact that the pigment epithelium covers the chorioid like a murky veil. The pigment epithelium, too, has a marked effect upon the brightness of the red color of the fundus. In very dark-hued men the pigment epithelium scarcely allows the red of the chorioid to shine through, so that the fundus appears almost dark gray. The less pigmented the person is, the brighter the red of the fundus. In such cases a finely

![Fig. 10.—Tessellated Fundus.](image)

(Fig. 10.—Tessellated Fundus. For the alteration of the papilla here depicted, which is due to congenital malformation, see the description attached to Fig. 111.)

granular condition of the chorioid is often perceived in the erect image, which is caused by the cells of the pigment epithelium.

Under certain circumstances, however, the vessels also of the chorioid are visible. We observe this chiefly under two conditions, viz.:

1) In many eyes the interspaces between the chorioidal vessels (the so-called intervascular spaces) have an especially profuse pigmentation, so that they stand out as dark elongated islands; the bright-red striae running between them and anastomosing everywhere with each other, correspond to the chorioidal vessels which are chiefly veins. Such a fundus is said to be *tessellated* (Fig. 10); it is often confounded with chorioiditis by beginners.

2) In other eyes, on the contrary, it is the abnormally scanty pigmentation of the fundus that permits the vascular system of the chorioid to be seen; the epithelial layer, on account of the unduly
small amount of pigment which it contains, allowing the chorioidal vessels to appear through it. This is in the greatest degree the case in albinos, who are entirely devoid of pigment. In these the whole network of chorioidal vessels down to the most delicate ramification stands out upon the pale-red background (Fig. 11). The retinal vessels run over the chorioidal vessels, but are easy to distinguish from them. The chorioidal vessels are broader, less sharply defined, and look flat and ribbonlike; they lack the reflex streak. In opposition to the retinal vessels, which branch after the manner of a tree and do not anastomose, they form by their numerous anastomoses a dense network with elongated meshes.

Examination of the Refracting Media.—For this purpose, when pronounced opacities are present, we make use of the concave mirror; slight opacities, on the other hand, are discovered only by means of the mirror of feeble illumination (plane mirror); and in this case it is often also necessary to dilate the pupil with homatropine. If the observer is emmetropic, and still more if he is hypermetropic, he ought to place a convex glass behind his mirror, so as to be able to get near enough to the eye that he is examining and still see with distinctness. A myopic observer will not need such a glass. In examining, we must not neglect to make the eye move in different directions, in order, on the one hand, to obtain a view of laterally placed opacities, and, on
the other hand, to stir up in this way opacities which have sunk to the bottom of the vitreous humor. Smaller opacities look black; larger opacities appear gray or even white, since the light reflected from their surface is strong enough to shine out upon the vivid red background of the illuminated pupil. In order to recognize the site of the opacity, we decide, in the first place, whether the latter is movable or fixed. In the former case it can be situated only in the vitreous; in the latter case—that is, if the opacity moves only with the eye, and not spontaneously—it is probably situated in the cornea or in the lens; but it may still be in the vitreous, since here too fixed opacities are sometimes observed. In many cases this can be decided by employing lateral illumination. If we can obtain no result in this way, we then, in order to determine the site of the opacity, make use of the parallactic displacement of the latter with reference to the margin of the pupil. This is accomplished in the following way: In the eye, A (Fig. 12), suppose four opaque points to be present, which lie at different depths—namely, in the cornea (1), upon the anterior capsule of the lens (2), at the posterior pole of the lens (3), and in the anterior part of the vitreous (4). For simplicity's sake we assume that they are all disposed in the optical axis of the eye. Then, if the observer, B, looks into the eye from directly in front, he will see each one of these points precisely in the center of the pupil, P. Suppose, now, that the observer's eye passes from B to B'. The position of the points with relation to the pupil will be changed at once. Point 1 approximates to the upper border of the pupil P; point 2, which is situated in the pupil itself, keeps its place unchanged; points 3 and 4 have approached the lower border of the pupil; and 4, on account of its greater depth in the eye, more so than 3. From this example the following rule for the determination of the site of an opacity can be deduced: We look into the eye from directly in front and note the position of the opacity in the pupil. Then, while the patient holds his eye fixed, we move slowly to one side and observe whether the opacity remains in the same spot or not. In the former case, the opacity lies in the pupillary plane (upon or directly beneath the anterior capsule of the lens); in the latter case, in front of or behind this plane—in front of it, if the opacity shifts its place with a movement opposed to that
of the investigating eye; behind it, if the opacity moves in the same sense as the eye. The more quickly this change of place occurs, the farther removed is the opacity from the pupillary plane. (Evidently we can also proceed by keeping our own eye still and telling the patient to move his. This way of examining has the disadvantage that, if the movement of the observed eye is rather extensive, a minute opacity, whose position has been marked, may disappear out of sight and then frequently is found again only with difficulty.)

Dark, ill-defined shadows on the red background of the pupil, which change their position suddenly on moving the mirror, are to be referred to irregularities of the refracting surfaces (most frequently to faceting of the cornea); the irregular astigmatism so caused further betrays itself by the fact that the image of the fundus appears irregularly distorted.

**DETERMINATION OF THE REFRACTION.**—The determination of the refraction by the ophthalmoscope may be accomplished in three ways: with the erect image, with the inverted image, and by the shadow test.

1. Determination of the refraction with the erect image. When the eye under examination is emmetropic, the rays emitted from the illuminated retina emerge parallel to each other (as shown in Fig. 3); hence the observer's eye, which in all that follows we shall assume to be emmetropic, can without exercising any accommodation unite them into a sharp image. Emmetropia, however, represents the only condition of the patient's eye in which an emmetropic observer can without ulterior aid see distinctly the patient's fundus; when the patient's refraction is of any other nature, the observer, to see clearly, must use either a glass or his accommodation.

Suppose the eye to be examined (A, Fig. 13) to be myopic, with its far point at \( F \) so that the rays coming from \( F \) are united on the retina at \( f \) (see § 142).

![Fig. 13. Correction of Myopia by a Concave Lens.](image)

The eye is drawn of the natural size of a myopic eye having an axial length of 27 mm.

\( F \) and \( f \) are conjugate foci, and the course of the rays would therefore be the same if they should proceed in the opposite direction—i.e., from \( f \) toward \( F \); in that case, they would be united at \( F' \) as they emerge from the eye. A point \( f \) of the retina, illuminated by the ophthalmoscope, will then emit a bundle of rays converging at \( F \); and at this distance there is produced a clear image of the illuminated fundus. The observer's eye, which is placed at a short distance (a few centimetres) from the eye \( A \), would catch the rays emitted from the latter before they were united at \( F' \)—that is, while they still had a certain amount of
OBJECTIONAL EXAMINATION OF THE EYES.

Convergence. But the observer's eye, unless it were hypermetropic, is not in a position to unite convergent rays into a sharp image. If the eye is emmetropic, as we will assume it to be, the rays which fall upon it must first be made parallel, which evidently is accomplished by a concave lens, $L$. Now, how is this lens related to the degree of myopia of the eye under investigation? If we imagine the course of the rays reversed, then parallel rays coming from in front and falling upon the lens $L$ would be rendered by the latter so divergent that they would come to a focus upon the retina of the myopic eye; the myopic eye accordingly would get sharp vision with this lens for parallel rays—that is, rays coming from an infinite distance. $L$ would therefore be the correcting glass for the myopia of the eye, $A$. We can hence say this: In order that an emmetropic observer should see clearly the fundus of the myopic eye, $A$, he must use the same glass that will correct the myopia of this eye. If, therefore, an emmetropic observer has to determine the refraction of a myopic eye with the ophthalmoscope, he keeps placing concave glasses before it until he finds one with which he gets a sharp view of the fundus in the erect image; the glass employed gives directly the degree of the myopia. The same principle holds good for hypermetropic eyes, only that convex instead of concave glasses are required. The rays emitted from the hypermetropic eye, $A$ (Fig. 14), are divergent, and the more so the higher the hypermetropia is. The convex glass, $L$, which is required in a given case of hypermetropia in order to render parallel the divergent rays emerging from the eye and thus make it possible for the emmetropic observer to perceive the fundus, is the same as that which renders rays falling upon the eye in a parallel direction so convergent that they are united upon the retina, and is therefore the glass which corrects the hypermetropia. Hence the degree of hypermetropia of the eye under examination is given immediately by the convex lens with which the emmetropic observer sees the fundus distinctly.

An emmetropic observer can also, it must be noted, cause divergent rays to focus upon his retina by calling his accommodation into play, and in this way can see the fundus of a hypermetropic eye distinctly even without the aid of a convex glass. But as one can not estimate precisely the degree of accommodation thus applied, it is impossible to determine the amount of hypermetropia with precision by proceeding in this way.

How is it in those cases in which the physician himself is not emmetropic?
In that case he must simply correct in addition his own ametropia? If, for instance, an emmetrope is examining an eye having a myopia of 2 D, he needs for this purpose — 2 D. If the observer himself should have a myopia of 3 D, he would have to take in addition — 3 D for himself; hence he would employ a glass of — 5 D. If the observer were a hypermetrope of 1 D, he would need + 1 D for the correction of his own ametropia; this, in combination with the — 2 D which are required for the eye under examination, gives a lens of — 1 D. A similar procedure must be adopted in those frequently occurring cases in which the observer is indeed emmetropic, but can not completely relax his accommodation during the ophthalmoscopic examination. He is then to be regarded as a myope, insomuch as he has to neutralize his residual accommodation by a corresponding concave glass.

(2) The determination of the refraction with the aid of the inverted image is done by the method proposed by Schmidt-Rimperl, the principle of which is as follows: The concave mirror, SS (Fig. 4), forms at its focus a sharp image of the flame that is used as the source of light in making the ophthalmoscopic examination. This image lies between the mirror and the convex lens (l). Rays emanating from it are by means of the lens thrown upon the retina of the patient's eye to form there a new image of the flame, which the observer sees upon the fundus. Whether this latter image is sharp or not depends upon various circumstances: upon the strength of the mirror and the lens; upon the distances between the lamp, the mirror, the lens, and the eye; and lastly upon the refraction of the latter. By taking all these factors into consideration we can determine the refraction, provided we ascertain the distance at which the observer has to be in order to see the image of the flame upon the fundus of the patient's eye distinctly. For this purpose the apparatus devised by Schmidt-Rimperl is employed.

(3) The determination of the refraction by means of the shadow test was discovered by Cuignet, who called it keratoscopy. It is also known as pupilloscopy, retinoscopy, and skiascopy (skias, shadow). In using it, the observer places himself at a distance of rather more than one metre from the patient, and throws light into his pupil by means of a concave mirror. When the mirror is in a certain position, the whole pupil appears of a vivid red; then if the mirror is turned a little on its vertical axis, a black shadow appears at the edge of the pupil and, as the mirror is rotated still more, passes over the whole area of the pupil, until the latter is completely dark. From the direction in which the shadow travels the refractive state of the eye under examination can be ascertained. To accomplish this, we must, to start with, have a clear comprehension of the significance of the illuminated portion of the pupil and of the shadow respectively.

By means of the mirror a point of the fundus is illuminated, and from this point the rays are returned in such a way that a portion of them pass out again through the pupil. The direction which these rays take on emerging is determined by the refraction of the eye. If myopia is present, we know that the emergent rays will converge so as to meet at the far point of the eye. In Fig. 15 let $J$ be the iris, and $P$, $P_1$, the pupil of the patient's eye. The rays emerging from the pupil unite at the far point $R$ of the eye. If we suppose that by means of the mirror a point of the retina is illuminated which lies somewhat to the right of the line connecting the pupillary centers of the observer's and of the patient's eyes, $R$ will be situated correspondingly far to
the left of this line. From $R$ the rays (now become divergent) continue on their way toward the observer’s eye, which we will now suppose to be beyond $R$. $i i p$ and $p i$, represent the iris, and $p p$, the pupil of this eye. Now $p p$, does not take in all of the conical sheaf of rays emanating from $R$, but only a portion of it, having $p o$ as its base. The remainder of the cone falls upon the iris $p i$. Since the rays constituting this part of the cone are not seen by the observer, the portion of the pupil which is opposite to them, and from which they come (represented in Fig. 15 by the lines of shading), appears unilluminated; the only portion of the pupil that does appear illuminated being that which is here shown as unshaded, and from which the observer receives rays that enter his own pupil. The dark and the luminous portions of the patient’s pupil are separated by a curved line, since the boundary between the two is formed by the pupillary edge $p$ of the observer’s eye. Thus the circle at the bottom of Fig. 15 represents the pupil of the patient’s eye seen from in front; the portion of it left unshaded in the figure corresponds to the illuminated part of the pupil.

Now suppose that by a rotation of the mirror the spot of illumination in the fundus shifts in such a way that $R$ travels farther to the left. Then more and more of the emergent beam will fall upon the iris, and less and less of it will fall upon the pupil of the observer’s eye, and the shadow in the pupil of the patient’s eye will, as the arrow in the circle indicates, advance farther and farther toward the left pupillary margin, until finally the whole pupil appears dark. The shadow, therefore, moves in the same direction that $R$ does.

We have now to determine how the movements of $R$ are related to the movements of the mirror. If a concave mirror is employed, it forms at its focus an image of the lamp flame which lies between the mirror and the patient’s eye and serves to illuminate the latter. If the mirror is rotated to the left, the image of the flame also travels to the left. But as the portion of retina illuminated must always lie on the side diametrically opposite to the body that illuminates it—namely, the image of the flame—it must, with the movements of the mirror, move in a sense opposed to that of the image of the flame—i.e., to the right (from $R$ or $E$, in Fig. 15). But the point of union, $B$, of the emergent rays lies diametrically opposite to that occupied by the illumina-
nated portion of the retina; hence $R$ will move to the left—i.e., in the same direction as the mirror. Now since $R$ moves to the left when the mirror is rotated to the left, and as the shadow in the pupil travels to the left when $R$ moves to the left, we may say,

*When a concave mirror is used the shadow in the patient's pupil moves in the same sense as that in which the mirror rotates, provided the far point of the patient's eye lies between the observer's eye and the mirror.*

These relations are reversed when we come to examine a myopic eye whose far point is beyond the observer's eye. By constructing Fig. 15 so that $R$ lies beyond $i$, it will be found that in this case the illuminated portion of the pupil lies on the right side, and that as $R$ shifts to the left the shadow goes to the right. The like is true for those cases in which the far point of the patient's eye lies behind the latter, as is the case in hypermetropia. This will be clear from Fig. 16. $PP_1$ represents the pupil of a hypermetropic eye, from which the rays that emanate from the retina pass out, taking a divergent course. They thus form a cone whose apex lies behind the eye at its far point, $R$. If the illuminated portion of the retina lies to the right of the line connecting the pupillary centers of the two eyes, $R$ is also found to the right of the latter. The pupil, $pp_1$, of the observer's eye takes in only that part of the conical sheaf of rays which corresponds to the right-hand portion of the patient's pupil (the portion left unshaded in the figure). The left-hand portion of the patient's pupil (represented by the lines of shading in the figure) remains unilluminated, because the rays that come out from it no longer fall upon the observer's pupil. The more $R$ moves to the right, the more the unilluminated portion of the pupil is displaced to the right in the direction indicated by the arrow in the circle below. The shadow, therefore, travels in the same direction that $R$ does, as is also the case in myopia when the far point lies in front of the observer's eye (Fig. 15). The difference between the two cases lies in the different relation that the movement of $R$ has to the rotation of the mirror. If the concave mirror is rotated to the left, the image of the flame produced by it travels likewise to the left, and the spot of illumination upon the retina travels to the right (from $B$ to $B_1$). Then

---

**Fig. 16.—Shadow Test in Hypermetropia.**
the beam of rays returning from this spot of illumination shifts to the left, but $R$, since in the hypermetropic eye it lies at the prolongation of these rays backward, moves to the right. $R$, therefore, moves in a direction opposite to that in which the mirror rotates, and the same is true of the pupillary shadow, which always moves in the same way that $R$ does.

Hence when a concave mirror is used, the shadow moves in a direction opposite to that in which the mirror is rotated, provided the far point of the patient's eye lies behind the observer's eye (in low degrees of myopia) or behind the patient's eye (in hypermetropia).

The way in which the shadow moves, therefore, depends upon the relative situation of the far point and the observer's eye. If the observer stations himself at a distance of rather more than 1 m. (say 120 cm.) from the patient's eye, $R$ lies between the two eyes when there is myopia of 1 D. or more, because then the patient's far point lies at 1 m. or less from his eye. In myopia amounting to less than 1 D. the far point lies behind the observer's eye, and the same is true of emmetropia, in which the far point lies at infinite distance. In hypermetropia, on the other hand, the far point lies behind the patient's eye. From these facts are derived the following rules for conducting the shadow test:

The observer, standing at rather more than 1 m. from the patient, illuminates the eye with a concave mirror, and notices the way in which the shadow moves in the patient's pupil as the mirror is rotated. If the shadow moves in the same direction that the mirror rotates, there is myopia of 1 D. or more. Then successively stronger concave glasses are set before the patient's eye in a trial frame until a glass is found with which the shadow travels in the reverse direction. This glass carries the far point of the eye to just beyond 1 m. (corresponding to a refractive power of 1 D.); and the last glass, $n$ D., with which the shadow still moves in the same sense as the mirror, corrects the myopia of the patient's eye up to approximately 1 D. Hence the total myopia of this eye is $n$ D + 1 D.

If, when the mirror is rotated, a movement of the shadow takes place in the opposite direction, there is then in the eye that is being examined either myopia less than 1 D., or emmetropia or hypermetropia. In this case a series of convex glasses is placed before the patient's eye until the shadow begins to move in the same direction as the mirror. If this glass is $n$ D., the refraction of the patient's eye is $n$ D — 1 D.

The shadow test can also be conducted with the plane mirror. With this the image of the flame lies behind the mirror, and hence, when the latter is rotated, moves, not with the mirror, as is the case when this is concave, but in the opposite direction. Accordingly, the movement of the pupillary shadow with relation to the rotation of the mirror is just the reverse of that which obtains with the concave mirror.*

* [Instead of placing a number of glasses one after another in a trial frame, we may also employ a revolving disk, a set of lorgnette frames, or an oblong slide in which a series of such glasses is permanently fixed after the fashion of an ophthalmoscope. Such an appliance, which is called a skiascope, allows the glasses before the patient's eye to be rapidly shifted either by the patient himself or by the physician, without the latter having to move from his station.—D.]

† [I.e., the shadow moves in the opposite direction to that in which the mirror is rotated—moves to the right when the mirror is rotated to the left, or, as the phrase is, moves "against" the mirror in myopia of such a degree that the
In either case this method is of great simplicity; of all methods it is the easiest to learn, and has the advantage that in it the refraction and accommodation of the observer do not need to be considered. Withal it gives as exact results as any one of the other methods.

A superficial estimate of the refraction of an eye can be got whenever an observer at some distance (say about the ordinary reading distance) from it is able to see portions of the fundus. This is the case both in marked myopia and in marked hypermetropia. In marked myopia the rays emanating from the eye come together in front of and very close to it at its focus $F'$ (Fig. 13), where, accordingly, an inverted image of the fundus is produced, and that without the aid of a convex glass. The observer can see this image if he places himself at a suitable distance—e.g., the ordinary reading distance. That it is an inverted image which he sees is obvious from the fact that it moves to the right when he moves his head and mirror to the left, and vice versa. If the observer approaches the patient's eye, the image of the fundus rapidly becomes indistinct and soon disappears altogether, because the observer then gets so close to it that he can no longer accommodate for it.

In marked hypermetropia, too, the image of the fundus can be seen at some distance from the eye, but in this case it is an erect image. It moves in the same direction that the observer moves, and remains distinct when the latter approaches the patient's eye. We can thus determine whether we are dealing with a high degree of myopia or of hypermetropia.

The presence of regular astigmatism may be recognized from the change of shape which the papilla undergoes. In regular astigmatism one meridian of the dioptic system of the eye is more refractive than the one at right angles to it; may be said, in fact, to correspond to a stronger convex lens than does the latter. Hence with the erect image the papilla will be seen under a greater enlargement in the more refractive meridian. If the latter, as is generally the case, is vertical, a round papilla will appear like a vertical oval. But the papilla often has in reality an oval form; and, in order to distinguish whether we are dealing with a papilla that is anatomically oval or with an astigmatic distortion of a round papilla, we must resort to a comparison with the inverted image. If the papilla is really a vertical oval, it must appear so with the inverted image also. If, however, there is astigmatism, the distortion due to it in the inverted image will be the opposite to that produced in the erect image—i.e., in the example given the papilla in the inverted image would appear trans-

patient's far point is between him and the observer; and in all other cases—in less degrees of myopia, in emmetropia, and in hypermetropia—moves "with" the mirror.—D.]

* [This is not so much an evidence of the image's being inverted as of its being in front of the eye. The image of the fundus, in fact, appears to move to the right when the observer moves his head to the left, because it lies in front of the plane of the pupil to which its movements are referred. On the other hand, in hypermetropia the image of the fundus appears to move in the same way that the observer does, because the image then lies behind the plane of the pupil. The conditions are the same as when we are on a moving train and, looking out at the telegraph poles near the track, backed by trees in the distance, the trees appear to move in the same direction as the train, and the telegraph poles in the opposite direction, the movements of both being projected upon some plane intermediate between the two.—D.]
versely oval. (This, however, is only the case when the convex lens used for forming the inverted image is held close to the patient's eye. If the lens is gradually carried off, the papilla appears first round, and finally a transverse oval.)

**Determination of Differences of Level in the Fundus.**—Differences of level can not only be appreciated, but also precisely measured by means of the opthalmoscope. This is effected with the aid of the erect image, by means of which the refraction can be determined for every point separately of the visible fundus. If a point in the fundus projects above its surroundings,

![Diagram](image)

**Fig. 17.—Parallactic Displacement of the Inverted Image of Points of the Fundus, lying at Different Levels.**

as, for instance, the swollen papilla in neuritis, the axis of the eye corresponding to this point is shorter—that is, there is a hypermetropia. By determining the degree of the hypermetropia we can compute the height of the prominence. Conversely, a point of the fundus which lies farther back (for example, the bottom of an excavation) possesses myopic refraction, from which the linear measure of the amount of depression can be found. As the basis of this computation the rule holds that a difference of level of about one millimetre corresponds to a difference of refraction of 3 D.

Differences of level of the fundus are also made apparent in the inverted image by **parallactic displacement**. We proceed for this purpose by moving the convex lens which serves for the production of the inverted image a little up and down during the examination. If the points of the fundus which we have

* [The fact that the papilla appears to change its *shape* as the convex lens is withdrawn from the patient's eye is of itself a proof of astigmatism. On the other hand, an apparent change in size of the papilla, without change of shape occurring when the convex lens is gradually withdrawn, points to simple hypermetropia or myopia—to the former if the disk appears to diminish, and to the latter if the disk appears to enlarge. If the convex lens is placed so that its focal point is a little farther from the eye than the anterior focus of the latter (i.e., is rather more than half an inch in front of the cornea), there will be no distortion of the image of the disk from astigmatism, and no apparent increase or diminution in size due to myopia or hypermetropia. As this is the position of the lens which gives an undistorted view of the fundus, it is the one that should habitually be used in making examinations by the indirect method—i.e., a 2-inch lens should be held 2½ inches, and a 3-inch lens 3½ inches in front of the cornea.—D.]
fixed upon lie all in the same plane, they do not change their relative position to each other with the shifting of the convex lens. If, on the contrary, a difference of level exists between them, we notice a displacement with relation to each other, so that they now come nearer together, now go farther apart. Fig. 17 may elucidate what takes place. Let a be a point on the edge, b a point behind it, on the bottom of an excavation of the optic nerve. If the convex lens stands at I, the images of the two points a, and b, fall behind each other and cover each other. If the convex lens is now brought to II, the image of the point a is reproduced at a, that of b at b; the points appear to have separated from each other. Had the convex lens been carried in the opposite direction, the apparent displacement of the two points would have taken place in the opposite sense; it would have looked as if the edge of the excavation had been drawn over the bottom of it. From the magnitude of the displacement the difference of level of the two points can be estimated, but can not be exactly computed, as is possible with the aid of the erect image.
CHAPTER II.

FUNCTIONAL TESTING.

4. Besides instituting the objective examination, we have further to test the function of the eye. In doing this we are limited almost entirely to the statements of the patient, so that in this respect we are quite dependent upon the latter’s intelligence and good will.

Our visual sensations are of three different kinds, inasmuch as in looking at objects we take cognizance of their form, their color, and their brightness. The faculty by which we recognize the form of objects is called the space sense, and finds its numerical expression in the visual acuity; the faculty by which we distinguish colors constitutes the color sense; the faculty by which we distinguish different degrees of brightness constitutes the light sense. These three faculties are resident in the retina throughout its entire extent, although in very different degrees. In this regard we must distinguish between central and peripheral vision.

Central or direct vision is vision with the fovea centralis. When we wish to see an object distinctly, we “fix” it—that is, we turn the eye in such a way as to make the image of the object fall upon the fovea centralis, as the latter, on account of its peculiar anatomical structure, gives us the sharpest vision that we are capable of. It is with reference to central vision that we test the refraction, the accommodation, and the visual acuity. For more precise particulars in regard to these tests, see the third part of this book, which treats of the optical defects of the eye.

Peripheral or indirect vision is vision with those parts of the retina which do not belong to the fovea centralis and which comprise by far the greatest part of the retina. Vision with the peripheral portion of the retina affords a less distinct, a duller sensation, of which we can best get an idea by holding the outspread fingers of our hand to one side of the eye, while the latter is looking straight ahead. The farther from the fovea centralis is the image produced upon the retina, the more indistinct is the perception of its shape. For perceptions of movement, on the other hand (Exner), as well as of slight differences of luminosity, the periphery of the retina is actually more sensitive than the center.
Of what use, then, is peripheral vision, if we can get no well-defined perceptions with it? We can best understand this by observing persons who have lost peripheral vision to such an extent that only the fovea centralis and its immediate vicinity retain their functional activity, as happens in many diseases, especially in retinitis pigmentosa. Such persons can sometimes still read the finest print, and yet are in no condition to go about alone. We can put ourselves in this condition if we fasten in front of the eyes a long tube which allows us to see only the point lying directly in front of our line of vision. We can not go about with such an apparatus, because we strike against objects everywhere. Peripheral vision, therefore, is of service in orientation.

How? If, as we are walking, we look straight before us and there is a stone lying in our path, the latter forms an image in the periphery of the retina of our eye, in this case in the upper part of it. The stone, to be sure, is not distinctly perceived, but still it excites our attention. Our gaze is then directed at it; it is seen directly; we recognize it as an obstacle, and avoid it. The same thing happens if we go out upon the street and men come toward us from one side, etc. The images falling upon the periphery of the retina give us warning signals which make us cast our eye directly upon the objects which excite the images. And it is precisely moving objects that are most sure to attract our attention, since, as just stated, the peripheral portions of the retina have a high degree of sensibility for the perception of movement.

5. Examination of the Field of Vision.—The examination of the field of vision—that is, of the limits of indirect vision—must be made for each eye separately. The eye examined is directed at a fixed point, in order that it may thus remain steadily in the same position, while the other eye is kept closed.

The simplest way of investigating the extent of the field of vision is by using the hand as a test object. The physician places himself directly in front of the patient and at a short distance from him; the patient looks with one eye at the physician's eye directly opposite. The physician now closes his other eye (as does the patient), and gradually moves his hand from the periphery inward over the limits of the field of view; the patient must tell as soon as he sees the hand. In this way the physician has in his own eye a means of judging the field of view of the patient; if this is normal, the patient must see the hand at the same time that the physician does with his eye. This method is sufficiently exact for the recognition of the larger encroachments upon the visual field; but small defects can not be thus recognized. It is the only method of testing applicable in those cases in which smaller test objects are no longer made out because the vision is too poor. If the patient is no longer in condition to see even the hand, we must make use of a candle flame which we carry about
through the field of vision. In this way, for instance, we test the visual field of a person who is blind from cataract.

We can get at the field of vision more exactly by means of a blackboard. We place the patient before this and take care that during the examination the distance between the eye and the board remains always the same (e.g., 30 cm.). Directly opposite the patient’s eye we make a mark on the blackboard with chalk, and direct him to fix his gaze on this mark during the examination. The chalk is now gradually brought from the edge of the blackboard to its center, and the patient is to tell at what moment he first sees it. By marking on the blackboard the limits of the visual field in every direction and connecting the points thus determined, we fix the extent of the field of vision. The size of the latter is, of course, in direct proportion to the distance at which it is taken.

Even this method is not entirely free from drawbacks which spring from the difficulty of projecting a hollow sphere like the retina upon a plane. One important drawback is that unequal distances in the field of vision correspond to equal distances on the retina. Thus, in Fig. 18, the distances $m\, a$ and $b\, c$ upon the retina are equal, each corresponding to an angle of ten degrees. In the field of vision projected on the board, $T\, T$, however, the section (from $70^\circ$ to $80^\circ$) that corresponds to the second region of the retina is many times greater than that (from $0^\circ$ to $10^\circ$) which corresponds to the first. Hence, a spot upon the retina of definite size that has become insensitive to light would in such
EXAMINATION OF THE EYE.

a visual field appear as a gap, the size of which would be quite different according as it is nearer to or farther from the center, and thus mistakes might be caused. A second evil is that the whole of a normal visual field does not find a place on a plane, be the latter ever so large. The normal field of vision, that is, extends outward to 90° and more.

![Diagram of visual field](image)

**Fig. 19.** Field of Vision of the Right Eye for White, Blue, Red, and Green, for a Test Object of 20 Square Min. (After Basch.)

F, point of fixation; M, Mariotte’s blind spot.

Therefore, as is evident from Fig. 18, the temporal limit of the visual field can never be projected on the board.

After what has been said, therefore, there is only one exact method of representing the visual field, and that is the projection of it upon a hollow sphere (Aubert). Upon this principle different perimeters are constructed. To Förster belongs the credit of having introduced this instrument into ophthalmic practice. Förster’s perimeter consists, not of a complete hemisphere, but of a metallic semicircle (Fig. 18, P) which represents, as it were, one meridian of the hemisphere. The semicircle is capable of being revolved so as to take the direction of each meridian in succession. The patient supports his head on a chin.
FUNCTIONAL TESTING.

rest which is so placed in front of the semicircle that the eye to be examined is situated in the center of curvature of the latter. In the examination the eye must be fixed upon the middle point of the semicircular arc, while the mark that serves for the test is carried to and fro along the latter. A scale of degrees marked upon the semicircular arc enables us to read off directly the situation of the boundary of the visual field, and the result obtained is transferred to a diagram (Fig. 19).

6. Extent of the Field of Vision.—The normal field of vision, as a glance at the appended diagram (Fig. 19) shows, does not by any means extend equally far in all directions. It stretches farthest toward the external (temporal) side, where it has an extent of over 90°. Accordingly, we can still see objects on the temporal side, although they lie in, or even somewhat behind, a plane passing through the pupil (for example, the point O in Fig. 18). This is rendered possible by the fact that the rays from such a point undergo such strong refraction at the surface of the cornea that they can still enter the pupil. The field of vision is much less extensive in other directions, especially in directions inward and upward. The cause of this is to be sought for in the fact that the nose and the eyebrows project into the field of view and limit it. This obstacle can indeed be partially over come by making suitable rotation of the head while the field of vision is being examined, but even then we never find the field of vision as extensive on the nasal side as it is on the temporal. The cause of this is that the margin of the percipient layers of the retina does not extend as far forward on the temporal side as on the nasal (Fig. 18, d and e).

The pathological alterations of the visual field consist in its curtailment. This is either produced by a pushing in of the boundary of the visual field at some point, or it occurs under the form of gaps lying like islands inside of the field of vision.

Narrowing of the visual field at the periphery presents varying characters. If the limits of the visual field are brought nearer to the center from all points alike we speak of a concentric contraction. When this is considerable, it results in that incapacity for orientation which has been already described, although it may be that direct vision (visual acuity in the narrower sense) is still quite good. In other cases, the contraction extends from one side only of the periphery into the visual field. If it has the shape of a triangle whose base corresponds to the periphery of the visual field, it is called a sector-shaped contraction. A peculiar variety of contraction of the visual field is the hemipope, in which exactly one half of the field is wanting (see § 100 and Figs. 152 and 153).

Islandlike gaps in the visual field are called scotomata.* One of

* From σκότος, darkness.
these exists in the healthy eye at that point of the visual field which corresponds to the entrance of the optic nerve, and is known as Mariouette’s blind spot (Fig. 19, M). In the field of vision it lies about 15° to the outside of the point of fixation, F. The scotomata which occur as the result of disease have a very different significance for vision according to their situation; and, according to the latter, we distinguish them into central and peripheral. A central scotoma is one which involves the point of fixation (cf. Fig. 158). In this case direct vision is either greatly diminished or is abrogated altogether. The patient can no longer do any fine work, although his power of orientation remains intact. Peripheral scotomata cause little disturbance of sight, especially if they lie far from the point of fixation, in which case they may not come to the patient’s knowledge until his visual field is being examined. A special variety of scotoma is the annular, which encircles the point of fixation like a ring (which is not always completely closed), but leaves intact the point of fixation itself.

Von Graefe was the first to call attention to the importance of testing the visual field in ophthalmic practice. He showed that for many intra-ocular diseases there are special varieties of contraction of the visual field, which are more or less characteristic of these diseases, and can be utilized for their diagnosis. Since then the study of the visual field has been much cultivated, so that at present its examination has great significance, both for diagnosis and prognosis.

Concentric contraction of the visual field, associated with retention of good central vision, we meet with especially in retinitis pigmentosa, and sometimes also in glaucoma. In other diseases which are frequently accompanied by concentric contraction of the visual field, as, for instance, in atrophy of the optic nerve or of the retina, central vision is also simultaneously and markedly affected.

We find the sector-shaped deficiencies especially in atrophy of the optic nerve; also in occlusion of one of the larger retinal arteries, when the sector-shaped district of the retina supplied by such an artery has its function abrogated. We observe more extensive, although not triangular, contractions of the visual field in detachment of the retina, and these most often extending in an upward direction, since the detachment, if of long standing, generally involves the lowermost part of the eye. In glaucoma a contraction of the visual field toward the nasal side is of relatively frequent occurrence.

Scotomata are most frequently met with in diseases of the fundus with circumscribed lesions; especially, therefore, in chorioiditis disseminata, in which, as a rule, the gaps in the visual field correspond to the separate maculae visible with the ophthalmoscope. So long as these gaps affect the periphery only of the visual field, they cause little disturbance of sight. If they are very numerous, the visual field acquires a sieve-like character. If, finally, one of the choroidal masses is localized at the region of the choroid corresponding to the yellow spot, the visual power is very considerably reduced by the formation of a central scotoma in addition to those in the periphery.

Isolated central scotomata occur in diseases of the retina and choroid at the posterior pole of the eye, especially as a result of syphilis, of myopia of a high degree, and of senile changes. In all these cases there corresponds to the sco-
tomata a change in the macula lutea, visible with the opthalmoscope. In another series of cases, on the contrary, a central scotoma exists, while the result of the ophthalmoscopic examination is negative; the cause of the scotoma is then to be looked for in the optic nerve. In the latter it is just those fibers which supply the region of the macula lutea that are the most favorite seat of disease (in retrobulbar neuritis; see § 102).

As the expression scotoma is used in different senses, it will require in this place a more precise explanation. We distinguish between positive and negative scotomata ( Förster).

By a positive scotoma we understand a dark spot which the patient perceives in his visual field—projects, that is, upon some portion of his visual field. The cause of a positive scotoma lies either in the refracting media or in the retina. Opacities in the refracting media throw their shadow upon the retina, and are therefore visible as dark spots. If the opacities lie in the vitreous they are motile (muscae volitantes), and the scotomata caused by them are characterized as motile scotomata. Fixed scotomata originate either from stationary opacities (e.g., those in the lens), or, still more frequently, from changes in the fundus (e.g., from an exudation in the retina or in the chorioid adjacent to it). Scotomata of the latter kind are best brought to light by making the patient fix his gaze upon a uniformly bright surface (e.g., a sheet of white paper). They are often more readily perceived if the illumination is at the same time diminished (as by letting down the window curtains). We can direct the patient to make a copy of the dark spots that become visible upon the paper, and from this we can determine the position and extent of the diseased portions of the retina.

We characterize as a negative scotoma a hiatus in the visual field, an isolated spot within the confines of which the patient does not perceive any external objects. Such a scotoma, accordingly, is not discovered as a rule until the visual field is examined. But there is nothing to prevent a negative scotoma from being at the same time a positive one too; the same diseased regions of the retina that are insensitive to external luminous impressions can at the same time be themselves perceived as dark spots and be projected exteriorly.

Negative scotomata are divided into absolute and relative. An absolute scotoma is present if within its limits all perception of light is wanting, while with relative scotomata the perception of light is merely diminished. We discover a relative scotoma by making the examination of the visual field with small objects, and especially by choosing colored objects for this purpose. For with a certain diminution of the visual power the ability to distinguish colors accurately disappears, while the objects themselves, owing to differences in their luminosity, can still be recognized. For example, in a recent case of chronic poisoning by nicotine, the visual field, measured with the aid of a white test object, may seem quite normal; but if a small red paper disk is chosen for the examination there is a small region in the center in which the disk is no longer recognized as red. A relative scotoma is present, and that, moreover, a color scotoma (scotoma for red).

Even in the normal visual field the perception of colors is not everywhere the same. Just as in regard to the visual acuity, so also in regard to the color sense, a distinction must be made between central and peripheral color perception. While the former is tested by the mere exhibition of colored samples, the latter must be investigated, just like the visual field, by using as test objects
colored marks, which are moved to and fro on the board or on the perimeter. The bigger and brighter the colored surfaces used for this purpose are, the further toward the periphery will their color be distinguished, and when very large and bright they will be distinguished up to the extreme limits of the field. But when the examination is made with the ordinary test objects used with the perimeter (colored squares of paper, 1 to 2 cm. in diameter), the most peripheral portions of the retina are found to be color blind. If such a colored square is pushed from the periphery of the visual field toward the center, the person examined at first recognizes only the presence of a moving object. It is not till the square approaches nearer the center of the visual field that its color is correctly given. The moment when this occurs is not the same for all colors, some being recognized farther out from the center than others. The visual field for green is the smallest, that for red somewhat larger, that for yellow still larger, that for blue the largest (see Fig. 19).

The examination of the visual field with colored objects is of great practical importance. For instance, we find in one case the visual field normal when tested with white, while the examination with colors shows already a considerable introgression of its borders at one spot. After some time, if the disease has progressed, we now, on testing with white, establish the same deficiency in the visual field that had before existed for colored objects only. The examination with colors is accordingly a more delicate test than that with white; it makes us discover a diminution of the visual power before it has advanced so far that a white object can no longer be recognized. If, therefore, we take two cases in which the visual field for white is equally large, but the visual field for colors is unequal, that case in which the visual field for colors is smaller affords the worse prognosis, since here a still further diminution of the general visual field is to be expected. Rapid diminution of color perception is pre-eminently associated with the progressive lesions of the optic nerve that lead to blindness. The examination of the visual field with colors is also requisite for the recognition of central scotomata, so long as they are not absolute.

Furthermore, the way in which the color sense is diminished gives us a clew as to the site of the morbid changes. Thus diminution in the perception of blue corresponds to a lesion of the percipient elements (rods and cones) of the retina, such as occurs in chorioiditis, retinitis, and hemeralopia; diminution in the perception of red and green to a lesion of the conducting elements, as in affections of the optic nerve.

Light Sense.—Let us assume that we have before us two persons who in ordinary daylight have the same visual acuity; both under equally good illumination read print of the same size at the same distance. We now gradually lessen the illumination. As a result of this, the difference in brightness between the black letters and the white paper diminishes and the letters are distinguished with greater and greater difficulty. At a certain stage in the process of obscuration, one of the two persons ceases to recognize the print while the other is still able to read, and the darkening has to be carried further in order to make reading impossible for him. In this case we say: The two persons have the same space sense, i. e., the same susceptibility of the retina for impressions of forms, but they have a different light sense (L)—i. e., a different susceptibility for impressions of brightness and of differences of brightness.

The light sense can be tested in various ways. We determine either the lowest limit of illumination with which an object is still visible (minimum
FUNCTIONAL TESTING.

stimulus) or the smallest difference in brightness which can still be appreciated (minimum of differentiation). The most usual method of measuring the light sense is with Förster's photometer, which gives the minimum stimulus. This instrument, which is represented in horizontal section in Fig. 20, is placed in a perfectly dark room. A box, $A$, blackened on the inside, bears on its anterior wall two apertures for the two eyes, $a$ and $a_1$, which look through these apertures at a plate, $T$, which is placed upon the posterior wall, and upon which large black stripes upon a white ground are placed as test objects. The illumination is produced by a normal candle, $L$, the light from which falls through a window, $F$, into the interior of the box. In order to make the illumination perfectly uniform, the window is covered with paper which is made translucent (by impregnating it with fat). By a screw, $S$, the size of the window can be altered from complete closure up to an aperture of five square centimetres. In this way the illumination of the plate is varied. The patient is then made to look into the apparatus with the window closed and the plate therefore unillumined. Then the window is slowly opened until the stripes upon the plate can be recognized. The size of the opening requisite for this purpose gives a measure of the light sense of the person examined. In conducting this examination the precaution must be adopted of making the person that is examined stay beforehand in darkness. If we come from daylight into a moderately darkened room we see so little for the first moment that we can not move about without stumbling over the objects in the room. The longer we remain in the latter the better we see, and at last perhaps see well enough to be able to read. This we call adaptation of the retina. In the examination of the light sense, a period of adaptation of ten minutes, which the patient must pass with bandaged eyes in a perfectly dark room, is sufficient for practical purposes.

The examination of the light sense in different diseases has shown that it is not always by any means diminished in proportion to the visual acuity, but is sometimes but little diminished, sometimes excessively so, a circumstance from which diagnostic points may be gathered. The diminution of the light sense is greatest in those cases which are characterized as hemeralopia (see § 104).

SIMULATION OF BLINDNESS.—In testing the function we shall at times have to reckon with the fact that the patient is purposely trying to lead the physician astray by simulating blindness or weakness of sight when these do not exist. This most frequently occurs with those persons who wish to be relieved of military service or who wish to get testimony as to their inability to work; sometimes also with children, hysterical persons, etc. We are first led to suspect simulation by the lack of agreement between the results of the functional test-

[* i.e., one of one-candle power.—D.]
ing and of the objective examination; an eye, for example, which is alleged to
be perfectly blind presenting no pathological changes of any sort. Or the
tests of the individual functions give contradictory results, insomuch as the
visual acuity, the field of vision, the color sense, etc., do not stand in the right
relation with each other and with the result of the objective examination.
Various methods of examination have been proposed for furnishing a certain
proof of simulation; we shall accomplish this more or less readily by their aid
according to the degree of skill of the simulant. Only some of these methods
need be here adduced.

Complete blindness of both eyes is rarely simulated; much oftener it is
simply unilateral blindness that is alleged; and still more frequently a feebleness
of sight actually present in one eye is exaggerated (aggravation). In the
case of an alleged complete blindness of one or both eyes we regard in the first
place the reaction of the pupil to the light. If this is well preserved, it will
always afford a strong ground for suspecting simulation, although there are
rare cases in which in the presence of actual blindness the pupillary reflex
for light is still retained (see § 64). Schmidt-Rümpfer recommends the following
procedure: The patient is made to look with the blind eye at his own hand,
which he holds in front of him. A blind man will do this without hesitation
since he is informed of the position of his hand by the sense of feeling; a
maligner will perhaps look purposely in the wrong direction. Simulated unili-
ateral blindness can also be discovered in the following way: A lighted candle
is brought in front of the good eye and is slowly carried towards the side of the
blind eye. The patient is detected if he declares that he still sees the candle at
the moment when it is just concealed from the sound eye by the dorsum of the
nose (Cuignet).

The following methods are furthermore of service in detecting the simula-
tion of unilateral blindness or amblyopia.

1. We make the patient read, and then hold a pencil in a vertical direction
between the eye and the book. If there is vision with only one eye the pencil
conceals certain words from it, and thus interferes with reading. If, however,
there is good vision with both eyes, those letters which are concealed from one
eye by the pencil are visible to the other, and vice versa, and reading is carried
on without difficulty (Cuignet).

2. A convex glass of 6 D. is placed before the sound eye. In this way the
eye is made artificially myopic, so that its far point lies at a distance of about
17 cm. (it being presupposed that the eye is emmetropic). The eye can there-
fore read fine print only at a distance of 17 cm. or less, but no farther. After
placing the glass before the eye we first make the patient read at quite a short
distance, and then slowly and imperceptibly move the book farther and farther
away. If it is possible in this way to withdraw the book considerably farther
than 17 cm. without the patient's ceasing to read, it proves that he has been
reading with the eye alleged to be bad. That is, he began reading with the
good eye and, when the book was carried too far off for that, continued with
the other eye, without noticing the alternation in the employment of the two
eyes.

3. We make a show of occupying ourselves with the sound eye only. We
take a strong prism (one of 18°), with the base up, and, first holding it in
front of the cheek, push it gradually up in front of the eye. Before the base
has reached the center of the pupil the eye will see double. For two images
FUNCTIONAL TESTING.

of every external object will be thrown upon the retina, one transmitted through the free half of the pupil, the other through the half covered by the prism, and the eye sees double the object upon which it is fixed (monocular diplopia)—a fact which the patient will admit without hesitation, since, of course, it is the sound eye only that is concerned in the matter. Now the prism is imperceptibly pushed along until it covers the entire pupil. Now the eye that is provided with the prism again has only one single retinal image, which, however, is thrown upon a higher point of the retina than is the case in the other eye. If now there is still double vision (binocular diplopia), it is a proof that both eyes see. If we use the test types for this examination and compel the person under examination to read sometimes the upper, sometimes the lower of the two double images, we can determine directly the visual acuity of each eye separately without the patient being aware of it (Alfred Grafe).

4. Snellen has constructed a board with test types which are alternately red and green. Before the patient is allowed to read it, a pair of spectacles is put upon him, in which are introduced a red glass for one eye and a green glass for the other. Through the red glass the red letters alone, and not the green, can be seen, because green is the complementary color of red, and therefore green rays are not transmitted through red glass. For the same reason the red letters can not be perceived through the green glass. If, therefore, any one who is blind in one eye looks through these spectacles at the test types, he will read off only the red, or only the green letters, according as the red or the green glass of the spectacles is placed in front of the eye which alone can see. He will not once suspect that still other letters of a different color lie between the letters that he has read. Should the patient, on the other hand, read all the letters, it proves that he sees with both eyes and in such a way as to recognize the red letters with one eye and the green with the other.

5. Letters are written on white paper with a black and a red pencil alternately. The subject under examination is then told to read the writing rapidly, while a red glass is held before the sound eye. If he reads the whole correctly, it is a proof that he is able to read with the eye alleged to be blind, for the sound eye, looking through the red glass, can not see the red letters, since these now offer no contrast to the background upon which they are viewed, which appears as red as they.

For the tests for the motility of the eye and for binocular vision, see § 122.

* [In this test of Snellen’s the red and green letters are transparent and placed upon an opaque ground and are hung up before a window so as to be seen by transmitted light. In this case, as stated in the text, only the red letters are seen through the red glass, and only the green through the green glass. The same will occur if the red and green letters are opaque, and placed on a dull black ground, and viewed by reflected light. In either case the conditions are opposite to those which exist in the test next mentioned, in which opaque red letters are viewed by reflected light on a white ground.—D.]
PART II.

DISEASES OF THE EYE.

CHAPTER I.

DISEASES OF THE CONJUNCTIVA.

ANATOMY.

7. The conjunctiva coats the posterior surface of the lids and the anterior surface of the eyeball. It forms a sac, the conjunctival sac, which is slit open anteriorly in a line corresponding with the palpebral fissure. In the conjunctiva we distinguish three divisions. That part of the conjunctiva which covers the posterior surface of the lids and which is closely adherent to the tarsus is called the conjunctiva tarsi; that division which coats the anterior surface of the eyeball is the conjunctiva bulbi. The connection between the two is formed by the third division, which we name the transitional part of the conjunctiva (conjunctiva fornicis). That region where the conjunctiva is reflected from the lids to the eyeball and which forms the bottom of the conjunctival sac is called the fornice conjunctivæ.

We get a view of the conjunctiva tarsi in the living eye by evert- ing the lids. It has a smooth surface and is intimately and immovably adherent to the subjacent tarsus (Fig. 21, t). (It is therefore impossible to cover up losses of substance of the palpebral conjunctiva by performing an operation to draw the adjacent conjunctiva over them, as is often done with the conjunctiva bulbi.) On account of its thinness, the conjunctiva tarsi allows the Meibomian glands, which lie in the tarsus itself, to be seen through it clearly.

The microscope shows that the palpebral conjunctiva is covered with a laminated cylindrical epithelium. The mucous membrane proper is of adenoid character—that is, even in the healthy state it contains an abundant quantity of round cells (lymph corpuscles), which notably increase in number with every inflammation of the conjunctiva. Of glands it possesses acinous mucous glands, which are found along the convex border of the tarsus (Fig. 21, w; Waldeyer); analogous glands (Krause’s glands, Fig. 162) are present in the fornice conjunctivæ.
The conjunctiva of the upper lid obtains its blood supply from two arterial arches, the arcus tarsus superior (as, Fig. 21) and the arcus tarsus inferior (ai, Fig. 21). These lie upon the anterior surface of the

tarsus, near its upper and its lower edges. To reach the conjunctiva, the branches of the arcus tarsus inferior (rp, Fig. 21) perforate the tarsus through its entire thickness from before backward, two to three
mm. above the free edge of the lid. The line along which the vessels come out from the tarsus is marked by a shallow furrow (sulcus subtarsalis) on the conjunctival surface of the lid. On the lower lid there is only one arterial arch.

The conjunctiva of the region of transition is very readily brought to view in the lower lid by drawing the lid down while the eye looks up. In the upper lid, on the contrary, the fold of transition is hard to see, unless we make a double eversion of the lid. The region of transition is the loosest part of the conjunctiva, this being here so abundant that it lies in horizontal folds. This arrangement insures the eye its free power of movement. If the conjunctiva were to pass directly from the lid to the eye, as is sometimes observed in consequence of disease of the conjunctiva, every movement of the eyeball would be transmitted to the lids; and if one of the lids was held still with the finger, the eyeball would be hampered by it in its movements. But the conjunctiva is present in such quantity at the fornix that the eye is able to move in complete independence of the lids, the folds in the region of transition being smoothed out or crumpled together, as the case may be. Appearing through the lower fold of transition are the extensive subjacent plexus of veins and also the white glistening fascia. Its lax character and also its abundant blood supply render the fold of transition particularly liable to great swelling in inflammations of the conjunctiva.

The conjunctiva bulbi covers the anterior surface of the eyeball. It has no aperture corresponding to the cornea, but continues, even if with altered character, over the latter. This continuity of the conjunctiva makes it plain to us why morbid processes of the latter do not stop at the margin of the cornea but are continued upon the surface of the latter, as we see very clearly in trachoma and in conjunctivitis ecematosa. The two divisions of the conjunctiva bulbi are distinguished as the conjunctiva sclera and conjunctiva cornææ. The conjunctiva cornææ is perfectly transparent, and is so intimately adherent to the cornea proper that it must be regarded as the uppermost layer of the latter, and is better treated of at the same time with the cornea itself (see § 37).

The conjunctiva sclerae covers the anterior segment of the sclera in the form of a thin pellicle. It is connected with the sclera by lax connective tissue (the episcleral tissue) so loosely that it can readily be moved about from side to side upon the sclera. It is only at the periphery of the cornea, where it ends in a sharp edge, the limbus* conjunctivae, that the conjunctiva sclerae is intimately adherent to its substratum. It is very thin and elastic and lets the white sclera be seen through it plainly, thus forming the “white of the eye.” In old people

* Limbus, hem.
there is a spot at the inner and the outer margins of the cornea which contrasts by its yellow color with this whiteness. This has the shape of a triangle with its base at the corneal margin, and projects a little above the rest of the conjunctiva. It is called the interpalpebral spot or the pinguecula, and is produced by the fact that that part of the conjunctiva which, being included in the interpalpebral fissure, is constantly exposed to atmospheric influences, has undergone an alteration in its tissues.

The conjunctiva sclera is covered with laminated pavement epithelium and contains no glands. At the inner angle of the eye it forms a crescentic duplication, the semilunar fold (plica semilunaris), which represents an abortive remnant of the palpebra tertia of animals. To the inside of the semilunar fold is a small, reddish, nipplelike prominence, the caruncle, which occupies the bottom of the horseshoe-shaped excavation at the angle of the eye (Fig. 30, C). This is shown to be histologically a small island made of skin, containing sebaceous and sweat glands and having its surface covered with delicate light-colored hairs.

The conjunctiva of the eyeball receives its blood-vessels chiefly from the vessels of the fold of transition—the posterior conjunctival vessels (Fig. 22, a and c). Furthermore, the anterior ciliary vessels (Fig. 22, e and e) take part in supplying the conjunctiva with blood. These vessels come from the four recti muscles (R, Fig. 23) and run under the conjunctiva (through which they are visible, shining with a bluish luster) until near the edge of the cornea, where they suddenly disappear, since they pass through the sclera into the interior of the eye. But, before this happens, they give off branches which end in vascular loops, in the limbus conjunctivæ directly at the margin of the cornea (marginal network of the cornea—q, Fig. 22). This latter is of great importance for the cornea which is chiefly dependent upon it for its nutrition. Other branches of the ciliary vessels (anterior conjunctival vessels, p, Fig. 22) run backward in the conjunctiva toward the posterior conjunctival vessels and anastomose with them.

We have therefore in the conjunctiva two vascular systems—that of the posterior conjunctival vessels and that of the anterior ciliary vessels. According as the one or the other system is overdistended with blood, the conjunctiva has a different aspect, which we designate respectively as conjunctival and as ciliary injection.

* Conjunctival injection presents to us a superficially disposed network of larger and smaller vessels, whose situation in the conjunctiva is proved by the fact that when it is moved about they move with it. The color of the injection is a vivid scarlet or brick-red; the individual vascular meshes are plainly to be recognized. This injection is characteristic of diseases of the conjunctiva itself.

---

* Pinguis, fat.  † Caruncula, dim. of caro, flesh.
Ciliary injection occurs as a rose-red or pale-violet zone round the cornea (hence the designation peri- [circum-] corneal injection), in

The retinal system of vessels is derived from the central artery, \( a \), and the central vein, \( a_1 \), of the optic nerve, which give off the retinal arteries, \( b \), and the retinal veins, \( b_1 \). These end at the ora serrata, \( O_r \).

The system of ciliary vessels is fed by the posterior short ciliary arteries, \( c, c \), the posterior long ciliary arteries, \( d \), and the anterior ciliary arteries, \( e \). From these arise the vascular network of the chorioidal capillaries, \( f \), and of the ciliary body, \( g \), and the circular arteries of the iris, \( h \). From this last spring the arteries of the iris, \( i \), which at the lesser [inner] circumference of the latter form the circular arteries of the iris, \( k \). The veins of the iris, \( l_1 \), of the ciliary body, and of the chorioidal are collected into the vasa vorticosa, \( l \); those veins, however, that come from the ciliary muscle (m) leave the eye as anterior ciliary veins, \( a_1 \). With the latter Schlemm’s canal, \( n \), forms anastomoses.

The system of conjunctival vessels consists of the posterior conjunctival vessels, \( o \) and \( o_1 \). These communicate with those branches of the anterior ciliary vessels which run to meet them; that is, with the anterior conjunctival vessels, \( p \), and form with these the marginal loops of the cornea, \( q \). O, optic nerve; \( S \), its sheath; \( S_c \), sclera; \( A \), chorioid; \( R \), retina; \( L \), lens; \( H \), cornea; \( B \), internal rectus; \( B_r \), conjunctiva.
DISEASES OF THE CONJUNCTIVA.

which we are unable to recognize clearly any individual vessels. With injection of greater intensity we see, still farther removed from the cornea, a coarser network of vessels, which are to be recognized as deeply placed by their violet color and their hazy appearance; by the fact, moreover, that when the conjunctiva is displaced they do not move with it. Ciliary injection is most markedly distinguished from that of the conjunctiva by its violet hue as well as by the diffuse appearance of the redness, due to the fact that the individual engorged vessels are recognized either indistinctly or not at all. Ciliary injection most frequently accompanies diseases of the cornea, and also of the iris and the ciliary body, parts which belong to the vascular district of the anterior ciliary vessels. On account of the numerous anastomoses between the two vascular districts of the conjunctiva, we find both injected in every inflammation of any great violence in the anterior section of the eyeball; it is, however, still generally possible to recognize, along with the superficial conjunctival injection, the ciliary injection, more deeply situated and directly surrounding the cornea.

The conjunctiva of the tarsus is really perfectly smooth only in the young. In older persons we find it having a velvety surface on the upper lid toward the angles of the tarsus, and often also along the entire convex edge of the tarsus (Fig. 21, o). This condition of the conjunctiva we call papillary. In reality, however, it is not, properly speaking, papille which are here found in the conjunctiva, but fine folds into which the surface of the somewhat hypertrophied conjunctiva has been thrown. In microscopic sections through regions of the conjunctiva, which have undergone this change, the transversely divided folds look like papille, between which the epithelial lining dips down deeply. Should the sloping sides of two such folds lie very close to one another, the epithelial-lined depression between the folds can in cross-section give the impression of its being a glandular tube (i, Fig. 25). In this way is to be explained the alleged new formation of tubular glands, which have been found in some cases of so-called papillary hypertrophy of the conjunctiva. Nevertheless, it is not to be denied that true tubular glands do exceptionally occur in the conjunctiva, both normal and diseased. These are called, after their discoverer, Henle’s glands (Fig. 26, d). Furthermore, in middle and advanced life there are found, frequently in the fold of transition, less often in the palpebral conjunctiva, little yellow dots resembling the infarcts of the Meibomian glands (see § 108). This again is an instance of the new formation of tubular glands, in which develop concretions that are visible through the conjunctiva and then form the yellow dots.

In the epithelium of the conjunctiva, particularly in its uppermost layers, are found cells which are undergoing a mucous metamorphosis (beaker cells). They occur but sparsely in the normal conjunctiva, but multiply to a great extent in inflammatory disorders of the latter.

With regard to the papillary character of the conjunctiva at the upper border and at the angles of the tarsus, it is a question whether this is ever to be considered as perfectly normal and not rather as a product of repeated hyperemia of the conjunctiva. The same question must be put in regard to the adenoid character of the conjunctiva, which is looked upon by many as also the
residuum left by a previous inflammatory irritation. Since this mucous membrane is exposed more than any other to external influences, attacks of hyperemia of it occur often to every man in the course of his life, and these may result in permanent alteration of the membrane.

The action of external injuries shows itself most plainly in forming the pinguecula. This corresponds precisely to that region of the conjunctiva which is most exposed to wind, dust, etc. This interpalpebral spot owes its name pinguecula to its yellow color, which was formerly referred to deposition of fat in the conjunctiva. What actually exists, however, is a thickening of the conjunctiva, chiefly as the result of an increase in the number and size of its elastic fibers. Associated with this is the formation of numerous concretions of a yellowish hyaline substance, to which in fact the pinguecula owes its yellow color. As a result of these changes, the conjunctiva in this place becomes less transparent, for which reason the pinguecula appears most prominent when the conjunctiva bulbi is markedly reddened, whether from injection or from extravasation of blood. In this case the pinguecula does not allow the red color of the blood to shine through as plainly as does the adjacent conjunctiva that is not thickened, and the former, therefore, stands out from the red substratum in the form of a light-colored triangle, so that by beginners it is easily confounded with a diphtheritic infiltration of the conjunctiva, or, when the yellow color is pronounced, with a small pustule.

I. CONJUNCTIVITIS CATARRHALIS.

(a) Conjunctivitis Catarrhalis Acuta.

8. Symptoms.—Acute conjunctival catarrh, in the lighter cases, chiefly affects the conjunctiva of the lids and of the region of transition. The conjunctiva of the lids presents a vivid redness and is relaxed. The injection is usually reticulate—i. e., the separate vessels can still be distinguished as such; it is only when the injection is especially dense that the conjunctiva acquires a uniformly red appearance. The surface of the conjunctiva is smooth; catarrh is thus distinguished from some other forms of inflammation of the conjunctiva in which the latter is infiltrated and subsequently hypertrophied, as shown by the unevenness of its surface. The fold of transition (as well as the semilunar fold) is likewise greatly reddened and is somewhat swollen, while the conjunctiva bulbi shows little or no change.

The severer are distinguished from the lighter cases by the fact that the process invades the conjunctiva bulbi. The redness and swelling of the palpebral conjunctiva are greater, and moderate edema of the lids is often present at the same time. The conjunctiva of the eyeball shows both a dense reticulate reddening and a slight degree of swelling. Very frequently we find in the midst of the reticulate injection red-colored spots—i. e., small hemorrhages, ecchymoses of the conjunctiva—produced by the rupture of small vessels. The severer cases, in which the conjunctiva is affected throughout its entire extent, are designated under the name of ophthalmia catarrhalis, to distin-
DISEASES OF THE CONJUNCTIVA.

45

guish them from the lighter forms, which are named simply conjunctivitis catarrhalis.

Inflammation of the conjunctiva is accompanied by increased conjunctival secretion. This secretion appears under the form of flakes of mucus, swimming in the abundant lachrymal fluid. The more intense the inflammation the greater the secretion, and the more the character of the latter changes from mucus to purulent. Violent cases of ophthalmia catarrhalis, therefore, are in their inception often hard to distinguish from an acute blennorrhoea of light intensity, although, of course, the subsequent development of the case makes the diagnosis clear. The secretion which exudes from the palpebral fissure dries at night upon the edges of the lids and glues them together.

The subjective symptoms consist of photophobia, and of itching and burning of the eyes. The intensity of the annoyance given depends naturally upon the degree of inflammation. Violent pains, however, are but rarely present, and then, as a rule, are excited, not by the catarrh itself, but by its complications (especially ulcers of the cornea). A very troublesome sensation that is frequently present is that of a foreign body being in the eye, caused by flakes and filaments of tough mucus in the conjunctival sac. If such filaments lie upon the cornea, they produce the disturbances of sight of which the patients sometimes complain. These are distinguished from visual disturbances of more serious character by the fact that clear vision is immediately restored by brushing the mucus off with the lids. It is a characteristic feature of catarrh that all its disagreeable characters are least pronounced in the morning, and afterward gradually increase until they reach their highest point in the evening.

Course.—This is favorable in uncomplicated cases, the inflammation disappearing spontaneously after from eight to fourteen days. Not infrequently, however, there remains a condition of chronic inflammation (chronic conjunctival catarrh), which, to be sure, causes less annoyance than the acute stage, but which is yet protracted over a comparatively long time. In the majority of cases acute conjunctival catarrh attacks both eyes, either both simultaneously or one eye a few days after the other.

The complications which are observed in catarrh are corneal ulcers and iritis. The development of corneal disease is manifested by an increase in the pain and photophobia. At first we recognize, in the neighborhood of the corneal margin, small gray points, which are arranged in a row concentric with the corneal margin. On the days following, these punctate infiltrations of the cornea become more numerous and at length confluent, so as to form a small gray crescent. By a process of superficial disintegration an excavation is produced, so that finally a crescentic ulcer is formed, situated very near the corneal margin and concentric with it. Such ulcers are characteristic of con-
junctival catarrh and are hence called *catarrhal ulcers*. Ordinarily
the ulcer becomes clean quickly and heals, leaving behind it a slight
arcuate opacity; in cases, however, that are of especial intensity, per-
oration of the cornea may occur.

The complications above mentioned are observed only in severe
cases—that is, only in ophthalmia catarrhalis. They very often owe
their existence to faulty treatment of the catarrh. Among the laity,
all sorts of household remedies are in use for inflammation of the eyes,
such as the application of raw meat, or of bread soaked in milk, or of
cooked onions, or a bathing with urine, etc. Such remedies are well
adapted to increase the inflammation and produce complications. But
even simple warm or cold compresses can have the same results.

**Etiology.**—Atmospheric influences are the most frequent cause of
catarrh. Their noxious influence makes itself felt more at certain
seasons than at others, so that catarrh of the conjunctiva occurs with
especial frequency at these times. For instance, this is the case in the
spring, when so many people are attacked by catarrhs of the air pas-
sages, by coryza, coughs, etc., and at the same time conjunctival catarrhs
too are generally present in especially great number. At this time real
epidemics of conjunctival catarrh occur, and under these circumstances
it is the violent form (ophthalmia catarrhalis) which is prevalent. During
such an epidemic, contagion, effected by a transmission of the secre-
tion from one individual to another, plays a part in spreading the
disease. This can occur, especially among children belonging to one
family, by the indiscriminate use of towels, handkerchiefs, etc.

**Therapy.**—By suitable treatment the duration of a conjunctival ca-
tarrh can be considerably shortened and the development of a chronic
catarrh prevented. The sovereign remedy in all the more intense cases
of catarrh is the canterization of the conjunctiva with nitrate of silver.
This should come into contact with the conjunctiva only, and not with
the cornea. In applying it, we evert the lids so that their conjunctival
surface looks forward. The latter is then brushed over with a two-per-
cent solution of silver nitrate and the excess of the solution is quickly
washed off with lukewarm water or with a weak solution of salt. We
now find the surface of the conjunctiva covered with a delicate bluish-
white pellicle. This is the superficial slough which the solution has
produced. The immediate result of this procedure, which is called
brushing the conjunctiva, is violent burning and marked irritation of
the eye, an increase, in short, of all the inflammatory phenomena (stage
of exacerbation). After this has lasted from a quarter to half an hour,
according to the energy of our application, improvement gradually sets
in. An examination of the eye at this time shows that the thin slough
is separating and is being thrown off in the form of shreds. When this
is completed, we find the eye paler and the patient feels relieved and
much less annoyed by his catarrh than was the case before the applica-
tion of the brush (stage of remission). This improvement lasts from half a day to a day, according to the intensity of the catarrh. Then the troubles gradually increase again (recrudescence). This is a signal for repeating the application. As a rule, it is sufficient to make the application once a day, and best in the morning.

Beginners must particularly avoid making the application too energetically. If this has been done, the pain that follows the application lasts uncommonly long (for hours), and we find that even after a pretty long time, indeed even on the following day, the slough is still adherent in places. This is a proof that the sloughing process has penetrated too deeply. If, in spite of this, we should repeat the application, we would produce a progressively deeper and deeper sloughing of the tissue, and increase the inflammation instead of curing it. We must omit the application, therefore, as long as the slough is still adherent to any part of the conjunctiva.

Persons who are not able to visit the physician every day can be allowed to instill the silver solution at home. Since by this method the remedy comes into contact with the cornea, we must choose a weaker solution ($\frac{1}{4}$ to $\frac{1}{2}$ per cent), which, of course, acts less energetically upon the conjunctiva. This way of employing the silver solution is therefore resorted to only as a makeshift in those cases in which treatment by means of the brush is inapplicable from extrinsic reasons. When the inflammatory phenomena have in the main disappeared, the silver solution is exchanged for collyria that act less energetically, those namely that are employed in chronic catarrh, to which subject reference must therefore be made for details (see § 9).

In addition to our medicinal treatment of conjunctival catarrh, we must not forget to enjoin upon the patient general rules for taking care of himself; telling him to keep the eye clean by washing it with lukewarm water, and to avoid smoke, dust, and bad air in general, and recommending him instead to pass his time in the open air. He must also refrain from straining the eyes much, especially in the evening by artificial light. In consideration, too, of the possibility of the spread of the disease by contagion, of which there is always a chance, the patient must take care not to use the same wash basin, towels, etc., with other people.

Catarrhal conjunctivitis, also called conjunctivitis simplex, is, like catarrh of the air passages, reckoned among the so-called refrigeration diseases (diseases produced by cold). This, according to our present lights, is to be understood as meaning that acute conjunctival catarrh is due to atmospheric influences, but only in the sense that morbific matter is brought to the conjunctiva through the atmosphere. Again, the direct transfer of morbific matter from a diseased eye to a sound one may be the cause of acute conjunctival catarrh, for, even though the contagiosity of this disease is but slight, the cases with abundant secretion are undoubtedly contagious. In the violent cases of ophthalmia catarrhals, particularly in those that develop epidemically, there is found as the cause of
the disease a very small bacillus, first described by Koch, afterwards by Weeks. Lighter cases, especially those that are associated with eczema of the angles of the lids, are caused by a diplobacillus (Morax, Axenfeld). The pneumococcus has been found in cases of acute conjunctivitis in small children, rarely in adults; and the streptococcus in cases of catarrh accompanied by lesions of the lachrymal sac (Morax).

Similarly dependent upon atmospheric influences is that form of acute conjunctivitis which accompanies hay fever. This affection, which is pretty frequent in certain countries, attacks individuals who are predisposed to it in the beginning of the summer, and makes itself apparent by fever and also by violent catarhal inflammation of the conjunctiva and of the air passages.

While the infection which, in all probability, excites the catarrh of the conjunctiva comes to the latter from without in most cases, there are also instances in which a poisonous principle circulating in the blood causes the conjunctival inflammation. This is the case in the conjunctival catarrh which accompanies measles, and indeed often forms the first prominent symptoms of it (see § 18).

From the clinical picture of acute conjunctival catarrh, as sketched above, we sometimes find variations forming what are described as special varieties of catarrh. Among these variations belongs the development of so-called follicles, which will be described more precisely in § 10. Another variety of catarrh is vesicular catarrh, in which the conjunctiva of the tarsus is covered with numerous minute elevations, looking as if fine sand had been scattered over a moist glass plate (Arlt); according to Mayweg what we have to do with here is very small follicles. A third variety of catarrh is that which is given the name of the pustular form. In this, flat elevations develop upon the conjunctiva bulbi, mostly near the margin of the cornea. These break down into pus on their surface, and in this way are formed grayish or yellowish ulcers with somewhat elevated base and of the size of a millet seed or more. These have a great resemblance to the efflorescences occurring in conjunctivitis eczematosa (§ 17).

The distinction between the pustular form of catarrh and conjunctivitis eczematosa consists in the fact that in the former the phenomena of catarhal inflammation are present in the conjunctiva of the lids and of the region of transition, while in conjunctivitis eczematosa these divisions of the conjunctiva take little or no part in the inflammation. Many regard this form as a mixture of conjunctivitis catarhalis and conjunctivitis eczematosa. And, as a matter of fact, we must take this view into consideration in our treatment to this extent that in the beginning of the disease the application of the silver solution ordinarily proves to be the best thing, but later, after the more violent inflammatory phenomena have run their course, calomel is of the most service.

The three varieties of catarrh just named are seen chiefly in children or in adolescents. They occur only as an exception in adults; in the latter, on the contrary, we encounter much more frequently the crescentic ulcers of the cornea that result from catarrh, which are but rarely observed in children. Several crescentic ulcers may be present in the same eye at different parts of the circumference of the cornea; nay, more, by their confluence an annular ulcer may be formed, completely encircling the cornea. In the latter case the annular opacity which is left has a great resemblance to the arcus senilis corneae (see § 27). In cases where such an annular ulcer has penetrated deeply, the very detrimental result of a permanent ectasia of the cornea has been observed. For the floor of the ulcer stretches, and consequently the margin of the cornea at the
DISEASES OF THE CONJUNCTIVA.

point where the ulcer is situated is pushed forward, so that the whole cornea assumes an oblique position. If the ulcer completely surrounds the cornea, the latter may give way before the intra-ocular pressure and move forward en masse. In this case the region of the cornea inclosed by the annular ulcer lies like a watch glass on top of the marginal portions of the cornea (keratectasia ex ulcere, § 48).

Nitrate of silver, our most important remedy in catarrh, was first employed for inflammations of the conjunctiva by St. Yves in the last century, although it was in this century that it first found general acceptance. People had a natural dread of instilling so irritating a liquid as a nitrate-of-silver solution into a violently inflamed eye. In fact, in a perfectly sound eye this solution excites violent irritation of the conjunctiva, and it is quite possible to produce an artificial catarrh by too frequent application of it. How then does it happen that the nitrate-of-silver solution has such a benificent action in conjunctival catarrh? The delicate bluish-white pellicle which covers the conjunctiva directly after the application is due to coagulation of the albumin of the cells in the upper layers of the epithelium by the nitrate of silver, so that these layers become opaque and die. The escharotic process acts like an irritant which increases the existing hyperaemia. This not only gives rise to an increase of the annoyance suffered (exacerbation), but also induces a transudation under the eschar, so that the latter is loosened and finally cast off. But when this takes place the micro-organisms contained in the upper layers of the epithelium are thrown off with the eschar and so eliminated from the eye.

The silver solution finds an extensive application not only in catarrh, but also in other affections of the conjunctiva. In regard to it the following hints may be laid to heart: (a) Many physicians apply weaker or stronger solutions according to the effect which is to be obtained, but we can always succeed with a 2-per-cent solution, since we have it in our power to regulate the effect by making a light or a penetrating application with the brush. (b) The application should not be made at night, because the secretion, which is poured out more abundantly after the application, would be retained in the conjunctival sac by the closure of the lids in sleep. For the same reason the eye ought not to be bandaged immediately after the application. (c) Corneal ulcers do not constitute a contraindication for making the application; on the contrary, they furnish a direct indication for it, in case they prove to be catarrhal ulcers. Only still greater care than would otherwise be necessary must be taken to prevent the caustic from coming into contact with the cornea. (d) If the treatment of the conjunctiva with the silver solution is kept up too long (for some months or a year), there is produced little by little a dirty-gray coloration of the conjunctiva, which never afterward disappears. This phenomenon, called argyrosis or argyria, is caused by the fact that silver is deposited in the form of an oxide or an albuminate in the tissues of the conjunctiva (in its elastic fibers), and can never afterward be removed. Argyrosis is produced even more readily by the constant instillation of the silver solution than by the application of the brush, since in the former case the excess of the solution is not removed by being washed off, but remains in the conjunctival sac. This coloration of the conjunctiva is also observed when the conjunctiva is constantly exposed to the action of silver dust, as occurs, for example, in many of those who work in silver.

* From ἀργυρός, silver.
In conjunctival catarrh, as well as in other affections of the conjunctiva, acetate of lead is also employed, partly as an astringent, partly as a mild caustic, and either under the form of a solution to be applied on compresses, by instillations, and by means of the brush, or under the form of an ointment. As long as the cornea is perfectly normal this remedy is without ill effect; but as soon as a loss of substance (ulcer) exists in the cornea, there is formed, if the use of the remedy is continued, an intensely white, very disfiguring opacity at the site of the ulcer. This lead incrustation, as it is called, is caused by the impregnation of the tissues of the cornea with the lead salt, and can be removed from the cornea with difficulty or not at all. For this reason it is best to employ the lead acetate as little as possible in the treatment of conjunctival diseases; the more so, because a sufficiency of other remedies is at our command, with which we can accomplish the same results without danger.

Bandaging the eye in catarrh, as in all diseases of the eye accompanied with profuse secretion, is to be avoided as much as possible, since by it the free exit of the secretion is obstructed.

(b) Conjunctivitis Catarrhalis Chronica.

9. Symptoms.—In chronic conjunctival catarrh the changes objectively perceptible are on the whole but slightly pronounced. A moderate degree of redness of the conjunctiva exists either over the tarsus alone or in the region of transition also. The conjunctiva is smooth and not swollen; it is only in old cases that hypertrophy with thickening and a velvety appearance of the conjunctiva is developed. The secretion is scanty and makes itself chiefly apparent by a gluing together of the lids in the morning. The whitish scum often found at the angles of the lids is produced by the lachrymal fluid being beaten up with the secretion of the Meibomian gland into a sort of foamy emulsion, as a result of the frequent blinking of the lids. The constant moistening of the skin at this spot often leads to the formation of exoriations. In many cases the secretion, instead of being increased, seems even to be diminished. In view of the fact that there is little or no increase in the secretion, several authors call many of these cases not by the name of chronic catarrh, but by that of hyperaemia of the conjunctiva.

In proportion to the insignificance of the objective symptoms, the greater is the attention that has to be paid to the complaints made by the patient—in fact, the subjective symptoms are generally so characteristic that the diagnosis of chronic conjunctival catarrh can easily be made from them alone. The discomfort of the patient is usually greatest at night. The heaviness of the lids, scarcely noticeable in the daytime, becomes at night so marked that the patients have difficulty in keeping the eyes open; they have the feeling of being sleepy. A very annoying sensation of there being a foreign body—like a speck of dust—in the eye, is produced by the scanty secretion which remains in the conjunctival sac in the form of mucous filaments, and if these fila-
ments lie upon the cornea the sight is interfered with, or rainbow colors make their appearance about a candle flame when looked at. Further unpleasant sensations of various kinds are described, as, for example, that the eyes burn and itch; that they are dazzled by the light; that, moreover, they are tired out quickly by working; that they blink often, etc. In the morning the eyes are somewhat stuck together, or a little yellowish dried secretion is found to have collected in the inner angle of the eye. In other cases there exists an annoying sensation of dryness, and the eyes can be opened only with difficulty, the patient, at the same time, having the feeling as if the lids were stuck to the eyeball because of the lack of moisture (cattarrhus siccus). These troubles, so various in their nature, do not always by any means bear any definite relation to the objective condition. We see the conjunctiva quite intensely reddened in many people without their complaining in the least; while in others, who do nothing but annoy the physician with their expressions of discomfort, there are often scarcely any changes perceptible in the conjunctiva.

Course.—Chronic conjunctival catarrh is one of the most frequent of ocular diseases, chiefly affecting adults, and especially persons somewhat advanced in age. In old people it is almost the rule to find a light grade of chronic conjunctival catarrh, which is denominated senile catarrh. The duration of conjunctival catarrh is ordinarily a long one; many people suffer from it for a great part of their lives. The disease can lead to complications which in part produce irreparable changes. Among the most frequent complications is inflammation of the edges of the lids (blepharitis), resulting from the frequent moistening of the palpebral margins by the copiously secreted tears. As a further consequence of this wetting with the tears, the skin of the lower lid is attacked with eczema, or it becomes rigid and contracted, so that its free edge is no longer in perfect apposition with the eyeball. As a result of this the punctum lacrimale no longer dips into the lacus lachrymalis, so that the transportation of the tears into the lachrymal sac is impeded, the epiphora increased, and thus again a still further injurious reaction upon the character of the skin is produced. In this way there is formed a vicious circle, which leads to a constantly increasing depression of the lower lid (ectropion). This outcome is still further promoted by the circumstance that the patient keeps wiping away the overflowing tears, and thus makes stroking movements from above downward, by which the lower lid is drawn down. If the contraction of the skin of the lids which have been moistened by the tears is more pronounced in the horizontal direction, blepharophimosis is developed (§ 112). Lastly, small ulcerations of the cornea are among the frequent products of catarrh.

Etiology.—The causes which lie at the foundation of chronic catarrh are—1. A preceding acute catarrh, which, instead of healing com-
pletely, passes into the chronic stage. 2. General injurious influences of various kinds. Chief among these is bad air, vitiated by smoke, dust, heat, the presence of many people, etc. Workers in factories where dust prevails largely, waiters in inns that are filled with smoke, etc., very frequently suffer from chronic conjunctival catarrh. Going late to bed, being up at night, and the immoderate use of alcoholic beverages are additional predisposing factors. Persons who already suffer from chronic conjunctival catarrh find that the latter is made considerably worse after the action of any injurious influence of this sort—for example, after an evening spent at the theater or in a smoky place. So also the constant action of wind and bad weather frequently causes catarrh in farmers, coachmen, etc. For the same reason, too, eyes which are very prominent (goggle eyes), or whose lids are retracted (lagophthalmus), are attacked by catarrh, because they are too little protected against the air. The effect which constant contact with the air exerts upon the conjunctiva is best shown in ectropion, where the conjunctiva tarsi, as it lies bare, becomes very much reddened and thickened, and velvety or even covered with large prominences. The conjunctiva bears continued exclusion from the air as little as it does constant contact with it, on which account chronic catarrh sets in when bandaging of the eye is kept up for a long time. 3. Excessive straining of the eyes, especially in hypermetropic or astigmatic persons can result in chronic catarrh. 4. Local injurious influences. Here belongs irritation of the conjunctiva by foreign bodies lodging in the conjunctival sac, among which, using the term foreign bodies in the wider sense of the word, are to be reckoned cilia which are turned in toward the eye. In most cases the local injurious influence consists of some other disease of the eye, that induces catarrh as a sequela, as, for example, blepharitis or infarction of the Meibomian glands. Accumulation of the tears, as a result of bilennorrhea of the tear sac, or because the punctum lacrimalis does not dip properly into the lacus lacrimalis, is a frequent cause of catarrh, so that we should never forget to look for an affection of the tear passages in unilateral catarrh. We say unilateral, for catarrh produced by local causes is distinguished from that due to general injurious influences in this respect, that the former is very frequently unilateral, while in the latter, from the nature of the case, both eyes are generally affected.

Therapy.—It is clear that treatment must first of all pay regard to the causal factor by regulating in a suitable way, as far as is compatible with the patient’s calling, the general conditions under which he lives, and by removing all local causes of catarrh that may be present, etc. For the treatment of the conjunctiva itself we first employ, as we do in acute catarrh, the nitrate of silver, which is used either for application by the brush (in 2-per-cent solution) or for instillation (in $\frac{1}{4}$- to $\frac{1}{4}$-
DISEASES OF THE CONJUNCTIVA.

per-cent solution). We make use of it in those cases only in which the catarrh is accompanied by rather abundant secretion and by relaxation of the conjunctiva—that is, in periods of acute exacerbation, such as frequently occur in the course of every chronic catarrh—and use it, furthermore, when hypertrophy of the conjunctiva has already set in. Otherwise we succeed better with astringent collyria, which the patient can himself instill. The most usually employed of these are: The collyrum astringens luteum * or tinctura opii crocata, which are not ordinarily prescribed undiluted, but mixed with an equal quantity of water; lapis divinus † and sulphate of zinc, both in \1/₂ to 1-per-cent solution; also alum, tannin, boric acid, and other astringents.

The order in which these collyria are here arranged about correspond to their gradation in activity from the strongest to the mildest. They should be instilled once or twice a day, but not at night. So many of them are enumerated, because it is good to have a pretty large number to select from, since, if the catarrh is of long duration, a change will have to be made pretty often in the remedies. Every remedy, if too long applied, loses its activity, since the conjunctiva grows accustomed to it. For the sticking together of the lids, as well as for any excoriations that may be present, an ointment of white precipitate (\1/₂ to 1 per cent) may be rubbed upon the closed lids at night before going to bed.

(c) Conjunctivitis Follicularis.

10. Follicular catarrh is characterized by the presence of follicles. These are small round granules of about the size of a pin's head, which lie in the region of transition of the conjunctiva. They are of a pale, translucent aspect and puff up the conjunctiva in the form of small eminences. Either a few follicles only or many are present; in the latter case they are ordinarily arranged in rows like the beads of a rosary. Microscopic examination shows that the follicles, as well as

* This collyrium, called also Horst's eye water, is at present no longer official in most countries; yet it is of the greatest service, and in many cases can be replaced by no other. According to the new (seventh) edition of the Austrian Pharmacopoeia, which went into effect on the 1st of January, 1890, it is to be prepared in the following way:

Take of ammonium chloride 50 centigrammes and zinc sulphate 125 centigrammes, dissolve in 200 grammes of distilled water, and add a solution of 40 centigrammes of camphor in 20 grammes of dilute alcohol, and 10 centigrammes of saffron. Digest for twenty-four hours with frequent agitation, and filter.

Romershausen's eye water, which is also frequently employed in chronic ophthalmic catarrh, consists of a mixture of aqua fennici and tinctura fennici.

[† Or aluminated copper; a preparation made by fusing together 32 parts each of copper sulphate, potassium nitrate, and alum, and adding a mixture of 2 parts each of camphor and alum.—D.]
the so-called trachoma granules, consist of a circumscribed accumulation of adenoid tissue (Fig. 26, T).

Follicles are most frequently observed in youth, and can accompany both acute and chronic catarrh. Their significance consists in the fact that when follicles are present the malady is a protracted one. In chronic cases, the follicles remain stationary in the conjunctiva for a series of years. The follicles ultimately disappear without leaving a trace behind; the disease, therefore, in spite of its long duration, has a good prognosis, in that it is cured without leaving any sequelae. In this particular, follicular catarrh is essentially distinguished from trachoma, which in its external appearance bears a great resemblance to it, but which, however, always leads to permanent changes in the conjunctiva.

The etiology of follicular catarrh has not up to this time been established. By some, contagion, by others, miatus (vitiated air), has been assigned as a cause of the disease, without any certain proofs being brought for either one view or the other. The malady is found with especial frequency in schools, boarding establishments, etc., in which often many scholars are attacked by it at the same time. In many of these people the disease exists in an entirely latent way, as, in spite of there being a considerable number of follicles, the conjunctiva is not reddened and causes no sort of discomfort, so that the affection is first discovered by the physician's examination.

The treatment is the same as we are accustomed to employ against conjunctival catarrh in any case. By means of it the inflammatory symptoms on the part of the conjunctiva and along with them the annoyance suffered are relieved; but the follicles themselves generally remain obstinately stationary. In order to make them disappear, the best thing is to rub a lead ointment (acetate of lead 0.1–0.2 grammes, fatty matter 5 grammes) into the conjunctival sac. In doing this it must not be forgotten that the presence of corneal ulcers very strongly contraindicates the use of a lead ointment. Cases in which the follicles exist without causing any annoyance are best left without any treatment. As in catarrh of all kinds, so especially in follicular catarrh, living in fresh, pure air is to be recommended.

II. CONJUNCTIVITIS BLENNORRHOICA ACUTA.

11. *Acute blennorrhoea* is an acute inflammation of the conjunctiva, which originates in contagion from gonorrheal virus, and whose copious purulent secretion is likewise contagious in its action. The carriers of the contagion are micro-organisms, namely, the gonococci discovered by Neisser. They bear this name because they also occur in the secretion of gonorrhoea. The gonococci are found both in the

* From βλεννορροία, mucus, and πεύω, I blow.
pus secreted by the conjunctiva and also in the most superficial layers of the conjunctiva itself. They are mostly arranged in pairs, as diplococci, and as a rule lie together in heaps. Fig. 23 shows a specimen taken from the secretion of an acute blennorrhoea. In it are seen the heaps of gonococci, partly free (a), partly upon and within the cells, which are either pus cells (b) or cast-off epithelial cells (c).

Acute blennorrhoea occurs both in adults and in newborn infants—blennorrhoea adulorum and blennorrhoea neonatorum.

(a) Blennorrhoea Acuta Adulorum (Conjunctivitis Gonorrhoeica).

Symptoms and Course.—When infection has taken place, the disease breaks out after a certain period of incubation, the duration of which varies according to the intensity of the contagious action from a few hours up to three days. The lids grow red, become hot, and are swollen with oedema, generally to such an extent that the patient can no longer open them, and even the physician often has trouble in separating them far enough from each other to bring the cornea into view. The conjunctiva of the lids and of the region of transition is intensely reddened and greatly swollen. The swelling is produced by an abundant cellular infiltration of the conjunctiva, which is consequently tense, and has a granular, uneven surface. This feature of acute blennorrhoea serves to distinguish it from catarrh, in which even in the severe cases the swelling is rather of a serous nature, and hence the conjunctiva is yielding and has a smooth surface. The conjunctiva of the eyeball shows a like swelling, which stops short at the corneal margin, so that a raised wall is thus formed about the more deeply placed cornea (chernosis). The secretion produced by the conjunctiva is like meat juice—that is, it is a serum which is colored red by admixture with blood, and in which float some flakes of pus. The eye is uncommonly sensitive to contact, the lymphatic gland in front of the ear is swollen, the patient has slight fever.

Ordinarily it takes from two to three days for the disease to mount from its initial point to the pitch just described, and at this pitch it is maintained for two or three days more. This period is designated as the first stage, or stage of infiltration. Succeeding this as a second stage is that of pyorrhoea. The swelling of the lids gradually diminishes, a fact which we recognize principally by means of the return of the small wrinkles of the skin of the lids, and the tense infiltration of
the conjunctiva slowly retrogrades. Simultaneously with this there begins a very profuse secretion of pus, which trickles out continually from the palpebral fissure; hence the name pyorrhoea, or flow of pus. In the further course of the disease the swelling of the conjunctiva keeps on constantly diminishing, the eye, in many cases, returning to the normal state within the next four or six weeks. In most cases, however, a condition of chronic inflammation of the conjunctiva remains, which is designated as the third stage of the disease, the stage of chronic biennorrhea. In this period the lids are no longer swollen. The conjunctiva is reddened and thickened, especially upon the tarsus, where its surface looks uneven, granular, or velvety. The fold of transition forms an ungainly swelling; the conjunctiva of the eyeball, which shows hyperaemia only, is the least changed. After this state of conjunctival hypertrophy has abated, a process which usually takes months for its accomplishment, there usually remain slight, but permanent cicatrices of the conjunctiva.

The description here given corresponds to cases of most frequent occurrence, which are those of medium intensity. In addition, both light and also very severe cases of the disease come under observation which exhibit rather different features. In the light cases, which we are accustomed to call subacute biennorrhea, all the inflammatory changes are less, and the changes are limited chiefly to the conjunctiva of the lids. Such cases are frequently not to be distinguished with certainty by their external aspect from violent catarrh. The diagnosis can be rendered certain by the microscopic examination of the secretion, since by it the presence or absence of gonococci is demonstrated.

In the severest cases, the infiltration of the conjunctiva is so great that the latter in places appears no longer red, but grayish-yellow, because, as in diphtheritic disease of the conjunctiva, the vessels are compressed by the bulky exudation, and the conjunctiva is thus rendered anemic. The conjunctiva forms about the cornea a tense grayish-red wall. Quite often the surface of the conjunctiva is found to be covered with a clotted exudate, or croupous membrane.

The most dreaded complication of acute biennorrhea is the involvement of the cornea, by which, in many cases, incurable blindness is produced. At first the cornea becomes dull upon its surface and covered with a slight diffused opacity. Then circumscribed infiltrations of grayish color make their appearance, which soon become yellow and break down into ulcers. These infiltrations may be situated at the margin of the cornea, and give rise to speedy perforation of the latter. This is a comparatively favorable result, as, after the perforation has taken place, the purulent infiltration of the cornea is not rarely brought to a standstill, and so a portion of the cornea is preserved. But it can also happen that the marginal infiltrations become rapidly confluent, and unite into a yellow ring surrounding the entire cornea (a so-called
DISEASES OF THE CONJUNCTIVA.

annular abscess). In that event the cornea is lost, for this ring soon
spreads over the entire cornea and destroys it. In other cases the
purulent disintegration occurs first in the middle layers of the cornea.
A rare and peculiar form of involvement of the cornea occurs, in which
the latter, without becoming noticeably opaque, melts away, as it were,
like a piece of ice in the sun, until it has disappeared altogether, with
the exception of a narrow portion of its rim. When, in one way or an-
other, the cornea has gone either entirely or in part to destruction,
cicatrices are formed with incarceration of the iris, or panophthalmitis
itself may be produced. Since these sequelæ are observed after every
destruction of the cornea, even when due to other causes, they will find
detailed description under the diseases of the cornea.

Involvement of the cornea is so much the more to be expected, the
severer the blennorrhœa, and, in particular, the more pronounced the
participation of the conjunctiva bulbi in the inflammation. In the
severest cases with tense chemosis the cornea is always affected, and is,
as a general thing, irretrievably destroyed. In the cases of moderate
severity, when the chemotic swelling of the conjunctiva is less pro-
nounced and especially is less hard, it is usually possible to preserve the
cornæa, either entirely or in great part, inasmuch as the ulcers that de-
velop, even if they are attended with perforation, are of but small size.
In the lightest cases, where the process is limited to the palpebral con-
Junctiva, there is, on the whole, little danger to the cornea.

The severer the course of the inflammation, the earlier the involve-
ment of the cornea sets in; in violent cases, the cornea is already
clouded by the second or third day. Sometimes corneal ulcers are
not developed until late in the disease, when the blennorrhœa is
already well on the retrograde path. These late affections of the
cornea are not very dangerous, and it is generally possible to check
them readily.

The *prognosis* of the disease results from what has been said, it
being essentially founded upon the condition of the cornea. This is
dependent upon the intensity of the inflammation of the conjunc-
tiva bulbi, in accordance with which, therefore, the prognosis must
be made.

*Etiology.*—Acute blennorrhœa is produced simply and solely by
infection. The poison can be introduced into the eye from the genitals
directly, generally by an individual (whether man or woman) affected
with gonorrhœa, touching the eyes with unclean fingers after these
have been in contact with the genitals. The infection, however, can
also come from an eye affected with blennorrhœa. If, for instance,
one eye is already diseased and is affected with profuse suppuration,
the other eye also can be infected by a transfer of the secretion to
it. An individual with an eye diseased with blennorrhœa can infect
the persons who are nursing him or any others who may share his
room, so that we sometimes see an entire family stricken with this baneful malady.

Therapy.—By proper prophylaxis infection by acute blennorrhoea can be prevented, a matter to be so much the more considered because, when the disease has once broken out, an unfortunate result can not always be averted. It is the physician’s duty to call the attention of every man with gonorrhoea, and also of every woman with a vaginal discharge, to the danger of infecting the eyes, and to urge upon them strenuously the requisite cleanliness. If the eye is already attacked with acute blennorrhoea, care must be taken to keep the other eye from being infected by it and also to keep the disease from being transferred to persons in the vicinity. The protection of the second eye which has not as yet been involved in the disease is best effected by a bandage which is applied in the following manner: The palpebral fissure is first closed by means of some narrow strips of sticking plaster applied in a vertical direction. Then the hollow about the eye is filled up with cotton, and the whole is covered by a flap of linen provided with adhesive-plaster strips, which is carefully attached all round the margins of the orbit. In order to secure it better, the edges of the flap and the adjacent skin may further be coated with collodion. To prevent the spread of the disease to those in the neighborhood of the patient, the greatest cleanliness must be inculcated both upon him and upon the persons attending to him; they must always cleanse the hands after touching the affected eye, and must remove, or, best of all, burn, all materials that have been used for cleansing the eye (pieces of linen, cotton, etc.).

The treatment of the disease itself consists principally in a careful and frequently repeated cleansing of the eye from its profuse secretion. We may employ for this purpose weak antiseptic solutions (solution of corrosive sublimate, 1–4,000, or of potassium permanganate). If the great swelling of the lids does not permit the palpebral fissure to be properly opened, and thus makes cleansing impossible, the palpebral fissure must be fully widened by a section made with the scissors at the external angle of the lids (canthoplasty; see § 168). This section has the further advantage of diminishing the pressure which the much-swollen lids exert upon the eyeball.

In the first stage of the disease we combat the inflammation by iced compresses, and also by the application of leeches (six to ten in number) to the temple. In the second stage brushing the conjunctiva with nitrate of silver is the best means for making the swelling of the conjunctiva and the profuse secretion rapidly disappear. The application of the brush must not, however, be begun until the tense swelling of the conjunctiva has given place to a soft, succulent condition; there should no longer be any membranous deposit, any grayish infiltrated spots upon the conjunctiva. The application should be made
with a two-per-cent solution, but quite freely, and must be repeated
twice a day as long as the profuse secretion is still present. The
presence of ulcers of the cornea furnishes no contraindication to the use of
nitrate of silver.

As soon as, in the third stage, the inflammatory symptoms and the
secretion also have nearly disappeared and the thickening of the con-
junctiva is the only thing that still remains to be removed, we exchange
the silver solution for copper sulphate. This is applied by whittling a
crystal of the substance down to a smooth, rounded extremity (copper
pencil or bluestone) and stroking with it once or more the conjunctiva
of the everted lids. Then the lachrymal fluid, which is tinged blue by
the copper salt dissolved in it, is dipped up from the conjunctiva with
a pledget of cotton; otherwise the pretty concentrated copper solution
would come into contact with the cornea and irritate it greatly. The ap-
plication of the bluestone is much more painful than that of the silver
solution, but acts more energetically, and hence we get quicker results
with it; but this treatment is permissible only if the cornea is either
quite sound or has ulcers already in process of cicatrization, and not if
there are fresh ulcerations of the cornea, which are still coated with pus.

The treatment of complications involving the cornea is conducted
according to the rules (§§ 34, 36) for purulent keratitis. If very
severe, all treatment proves powerless to preserve the cornea, so that
we must confine ourselves to attempting to avoid the more remote evil
consequences of destruction of the cornea, like panophthalmitis or the
formation of staphyloma, and to obtain a flat cicatrix.

It is now established beyond doubt that acute blennorrhea is developed
by the direct transfer of virulent pus to the conjunctiva. The earlier view,
which explained the connection between gonorrhea and ophthalmia by looking
upon the latter as a sort of metastasis of gonorrhea, has now no longer any
adherents. Nevertheless, cases have been described recently (by Ricord, Roos-
brock, Haltenhoff, Rückert, Armaignac, and others) in which a conjunctival
inflammation of a lighter kind is connected with a gonorrhea in the way of
metastasis, just as arthritis and iritis sometimes complicate a gonorrhea. This
metastatic mode of origin is to be understood by supposing that the gonorrheal
poison has got into the circulation, and is exciting inflammation in remote
organs which have a predisposition for this poison. A conjunctivitis originating
in this way is said to show the characters, not of a blennorrhea, but of a
violent catarrhal conjunctivitis, and the injection of the eyeball is like that
which occurs in scleritis. In any case, we shall have to be uncommonly careful
in making the diagnosis of such a metastatic gonorrheal conjunctivitis, since
light cases of conjunctivitis can also develop from direct infection with gonor-
rheal secretion, in case the gonorrheal poison has been weakened by various
circumstances. (See infra, the investigations of Piringer.) As a gonorrhea of
the urethra can by metastasis excite a conjunctivitis, so also conversely cases
have been observed in which a gonorrheal arthritis, where gonococci have been
demonstrated to exist in the pus, has arisen by way of metastasis from a blen-
norrhea of the conjunctiva (Deutschmann and others).
The secretion containing gonococci is usually brought into the eye by means of dirty fingers. Sometimes, however, a direct transfer from the diseased mucous membrane to the sound one is observed; for example, when a drop of secretion spurts into the eye of the physician or the attendant while cleansing genitals that are affected with gonorrhoea, or even when cleansing the eye of a patient affected with blennorrhoea. For this reason the old method of cleansing blennorrhoeal eyes by means of a glass syringe has been given up in most ophthalmic clinics, as it endangers both the eye of the patient and the eyes of the corps of attendants. Furthermore, in the treatment of such patients, physicians and attendants ought always to use protective glasses (large, colorless coquille glasses). If, in spite of this, any secretion does spurt into the eye, the latter must immediately be very thoroughly washed out; then a couple of drops of two-per-cent nitrate of silver solution instilled, and subsequently for some hours cold compresses placed upon the eye.

I have repeatedly seen cases in which a patient, because of a mild conjunctival catarrh, washed his eyes in his own urine (a popular remedy among the laity in many places); as he had gonorrhoea, he acquired an acute blennorrhoea. Acute blennorrhoea, moreover, has been seen to originate from the use of another household remedy—that is, from the practice of laying upon the eye a piece of placenta, which in this case came from a woman affected with gonorrhoea.

If one eye is already infected, the transfer to the other is often brought about by the secretion of the diseased eye flowing over the bridge of the nose into the sound eye during sleep. Furthermore, the secretion can be transferred from the eye affected with blennorrhoea to the sound one by the finger, the water used for washing, the sponge, the handkerchief, etc. For these reasons the sound eye should be bandaged. If there is ground for suspecting that infection has already taken place, we can endeavor to prevent the outbreak of the disease by instilling a two-per-cent solution of nitrate of silver before applying the bandage. In order that the patient may see with the bandaged eye, we can insert a watch glass in an aperture which we make in the middle of the bandage.

The transfer of blennorrhoea from an eye affected with the latter to the eyes of other people is likewise not rare. It occurs most frequently in children who are affected with blennorrhoea neonatorum, and thus infect their mothers, nurses, etc. In the Vienna Foundling Asylum, during the years 1812 and 1813, there were, for every hundred infants affected with blennorrhoea, more than fifteen nurses so affected, who had acquired their eye disease from the infants. I have seen a whole family infected with blennorrhoea by a child having blennorrhoea neonatorum, and thus plunged in the greatest misery. Great caution on our own part, therefore, and, what is more important, careful instruction of the laity are here imperatively required.

We sometimes also observe acute blennorrhoea in small girls of the age of two to ten years, who at the same time are troubled with a vaginal discharge (Arlt). Here are we still dealing with contagion from a virulent vaginal catarrh? or is the vaginal discharge of these girls a benign catarrh caused by scrofula, anemia, and the like? In some of these cases it has been possible to prove the origin of the vaginal blennorrhoea. The children have acquired the latter from their mothers or from other women about them, who were suffering from virulent vaginal catarrh, and had transmitted the latter by soiled clothes, sponges, baths, etc., to the children (Hirschberg). In other cases, the children had been
raped by individuals affected with gonorrhea. Here, therefore, we are dealing
with a pure vaginal gonorrhea in the children, and, accordingly, it is possible in
such cases, too, to demonstrate the presence of the gonococcus both in the secre-
tion of the vagina and in the conjunctiva as well (Widmark). But it would be
going much too far to regard the vaginal discharge in little girls as true gonor-
rhea in all cases in which infection of the conjunctiva results from the dis-
charge. It seems to me probable that even a non-virulent, simple catarrhal
secretion of the vagina is in position to excite an inflammation of the conjunc-
tiva, which in this instance runs a less severe course, and exhibits the character
of a mild (subacute) blennorrhoea. The distinction from a true blennorrhoea
could be made in this case only by the microscopical examination of the secre-
tion for gonococci.

The interesting researches of Piringer have instructed us in regard to the
relation between the infective material and the ophthalmia produced by it, as
he has made a great number of intentional transfers of virus (generally in the
eyes of people already blind, who were paid for the experiment). He found
that the period of incubation is of shorter duration in proportion as the blennor-
rhoea which the inoculated material produces is more violent. The infective
power of the secretion is weakened by various influences, as by dilution with
water—by dilution to the one-hundredth part any secretion can be rendered
inert—or by drying. Secretion that has been dried upon a piece of linen loses
its activity after thirty-six hours. Preserved like vaccine, it remains infective
for sixty hours. In proportion as the virulence of the infecting secretion is
weakened, the period of incubation increases in length and the inflamma-
tion excited grows milder. The differences that we observe in the grades of
blennorrhoea can therefore be referred to the fact that the source of infection
supplies secretion of different degrees of virulence, and this virulence is, how-
ever, still further modified by the immediate circumstances attending the process
of infection. That the lymphatic gland in front of the ear should swell up in
acute blennorrhoea is a fact that accords with the virulent character of the latter;
sometimes even suppuration of this gland has been observed (bubo preauricularis).

The purulent inflammation of the cornea, which so often complicates the
blennorrhoea, is to be referred to infection of the cornea by the secretion which
constantly bathes the latter. Since the secretion collects most of all in the
gutter lying at the rim of the cornea, between the latter and the steep slope of
the chemotic conjunctiva, the purulent infiltration most frequently begins here,
too. The dense infiltration existing in this chemotic wall of conjunctiva is to be
regarded as a second factor in the production of corneal trouble. This leads
to obstruction of the circulation in the marginal loops of the cornea, and thus
interferes with the nutrition of the latter. Hence, the more pronounced and the
more tense the chemosis, the more confidently is an affection of the cornea to
be anticipated. It is in harmony with this fact that, in cases where the chemosis
is unequally great, we often see the involvement of the cornea take place
first at that portion of the corneal rim where the chemosis is the greatest.

Since infection of the cornea is certainly very greatly favored by the exist-
ence of gaps in the epithelium of the latter, we must avoid injuring the ep-
thelium of the eye by carelessness in cleansing.

If acute blennorrhoea happens to affect an eye which is covered with pannus
the latter will afford the cornea a secure protection against suppuration. Nay,
more, it is often apparent, after the violence of the inflammation has passed,
that the pannus has cleared up considerably, so that in cases of old pannus inoculation with acute blennorrhoea has been designedly performed.

The fact that acute blennorrhoea is produced by micro-organisms would lead us to expect that disinfectant substances would be the best remedies in the treatment of it. Nevertheless, it has been shown that nitrate of silver far surpasses the disinfectants proper for this purpose. It is, in fact, specially poisono us to the gonococcus, and, moreover, effects its removal mechanically by reducing to an eschar, and thus leading to the exfoliation of, the superficial layers of epithelium containing this microbe.

In the first stage of the disease we may make use of scarifications of the chemotic conjunctiva in severe cases.

(b) Blennorrhoea Neonatorum.

12. This disease is identical with the blennorrhoea of adults. Moreover, it owes its origin to infection by secretion from genitals which are affected with virulent catarrh. The infection occurs as a rule during parturition. In the passage of the child’s head through the vagina, the eyelids are covered with the secretion of the latter, and this either penetrates immediately into the conjunctival sac through the palpebral fissure, or does so as soon as the child opens his eyes for the first time. Under these circumstances the disease breaks out as a rule on the second or third (rarely on the fourth or fifth) day after birth. In those cases in which the disease makes its appearance still later than this, the infection can not any longer be referred to the act of birth. It has then been brought about through subsequent infection by the vaginal secretion of the mother (as is readily possible, particularly if the child sleeps in bed with the mother), or the child has been infected by another child, as, for instance, not rarely happens in lying-in establishments and foundling asylums.

The symptoms of the disease are the same as in the blennorrhoea of adults, except that they are in general less severe. For even when there are great swelling of the lids and very profuse purulent discharge, the part which the bulbar conjunctiva takes in the process is relatively small, and we rarely find great chemosis. Hence also the danger of suppuration of the cornea is not so great. It does indeed occur, and that often enough too, but only in those cases which are treated badly or not at all. If a case comes under treatment in season—that is, while the cornea is still intact—the latter can almost to a certainty be maintained in a healthy state. Supposing this condition to be fulfilled, therefore, the prognosis can be stated as favorable.

The treatment in the first stage consists in diligent cleansing of the eye; when suppuration commences we begin with the application of a two-per-cent nitrate-of-silver solution to the conjunctiva. In cases with profuse secretion this must be done twice a day. The application should be continued until the cure is complete, as otherwise it is easy for the process to recur to a moderate degree.
DISEASES OF THE CONJUNCTIVA.

In blennorrhoea of the newborn, prophylaxis plays an even greater rôle than in the blennorrhoea of adults. There is perhaps no other disease in which the rigorous carrying out of prophylactic treatment would afford more gratifying results than in blennorrhoea of the newborn, which might in this way be made to disappear almost entirely. The principle which lies at the foundation of prophylaxis is the avoidance of infection during parturition. To this end the vagina should be cleansed as well as possible by antiseptic injections directly before parturition, a procedure which is also advisable on other grounds. As soon as the child is born, the lids while still closed are to be wiped off carefully with a clean rag. While the first bath is being given the child’s eyes should not be wet with the water of the bath. As soon as the child has been wrapped up after the bath, the eyes should again be cleansed with clean water and with a piece of cloth or cotton designed for this purpose expressly, and then a drop of two-per-cent silver solution dropped into each eye. By this procedure, which was devised by Credé, blennorrhoea of the newborn can be avoided almost to a certainty.

Blennorrhoea of the newborn belongs among the diseases of frequent occurrence. The majority of pregnant women have catarrh of the vagina with a mucous or purulent discharge. In the greater portion of these cases we have to do with a benign vaginal catarrh, in a smaller portion with a virulent catarrh (gonorrhoea). In individual cases the distinction between benign and virulent is difficult or impossible, for which reason prophylactic treatment ought to be carried out in all cases.

The frequency of ophthalmia among the children, before the introduction of prophylactic treatment, varied from one to twenty per cent in different lying-in establishments. Among these are comprised light and severe cases. In the former, ordinarily no gonococci are found in the secretion, although pneumococci are often present (Parinaud, Morax); these cases are hence not to be regarded as blennorrhoea. Conjecturally these are the cases in which the mother has a benign catarrh of the vagina. Of the severe cases, those of blennorrhoea proper, a certain number go blind on account of the failure to treat them in season, so that a very considerable number of cases of blindness are to be laid to the account of this disease. In the asylums for the blind of Germany and Austria, those who are rendered blind by blennorrhoea neonatorum form more than a third part of the whole number; on the whole, those who are rendered blind in this way certainly constitute more than the tenth part of all living blind persons. The number of the blind in Europe is reckoned at more than three hundred thousand. If blennorrhoea neonatorum were made to disappear from the causes of blindness by universally carrying out a prophylactic treatment, there would be in Europe alone at least thirty thousand fewer blind people.

That prophylaxis, as introduced into practice by Credé, is actually efficient, is proved by the following data: Credé formerly had in the Leipsic Lying-In Asylum an average in the whole number of newborn 10.8 per cent of cases of blennorrhoea neonatorum; after the introduction of his prophylactic method the number sank to 0.1 to 0.2 per cent. Others have similar favorable results.
III. Conjunctivitis Trachomatos.

13. Trachoma, like acute blennorrhoea, is an inflammation of the conjunctiva, which originates by infection, and produces an infectious, purulent secretion. It is distinguished from acute blennorrhoea principally by its chronic course, in which is developed an hypertrophy of the conjunctiva, that forms the most characteristic symptom of trachoma. From the roughness of the conjunctiva, caused by this hypertrophy, the disease has in fact received its name.*

**Symptoms.**—The patients complain of sensitiveness to light, of lachrymation, and of sticking together of the lids; pain and visual disturbances are also often present. The examination of the eye shows that the latter is less widely opened, partly because of photophobia, partly because the heavy upper lid hangs lower down. After evertting the lids, we see the conjunctiva of the tarsus and also that of the fold of transition reddened and thickened; its surface at the same time has become uneven to a varying degree. These changes are to be referred to an hypertrophy of the mucous membrane, which occurs under two different forms.

The first form consists in the development of the so-called papillæ. These are elevations newly formed on the surface of the conjunctiva, which consequently appears velvety, or, if the papillæ are large, appears studded with coarse granules, with small nodules, or even with raspberry-like projections, the thickening of the conjunctiva being

---

* Trachoma, from τραχύς, rough.
so great that the subjacent Meibomian glands are no longer visible through it. This kind of hypertrophy, which is called the papillary form, is found exclusively in the tarsal conjunctiva (Fig. 24 A). It is always most clearly pronounced on the upper lid, which therefore must be everted in making the diagnosis of the trachoma.

The second form of hypertrophy is characterized by the presence of the trachoma granules. These are gray, translucent, roundish bodies, which push up the most superficial layers of the conjunctiva in the form of a hemisphere, and are visible through the conjunctiva. On account of their translucent, seemingly gelatinous character, they have been likened to the eggs of frog-spawn or to grains of boiled sago. They are found principally in the folds of transition (f, Fig. 24 A), in which they are imbedded in such numbers that, when the lower lid is drawn down, the fold projects as a thick, rigid swelling, at the summit of which we sometimes see the granules arranged in rows like a string of pearls. In the conjunctiva tarsi the trachoma granules are less readily visible. They are smaller in this situation, and can not push the conjunctiva up because the latter is very closely adherent to the tarsus. Here,
therefore, they generally appear as small, bright-yellowish points, which are situated deeply in the mucous membrane; quite often, though, they are hidden from sight altogether by the development of the papillæ. Trachoma granules are often found in the semilunar fold, more rarely in other parts of the conjunctiva of the eyeball. This variety of proliferation of the conjunctiva is called the granular form.

The two forms of proliferation of the conjunctiva sometimes occur separately. In the great majority of cases, however, both are found at the same time in the same eye, and so distributed that in the conjunctiva of the lids the most prominent feature is the proliferation of papillæ, in the fold of transition it is the formation of trachoma granules (Fig. 24 A). The conjunctiva of the eyeball is, in light cases, unaltered, but when the irritation is more intense shows a coarsely reticulate injection. The conjunctiva discharges a purulent secretion, the quantity of which is more abundant in the fresh cases and in those attended with marked symptoms of irritation. In older cases, on the contrary, and in those which run a more sluggish course, it is very scanty.

The disturbance of sight, of which many patients complain, is founded upon a complication affecting the cornea, and appearing under two different forms, pannus and ulceration, which very frequently occur together.

_Pannus* trachomatosus_ consists in the deposition upon the surface of the cornea of a newly formed, brawny, vascular tissue, which pushes its way from the edge toward the center of the cornea. At the spot where the pannus is located, the surface of the cornea is uneven and studded with fine projections, and there is a gray, translucent, superficially situated, cloudy mass, which is traversed by numerous vessels. The latter spring from the vessels of the conjunctiva, which pass over the limbus and out upon the cornea, and, after arriving within the pannus, branch in an arborescent fashion. The pannus ordinarily begins its development at the upper margin of the cornea, and cover first the upper half of the latter (p, Fig. 24 A). Quite often it terminates below in a sharp, straight, horizontal border. Afterward pannus develops at other portions of the corneal margin, until at length the entire cornea is covered by it. When pannus is pretty fully developed, the iris likewise participates in the inflammation (iritis). Disturbance of vision sets in as soon as the pannus has advanced into the pupillary area of the cornea—that is, in that region of the latter which lies directly opposite the pupil. If this region is entirely covered by pannus, vision is reduced until it is limited to the recognition of large objects, or even to the mere ability to distinguish between light and darkness (quantitative vision).

* _Pannus_, a cloth.
The ulcers of the cornea either develop at a spot that is otherwise normal, or they occur in connection with pannus. In the latter case they are found principally at the free border of the pannus, more rarely within the latter. Since their character agrees with that of ulcers of the cornea generally, a more detailed account of them will be given under the latter head (§§ 32 et seq.).

Course.—This is of the following character:

The hypertrophy of the conjunctiva gradually increases, growing steadily greater, until it has reached a certain height, which is not the same in all cases. Then it disappears again, step by step, while a cicatrical state of the conjunctiva with contraction takes its place. In this way the trachoma is cured in the sense that the specific morbid process has come to an end. Nevertheless, the conjunctiva has not become normal again by any means; on the contrary, it bears upon it lasting marks of the disease that has passed, namely, the signs of a cicatrical contraction which, in many instances entails other, additional consequences, such as we will group together under the phrase "the state of sequelae of trachoma." The more considerable the degree which the hypertrophy of the conjunctiva attains, the greater and more striking is the contraction of the latter, and the longer, too, is the duration of the disease, which in most cases is counted by years. The object of the treatment, therefore, must consist in checking the hypertrophy of the conjunctiva while it is developing, as thus both the duration of the disease is shortened and its evil consequences also are reduced to a smaller amount.

In the conjunctiva tarsi, the beginning of the formation of cicatrices is betokened by a few narrow, whitish striae (fine cicatrical bands), which we see emerging in the midst of the reddened and thickened conjunctiva. These striae gradually become more numerous and unite to form a delicate network, the meshes of which are occupied by red islands—that is, by those portions of the conjunctiva which are still hyperemic and hypertrophied. Little by little the cicatrical lines grow steadily broader and the islands that inclose steadily narrower, until at length that condition is produced in which the conjunctiva of the tarsus has become perfectly pale, thin, and smooth. The cicatrical condition of the conjunctiva corresponds in extent and intensity to the amount of hypertrophy that has preceded it. In those cases in which the hypertrophy of the conjunctiva has attained a considerable height in certain spots only, it is also only at these spots that deep cicatrices remain after the trachoma has run its course, while those parts of the conjunctiva which were simply infiltrated, or were hypertrophic to only a very slight degree, return to the normal state.

In the conjunctiva of the fornix the same conversion of hypertrophy into cicatrical contraction takes place. Only, the external phenomena are somewhat different, in conformity with the different
character of the conjunctiva in this situation. Here we do not see any whitish bands, but we find that the thick swellings which are formed by the hypertrophic fold of transition are becoming gradually thinner and flatter. Associated with this process, and proceeding with it step by step, is a condition of contraction taking place in the conjunctiva, a condition which steadily increases until even the folds that in the normal eye are present in the fornix are smoothed out and disappear (Fig. 24 B, at $f_1$). The conjunctiva has grown pale, and a delicate bluish-white coating is witness to the cicatricial character of its superficial layers.

*Pannus,* provided that further changes, such as will be described later, have not occurred in it, is capable of complete retrogression, so that the cornea can reacquire its normal transparency. *Ulcers* heal, leaving behind them cloudy spots, the influence of which upon vision is dependent upon the degree of their opaqueness and also upon their situation within the pupillary area of the cornea.

The morbid changes in the conjunctiva and cornea, which are characteristic of trachoma, vary so greatly in their *intensity* that it will be necessary to distinguish the cases into those that are light and those that are severe. In the lightest cases the hypertrophy of the conjunctiva is small and the cicatricial formation that succeeds it is correspondingly insignificant; so much so, perhaps, that it may scarcely be possible any longer to make the diagnosis of trachoma, if some time has elapsed since it occurred. When once the cornea has become implicated, the case must always be characterized as severe. It must be remarked however: (1) That the symptoms of irritation do not always by any means bear a fixed proportion in the objective changes; cases with very great hypertrophy of the conjunctiva and thick pannus often running their course without inflammatory accidents and vice versa. (2) That similarly no fixed relation exists between the changes in the conjunctiva of the lids and those of the cornea. We see cases with very pronounced proliferation of the palpebral conjunctiva without pannus, and, on the other hand, cases with pannus and ulcers associated with a trifling affection of the conjunctiva. (3) In one and the same case the course is often very variable, in that sometimes intermissions or even spontaneous partial recoveries, sometimes relapses and exacerbations, occur. The latter are surely to be expected if, in a case that has been improved by treatment, treatment is too soon discontinued; but it is noticed that they also occur without any known cause under appropriate treatment properly carried out. Thus, a suddenly occurring supplemental attack of pannus can in a short time annihilate the results of months of treatment.

It is not only, however, with regard to the intensity of the morbid changes, but also with regard to the *swiftness* with which they take place that such great variety prevails, and the same is true of the as-
DISEASES OF THE CONJUNCTIVA.

associated symptoms of irritation, which are usually the more considerable the more rapid the progress of the disease. In the majority of cases the disease sets in with moderate symptoms of irritation—photophobia, lachrymation, pain—which augment with the increase in the objective changes. Not infrequently, however, trachoma develops so insidiously that for a long time those whom it has attacked are not aware of it. Such persons sometimes do not have their attention called to their disease until the pannus as it covers the cornea begins to disturb their sight. These cases belong as a rule to the granular form of trachoma. When the people living in barracks, schools, etc., that are infected with trachoma undergo medical examination, there is always found a number of inmates who do not complain of any troubles whatever and who regard themselves as perfectly healthy, while examination shows in the folds of transition a very considerable development of trachoma granules. In contrast with cases running this insidious course are the cases of what is called acute trachoma. In these the disease begins with very violent inflammatory accessories; the edema of the lids, the great swelling of the conjunctiva, the profuse purulent secretion would almost lead us to imagine the case to be an acute blepharorrhea. The correct diagnosis can be made as a rule by our finding the conjunctiva studded with numerous trachoma granules. But if these are absent during the first days of illness, or if, because of the great swelling of the conjunctiva, they are not apparent, the subsequent course of the disease may be the only thing that can clear up the nature of the latter; which it does, since the hypertrophy of the conjunctiva, that is characteristic of trachoma, soon develops. Such acute cases occur chiefly during the prevalence of an epidemic of trachoma; they are dangerous to sight not so much on account of pannus as of corneal ulcers, that make their appearance during the acute stage.

14. Stage of Sequela of Trachoma.—It is only the lightest cases, or those that come under treatment early, that are completely cured. In other cases there are left sequelæ, which are accompanied by a permanent impairment of the eye. These affect either the lids and conjunctiva or the cornea. They are as follows:

1. Distortion of the lids with faulty disposition of the cilia. The distortion is produced by the cicatricial contraction of the conjunctiva and the tarsus, as a result of which the tarsus bends in such a way as to be convex anteriorly. This distortion is recognizable even from an inspection of the lids while in situ, from the fact that they bulge more than usual. It appears still more clearly on everting the lids, especially in the upper lid, in which the distortion is always more pronounced. We find the conjunctival surface of this lid traversed by cicatrices, among which one that is particularly striking is a cicatricial band which runs in the form of a narrow white line two or three millimetres above the free edge of the lid and parallel with it. Along this line
there is a furrowlike depression produced by the drawing in of the conjunctiva and the tarsus. On evert the lids we feel that corresponding to this spot there is an angular bend of the tarsus \((t_1, \text{Fig. 24}\ B)\), which lies, therefore, in the neighborhood of the free border of the lid. From this bending of the tarsus the whole lid acquires a boatlike or bowlike shape.

The cause of the distortion of the tarsus lies partly in the cicatricial contraction of the conjunctiva; for, as the conjunctiva grows shorter upon the posterior surface of the tarsus, it tends to bulge the latter forward. But the distortion is mainly produced by changes in the tarsus itself. The latter is as much the seat of inflammatory infiltration in severe cases of trachoma as is the conjunctiva itself. It is hence increased in size and, when we evert the lid, we feel that it is thicker, wider, and at the same time less pliable, so that sometimes the eversion of the lids is rendered considerably more difficult. From such a state of things the experienced observer would infer that he has to fear a subsequent distortion of the tarsus with its consequences. The infiltration and thickening of the tarsus are greatest near its lower margin, along the line at which the blood-vessels passing to the conjunctiva from in front perforate the tarsus (see page 39 and Fig. 21, \(rp\)). There is no doubt but that it is chiefly along these vessels that the inflammatory infiltration makes its way from the conjunctiva to the tarsus. Hence, cicatricial contraction, which succeeds the infiltration and which makes the whole tarsus thinner and narrower, is greatest at this spot and produces there an angular bending of the tarsus, corresponding to which is the cicatrical line that is seen running horizontally upon the conjunctiva tarsi, and the position of which accordingly agrees in general with that of the sulcus subtarsalis present in the normal lid.

The immediate consequence of the distortion of the lid is an alteration in the position of its free border and of the cilia springing from it. In the upper lid the free border no longer looks straight downward, but downward and backward (inward). The internal margin of the lid, which in the healthy state is sharp, becomes rounded off ("worn down") and is no longer to be recognized with distinctness (Fig. 24 \(B, r_1\)), this being due partly to the way in which it is drawn by the contracting conjunctiva, partly to the pressure of the eyeball upon it. By the turning inward of the free border of the lid the direction of the cilia \((c_1)\) is changed, so that they now no longer look forward, but look downward and backward, and touch the surface of the cornea (trichiasis). Another factor besides the distortion of the tarsus that contributes to this false position of the cilia, is the tension which the contracting conjunctiva exerts. This tends to draw the skin, and with it the cilia, over the free border of the lid and up upon the posterior surface.

If the distortion of the lid progresses, the entire border of the lid
DISEASES OF THE CONJUNCTIVA.

turns backward and entropion is produced. In trichiasis and entropion alike there is a permanent condition of irritation, which is excited and maintained in the eye by the constant contact of the cilia with the cornea; if this condition lasts any length of time, diseases of the cornea make their appearance as a consequence of the mechanical injury produced by the cilia (see §§ 34 and 44).

The opposite kind of anomaly of position of the lid—that is, its turning outward, or ectropion—also occurs as a result of trachoma. The cause of this is that the conjunctiva, when it is thickened and has undergone great proliferation, crowds the lid away from the eyeball; the contraction of the muscular fibers of the orbicularis then suffices to complete the eversion of the lid. This kind of ectropion is usually found only in the lower lid (see § 111).

2. Symblepharon Posterius.—When the cicatrical contraction of the conjunctiva reaches a high degree, the folds of the region of transition flatten out completely; the conjunctiva passes directly from the lid to the eyeball (§ 16, Fig. 24 B). If the lower lid is drawn down with the finger, the conjunctiva stretches tightly in the form of a vertical fold between the lid and the eyeball, and if the lid is drawn down still farther, the eyeball, being fastened tightly to it by the conjunctiva, must follow. This condition is characterized as symblepharon posterius (see § 23). In particularly severe cases the lower half of the conjunctival sac is reduced to a shallow groove between the lid and the eyeball.

3. Xerosis Conjunctivae.—This condition develops when the conjunctiva, owing to excessive atrophy, loses its secretory functions. A steady diminution in the lachrymal secretions, which occurs at the same time, contributes to the production of the xerosis. Xerosis manifests itself by the following signs: The secretion, formerly copious, now becomes steadily scantier and assumes a tough, sticky, viscid character. In conjunction with this, a feeling of dryness develops in the eye. Subsequently there appear on the conjunctiva tarsi several dry-looking places, to which the lachrymal fluid can not adhere any more than if they were smeared with grease. This condition tends to spread, until finally the conjunctiva may be affected by it throughout its whole extent. The cornea, which as a rule has become partly cicatricial from previous pannus and ulcers, likewise suffers from the deficient moistening; its epithelium becomes thicker, epidermoid, dry upon the surface, and hence opaque. Thus is produced that melancholy condition which is called xeropathalmus and which forms the worst termination of trachoma; the eye is rendered incurably blind, is disfiguring to its possessor, and in addition keeps torturing him with a constant, very tormenting sense of dryness (see § 24, Xerosis Conjunctivae).

4. Corneal Opacities.—These are after-effects, both of ulcers of the cornea and of pannus. A recent pannus, it is true, can disappear com-
pletely by a process of resorption, so that the cornea reacquires its normal transparency. Both often further changes take place in the pannus, which render its complete disappearance impossible. Among them is to be reckoned in the first place (a) the transformation into connective tissue, which the pannus undergoes if it lasts for a long time. In this the same change takes place in the pannus as in the trachomatous conjunctiva, a portion of the round cells of which the pannus is composed growing into spindle-cells and finally into connective-tissue fibers. As a consequence of this the pannus becomes thinner, its surface grows smooth, the vessels with a few exceptions disappear, and at length the pannus is transformed into a thin membrane of connective tissue which covers the surface of the cornea and hardly admits of further resorption. In cases in which the pannus is quite thick and succulent and covers the whole cornea, (b) eelasia of the cornea sometimes results. That is, as the tissue of the pannus, which is soft and abounding in cells, penetrates more deeply into the cornea, the tissue of the latter softens and gives way before the intra-ocular pressure (keratectasia e panno). Such a cornea never becomes perfectly clear again. The same thing is true, finally, of those cases in which (c) pannus is complicated with ulcers; the regions which are occupied by the latter likewise have permanent opacities left upon them.

Trachoma, then, is a disease which is distinguished by its duration, extending over years, and which in many cases renders those who are attacked by it half or wholly blind. If we add to this the fact that because of its infectious nature it is exceedingly apt to spread, we shall understand how, for those regions in which it is endemic, it is a veritable scourge.

15. Etiology.—Trachoma originates exclusively in infection proceeding from another eye affected with trachoma. Infection takes place by transfer of the secretion; contagion by means of the atmosphere, the existence of which was formerly accepted, seems not to occur. In all probability the secretion owes its infectious character to a micro-organism, as to whose nature, however, investigations so far have led to no concordant results. Since it is the secretion alone that transmits the infection, the danger of infection, which any given case carries with it, is in direct proportion to the amount of the secretion; the more profuse the latter, the greater being the danger to those in the immediate neighborhood of the patient. The transfer of the secretion from one eye to another generally takes place indirectly through the medium of the finger or chiefly through the medium of certain articles of the toilet, like sponges, towels, handkerchiefs, etc., which are brought into contact with the eyes. A special opportunity for this to occur is afforded when a pretty large number of people have their sleeping apartments in common, and so make common use, too, of the articles above mentioned. Hence, trachoma spreads most extensively
in barracks, penal establishments, poorhouses, orphan asylums, boarding schools, and indeed schools of all kinds, etc. Moreover, outside of such institutions the same factor asserts itself, since trachoma preferably attacks poor people who live crowded close together and bestow little care upon cleanliness. Moreover, the fact that in many countries the Jews are special sufferers from trachoma is to be attributed to the same cause. Trachoma, finally, varies in its geographical distribution. It is most frequent in Arabia and in Egypt, which is regarded as its proper home (ophthalmia Ægyptiaca, Egyptian ophthalmia). In Europe it is much more extensively distributed in the east than in the west. Elevated lands (Switzerland, Tyrol) are almost entirely free from it, while it is very frequently found in the low lands (Belgium, Holland, Hungary, and the whole region of the lower Danube).

**Therapy.**—The treatment of the trachomatous conjunctiva has a twofold object in view: on the one hand it seeks to do away with the inflammatory complications and the increase of secretion, which is associated with them; on the other hand, to further the disappearance of the conjunctival hypertrophy. In this way it is most likely that the process of shrinking in the conjunctiva will be restricted as much as possible, so as to avert the evil consequences resulting from its cicatricial contraction. We attain both objects by the proper employment of caustics, of which two are almost exclusively in use; nitrate of silver in two-per-cent solution and sulphate of copper in the form of a stick. The silver has the feeblest action, and is therefore borne better; copper, being applied in substance, has a correspondingly stronger cautery action, but also causes more irritation. These remedies are, as a rule, applied once a day, it being only in severe cases that they are used twice a day. The indications for the two remedies are as follows: Nitrate of silver is employed in all recent cases with violent inflammatory symptoms and great secretion. It can also be used when there are ulcers upon the cornea that are still in the progressive stage, if we take care that none of the solution comes into contact with the cornea itself. Copper sulphate is suitable for those cases in which the inflammatory symptoms are small, and its chief use is in removing the hypertrophy of the conjunctiva. For this purpose it acts much more energetically than the silver solution, and should therefore be used in preference to it in all those cases in which its application is allowable at all. Great inflammatory irritation, but most of all the presence of ulcers of the cornea in a state of active progress, contraindicate the use of the bluestone.

From these indications it follows that, as a rule, we treat a recent case with the silver solution until the inflammatory symptoms have disappeared and the secretion has diminished. As soon as this has occurred—and several weeks are generally sufficient for the purpose—we replace the silver solution by bluestone. At any rate, we must avoid using
the silver solution for too long a time on account of the argyrosis
which may develop as a result of it. The copper is now to be used,
the application of it being made stronger or weaker according to the
degree of hypertrophy, and is to be kept up for months and even
years, until every trace of hypertrophy has vanished and the conjunc-
tiva has become free from congestion and smooth throughout. At first
the application is made every day; but when only slight remains of the
hypertrophy exist, it is sufficient to make the application every other
day, and subsequently every third day; and at this stage, the milder act-
ing alum pencil (a sliver of alum whittled down to a fine edge) may be
substituted for the bluestone. Moreover, the application should be
made less and less energetically all the time, until, finally, when the
cure of the trachoma is complete, the application is entirely suspended.
In these later stages of the disease we can instruct the patient how to
evert the lid himself and touch it with the bluestone, so that he need
not come so often to the physician. Or, we can prescribe for him an
ointment of copper sulphate (one half to one per cent), which he himself
can rub into the conjunctival sac. When there is great cicatricial con-
traction of the conjunctiva the bluestone is not applicable at all, and
must be replaced by ointments. A one- or two-per-cent ointment of
white or yellow mercurial precipitate (the latter acts more energetically)
may be rubbed into the conjunctival sac. In relapses with great in-
flammatory irritation, such as often occur in the course of the treat-
ment, the copper is always to be replaced for a short time by the silver
solution. If, however, the symptoms of irritation are very violent, the
silver solution itself can not always be borne, and must then be re-
placed for some time by milder remedies, such as instillations or com-
presses made with weak solutions of corrosive sublimate or boric acid.

The operative treatment of trachoma, which is now a good deal
practiced, is indicated in cases in which very numerous granulations
are present in the retrotarsal folds. Excision of the retrotarsal folds,
which would be the most radical method, is to be rejected because it
always causes great contraction of the conjunctiva. Much to be pre-
ferred are those methods that remove the trachoma granules by ex-
pression without destroying the conjunctiva. This may be done either
by puncturing the granulations individually with a sharp knife and then
squeezing them out (Sattler), or by drawing the retrotarsal folds out
between the blades of Knapp’s roller forceps. In the latter instrument
each blade carries a fluted roller, and when the conjunctiva is drawn in
between the two rollers, which fit closely into each other, the trachoma
granules are squeezed out.

Neither by these nor by any similar methods is an immediate or a
radical cure of trachoma effected, since along with the larger granulations
small ones in process of development are always present, which can not
be removed, and which grow bigger afterward. Hence it is necessary
after the reaction produced by the operation has subsided to apply caustics in the usual way. But it must be conceded that in suitable cases the duration of treatment is considerably shortened by resort to these operative procedures.

Keim's method of daily repeated friction of the conjunctiva with a 1-to-2,000 sublimate solution is also efficient mainly owing to its mechanical effect—i.e., to its causing expression of the granules.

The treatment of trachoma must be kept up until the hypertrophy of the conjunctiva is completely done away with, as otherwise relapses are to be looked for sooner or later. The chief difficulty in the treatment lies in its great length, it often requiring many months for a complete cure. Those patients who have not the endurance or the means necessary for such a course, give up treatment as soon as their subjective troubles have disappeared, without, however, being completely cured. Then we commonly see them returning after some time with a relapse, which is often more severe than the disease for which we originally treated them. This lack of completeness in the treatment is the reason why the disease with many men drags on through their whole life.

The treatment of complications affecting the cornea is conducted on the principle that the affections of the cornea, caused by a conjunctival trouble, are best cured by the treatment of the conjunctival trouble itself. Hence, ulcers of the cornea when occurring in connection with trachoma are not combated directly, but have their cure brought about by means of applications made to the conjunctiva. The only limitation to this is that, where there are corneal ulcers in active progress, the silver solution is demanded and the bluestone, on the other hand, is contraindicated, and further, that contact of the caustic with the cornea should be avoided as far as possible. For the iritis, which is not rarely associated with ulcers of the cornea, atropine in one-per-cent solution is instilled. In other respects, ulcers of the cornea are to be treated according to the rules which are in general applicable to them (see § 34). It must only be noted that bandaging, which is generally indicated in the case of ulcers of the cornea, should be avoided as far as possible when trachoma is present, because by the closure of the eye the secretion is retained in the conjunctival sac, and thus both the conjunctival and the corneal troubles are aggravated.

Pannus, in recent cases, disappears of itself, simply from applications being made to the conjunctiva. If the pannus is unusually dense, it is allowable to make careful applications of the caustic to the pannus itself. Since pannus is often associated with slight iritis, atropine should be instilled from time to time, in order to keep the pupil dilated and prevent the formation of posterior synechiae. Very old pannus, which already is partly made up of connective tissue and has lost all but a few of its vessels, requires special treatment. Experience has shown that further resorption can be obtained in such a pannus by exciting a
violent inflammation in it, and so producing an increased succulence and a greater vascularity. For this purpose we make use of the jequirity treatment (De Wecker). We here employ a three- to five-percent infusion of jequirity, which is prepared by steeping the ground jequirity beans for twenty-four hours in cold water. With this infusion, which is to be prepared fresh every day, the conjunctiva of the everted lids is painted very thoroughly two or three times a day. The inflammation that is thus produced reaches the desired height on the second or third day, when the lids are reddened and are swollen with edema, the conjunctiva is strongly injected and covered with a croupous membrane, and slight chemosis is often present. This inflammation we designate as jequirity ophthalmia. As soon as it has attained the height just described, the further application of the remedy is discontinued, as otherwise we should make the inflammation increase to the point where it would cause a necrotic disintegration of the conjunctiva and cornea. We now allow the inflammation to run its course, simply keeping the eye clean; when the inflammation has completely subsided, the cornea is found to have gained in transparency as compared with its former state, and sometimes to a very considerable extent. This very energetic treatment is adapted only to those old cases of trachoma in which the more pronounced symptoms of inflammation are wanting, the conjunctiva is in great part cicatricial, and the cornea is entirely covered by old pannus.

Of the sequelae of trachoma, trichiasis and entropion demand operative treatment (see the section on Operations, §§ 167 and 170). The symblepharon posterius, which is produced by the shrinking of the conjunctiva, is amenable to no treatment. Xerosis of the conjunctiva is also incurable, so that treatment must be limited to the amelioration of the patient’s sufferings. To diminish the sense of dryness, frequent instillations of milk, glycerin, or mucilaginous substances (e.g., the mucilago seminum cynoniorum) may be made. For bad cases Rudin, in order to preserve the eyeball from desiccation, has advised refreshing the edges of the lids and stitching them together, so as to unite them throughout except for a small space in their middle.

In addition to the foregoing measures for the treatment of trachoma, it is self-evident that care must be taken to keep the eye clean, for which purpose we may prescribe weak antiseptic solutions. The patient should have a nourishing diet; he ought not to be kept in his room, but, on the contrary, should be made to go out as much as possible in the open air and take exercise, and if necessary may be directed to engage in some light out-of-door work.

With a disease of this infectious character, its dissemination should be checked by suitable prophylaxis. The physician must set a good example, and must cleanse his hands very carefully after touching a trachomatous eye. He must call the attention of the patient affected with
trachoma to the infectious nature of his disease. He must teach him how to protect from infection the other eye, which may be still healthy, and how to avoid spreading the disease among those in his immediate neighborhood, his family, his fellow-workmen, etc. For securing the latter object, the prime requisite is that the patient should have his own washing materials, linen, bed, etc., and should keep them for his own individual use.

The prevention of epidemics of trachoma in public establishments, such as barracks and institutions and schools of every sort, constitutes an important duty of the officials in charge of such places. These officials should take care that the members of their community have separate washing materials, linen, etc., for their use. They should be kept apprised of the presence of any trachomatous patients by means of frequent medical inspection, and, as soon as such a patient is found, he should be immediately removed from the community; for, where no trachomatous patient is found, no extension of the disease is possible.

It was at the commencement of our own century that trachoma began to attract the attention of physicians to any great degree. It was then that the disease first showed itself as an epidemic among the European armies (ophthalmia militaris). People were of the opinion that it had been introduced into Europe from Egypt (hence ophthalmia àegyptiaca) by Napoleon I. For when the latter, in July, 1798, landed in Egypt with an army of thirty-two thousand men, most of the soldiers were very soon attacked by a violent ophthalmia, and these were supposed to have brought with them upon their return to Europe the disease which was formerly confined to Egypt. Subsequent historical researches, however, have shown that the disease had already been endemic in Europe since antiquity. Celsus mentions the disease, and gives a good description of the roughness of the lids and the purulent discharge that it occasions. For treatment the ancients employed scarification of the conjunctiva, which is still to-day made use of by some, and which was accomplished both by means of various instruments and also by friction with fig leaves.

From time immemorial, then, trachoma has existed in Europe as an endemic disease. But when by reason of the Napoleonic wars the armies came so repeatedly in contact with each other and with the civil population, the disease became more widely disseminated and occurred in epidemics. In some countries it became frightfully prevalent. In the English army, during the year 1818, there were more than 5,000 on the invalid list, who had been rendered blind as a consequence of trachoma. In the Prussian army, from 1813 to 1817, 20,000 to 30,000 men were attacked with it; in the Russian army, from 1810 to 1839, 76,811 men were subjects of the disease. In Belgium, in 1840, one out of every five soldiers was affected with trachoma. The French army, which was supposed to form the starting-point of the disease, was just the one that, relatively speaking, was least attacked. The armies disseminated trachoma among the civil population through the discharge of soldiers affected with eye diseases, through the quartering of troops, etc. When they had so many trachomatous soldiers in the Belgian army that they did not know what to do, the Government applied to Jüngken, who was at that time a celebrated ophthalmologist in Berlin. He recommended them to dismiss the trachomatous
DISEASES OF THE EYE.

soldiers to their homes. By means of this fatal measure trachoma soon became diffused in Belgium to an extent which has been observed in no other European state.

Among the civil population trachoma finds a favorable soil for its dissemination in places where many men dwell together, hence among the poorer classes, but particularly in large public asylums. If trachoma has made its way into such an establishment, and no measures are taken against its spreading, soon a great number or even all the inmates will be attacked by it. In a pauper school at Holborn, the whole five hundred children suffered from trachoma (Bader). Hairion, in 1840, found in an orphan asylum at Mecheln sixty-four out of sixty-six orphan girls affected with trachoma; in Mons, seventy-one out of seventy-four orphan girls were suffering from the disease. In the workhouse at Dublin, no less than 134,888 persons were attacked by trachoma from 1849 to 1854. On board ships, where the crew live so closely crowded together, trachoma can spread very quickly. Mackenzie tells the story of the epidemic which raged upon the French slave ship Rodeur in the year 1819. The disease broke out during the voyage, and first among the negroes who, to the number of 160, were crowded together in the hold. When they took the unfortunate people up on deck, because the fresh air seemed to have a favorable influence on the ophthalmia, many threw themselves overboard, so that they had to desist from doing this. Soon one of the sailors also was attacked, and three days later the captain and almost the whole crew were taken down with the disease, so that it was only with the greatest difficulty that the ship could be brought to its destination.

According to the descriptions of that time, trachoma then ran a very acute course, and was attended with profuse secretion, circumstances which explain the rapidity with which the disease spread. Now that epidemics have ceased, this acute form has become rare. At present trachoma exists in many countries as an endemic disease, but mostly occurs under that chronic form under which, with scarcely any exceptions, we now see it. At the same time, its prevalence has diminished. In 1888 the Prussian army had but ten trachoma patients for every 1,000 soldiers. In Austria, in whose eastern provinces trachoma is still very prevalent, 8 out of every 1,000 were affected with trachoma annually during the years 1881 to 1890. In the Orient there is a very different state of affairs. Thus in Egypt, even at the present time, it is scarcely possible to find a native who has a normal conjunctiva, and innumerable people there are blind. To be sure, the disease which plays such havoc and is known there as Egyptian ophthalmia comprises not only trachoma, but also acute blennorrhea, which during the hot season does enormous injury.

The different forms under which trachoma shows itself nowadays are regarded by some as distinct diseases, and are denoted by different names, so that quite a good deal of confusion has gradually arisen in their nomenclature. In order to discover the relation existing between these forms, we must study first of all the anatomical alterations which characterize them.

The papillary growths which impart to the conjunctiva its velvety or raspberrylike appearance are caused by an increase in size of the surface of the hypertrophic conjunctiva. The latter is thrown into folds, between which correspondingly deep clefts are formed; then on cross-section the folds appear under the form of papillae (Fig. 35, P and P1). The connective tissue forming the papillae is stuffed full of round cells; the surface of the papillae is covered
with a very much thickened epithelium (e, e), which, of course, is continued on into the depressions (t, t) that exist between the papillae. These depressions hence have in microscopical cross-section the appearance of a narrow canal coated with epithelium, and were accordingly regarded at one time as tubular glands; and hence the formation of new glands was alleged to occur in trachoma. That this in fact does sometimes occur can not be absolutely denied, for, even though the depressions between the papillae are not glands, yet tubes coated with epithelium grow out from them and extend into the tissue of the conjunctiva, and these tubes are then in no respect distinguishable from true glands.

Papillary hypertrophy of the conjunctiva, however, is by no means a characteristic feature of trachoma, in the sense of being limited to it alone. In a less marked degree it is found in connection with every long-continued irritation of the conjunctiva; as in chronic catarrh, in conjunctivitis eczematosa that has lasted a long time, in ectropion upon the portion of the conjunctiva that is exposed to the air, etc. Papillae, that are large but compressed and flat are the distinguishing mark of vernal catarrh (§ 19). Still more intense degrees of papillary growth are observed after acute blennorrhea whenever the so-called chronic blennorrhea develops from it. For this reason many authors call all cases of papillary trachoma chronic blennorrhea, even though they have not been preceded by acute blennorrhea. Others call the papillary form ophthalmia purulenta chronicca, others conjunctivitis granulosa or granulations, because the papillae of the conjunctiva have a resemblance to the granulations of a wound. This resemblance, however, is a purely external one, since the hypertrophied conjunctiva does not have a raw surface, but is covered with epithelium; besides, by such a designation, a confusion would necessarily be produced with the granular form of trachoma.

The granular form is characterized by the presence of trachomatous granulations. These, in microscopic cross-section, appear as a rounded aggregation of lymph corpuscles, forming, as it were, a little lymphatic gland or a lymphatic follicle, analogous to those which compose Peyer's patches. The trachomatous
granulation either passes without any sharp line of demarcation into the surrounding tissue, which is also very rich in cells (Fig. 25, T and T), or it has, especially in the case of the older granulations, a sort of incomplete capsule of connective tissue (Fig. 26, k).

The subsequent fate of the trachoma granulations varies: some are gradually transformed into tough connective tissue; others undergo softening in their interior, and then by the breaking down of their investing epithelium are evacuated externally. In this case the loss of substance that remains is closed in by cicatriziation (Raehlmann).

The granular form is called trachoma verum, trachoma Arlt, and trachoma folliculare (Horner). Many, in view of the trachomatous granulations (granules) present, give this form the name of granulations, while, as has been said above, others, on the contrary, use just this expression for the papillary form; hence the confusion that exists.

The mixed form (trachoma mixtum, according to Stellwag), which clinical observation has already shown to be the most frequent, is proved by microscopical examination to be almost the only one that occurs. That is, even in those cases in which papillae alone appear to the naked eye to be present, trachomatous granulations are found in cross-sections examined under the microscope, either lying within the papillae themselves or imbedded in the deeper portions of the mucous membrane. In the former case the papillae have a particularly broad or even knob-shaped appearance (Fig. 25, P). In the second case the trachomatous granulations are concealed by the papillary bodies, beneath which they lie; then we often see them coming into view afterward, when the papillary growths have disappeared, as the result of a prolonged course of treatment.

The gelatinous trachoma of Stellwag represents a later stage of mixed trachoma, in which a more uniform lymphoid infiltration exists in conjunction with superficial cicatricial changes. We have in that case a conjunctiva which is thickened, smooth on the surface, yellowish, and of gelatinous translucency.

The transformation of the conjunctiva into cicatricial tissue proceeds as follows: A part of the numerous cells which are contained in the conjunctiva, and which are either uniformly scattered through it or occur in circumscribed ac-
cumulations (trachomatous granulations), disappears by resorption; another part owing to rupture of the granulations empties externally; and still another part gradually grows into spindle-shaped cells, and finally into connective-tissue fibers. This new-formed connective tissue shrinks, and to such a great extent that the conjunctiva contracts and becomes thinner and of tendinous character. We have here a process similar to that which occurs in cirrhosis of the liver—i.e., the shrinking of a new connective tissue which has developed out of an inflammatory infiltration. It would be a mistake to suppose that in the trachomatous conjunctiva there are raw spots which become covered with a cicatrix—a mistake into which we might be more apt to fall because of the term granulations. What we call granulations in trachoma have nothing at all in common with the granulations of wounds, except their external appearance.

Pannus proves, upon histological examination, to be a layer of new-formed tissue, which, starting from the limbus, spreads over the cornea (Fig. 27, P). It is a soft tissue, extremely rich in cells, which greatly resembles the infiltrated trachomatous conjunctiva. This tissue abounds in vessels, and occurs in alternately thicker and thinner layers, for which reason the pannus looks uneven and nodulated. Pannus, when it begins, insinuates itself between Bowman's membrane (Fig. 27, B) and the epithelium (Fig. 27, E), the latter being thus lifted off from Bowman's membrane and made to cover the pannus. The parenchyma proper of the cornea is protected by the still intact Bowman's membrane and suffers no essential change. Hence it is possible for the cornea to regain completely its normal structure and transparency after the resorption of

![Diagram](https://example.com/diagram.png)

**Fig. 27.—Cross-section through the Margin of a Cornea affected with Pannus.**

Magnified 125 × 1.

Beneath the epithelium, E, E, is the limbus, L, greatly thickened by cellular infiltration; from it the pannus, P, in which are perceived the cross-sections of several vessels, extends between the epithelium and Bowman's membrane, B, over the cornea, C. S, sclera.

the pannus, since then the epithelium is once more directly applied to Bowman's membrane. But this is possible in recent and slight cases only of pannus; later, Bowman's membrane gets to be destroyed in places, and the pannus then penetrates into the corneal tissue proper, the superficial layers of which consequently are also destroyed in spots. Then the complete restoration of the transparency of the cornea has become impossible.

For some forms and stages of pannus special names are in use. A recent pannus, which has not yet become thick, is called pannus tenuis, and, if it is very vascular, pannus vasculosus. If the pannus has acquired a considerable thickness, it is then known as pannus crassus or pannus carnosus. Sometimes the pannus is so big that one might imagine that he was looking at exuberant
granulations ("proud flesh") upon the affected region of the cornea. This is pannus sarcomatosus. This adjective is also applied to the proliferating conjunctiva, as, for example, in the expression ectropion sarcomatosum. It would be best to discard these antiquated expressions altogether, and especially the designation sarcomatosus, which can give rise to confusion with neoplasms—sarcomata. An old pannus, composed of connective tissue and poor in vessels, is a pannus siccus.

A rare metamorphosis of pannus has been observed in which there develops from it a dense white or yellowish tissue containing very few vessels. This tissue resembles a dense scar, e.g., such as occurs after deep ulcers of the cornea, but, unlike the latter, replaces only the superficial layers of the cornea; extending, for example, from the upper border to the center of the cornea, if the pannus itself had covered the upper half of the latter. Another change in old pannus consists in the development of small, intensely white spots, which frequently form a group in the pupillary region of the cornea. The appearance of the spots, which lie close to the delicate blood-vessels of the pannus, reminds one of lead incrustation. The spots are superficial in seat, and may be removed by scraping (§ 43).

For pseudopterygium, see § 22.

What are the causes of pannus in trachoma? Some see in pannus a direct transfer of the inflammatory process from the conjunctiva of the region of transition to the cornea. Against the occurrence of any such transfer per continuatum, it has been urged, and with justice, that that portion of the conjunctiva which is interposed between the fold of transition and the rim of the cornea, namely, the conjunctiva bulbi, takes little or no part in the trachomatous process. Another explanation starts from the fact that pannus in trachoma as a rule begins in the upper half of the cornea, and under ordinary circumstances has covered this portion entirely, before the lower half has been attacked at all. This would indicate that the upper lid, by reason of the roughness of its conjunctival surface, causes mechanically an irritation of the upper half of the cornea, and thus gives rise to inflammation in it. It is not to be doubted that this factor does come into play in the production of pannus, but it can not be the only nor even the most important cause of pannus; for we often find the greatest roughness of the palpebral conjunctiva without pannus, and conversely find pannus in cases in which the palpebral conjunctiva is almost perfectly smooth. At the present time we can merely say that anatomically pannus is analogous to trachoma of the palpebral conjunctiva; that it is a trachomatous affection of that part of the conjunctiva which covers the cornea—i.e., of the conjunctival layer of the cornea. That this part of the conjunctiva becomes diseased in trachoma as readily as the conjunctiva of the lids or of the fold of transition, should not excite our wonder; on the contrary, it is more difficult to understand why the remainder of the conjunctiva, the conjunctiva sclerae, does not take a more active part in the trachomatous process. Perhaps the following explanation is the correct one. Fig. 27 shows that the infiltration of small cells is particularly marked in the limbus of the cornea (L), and gradually diminishes as it extends from the latter over the cornea itself. So also, where we make a macroscopical inspection, we find the limbus, at the spot where a pannus is on the point of developing, intensely reddened and so greatly swollen that sometimes it forms quite a thick outgrowth. Hence the impetus to the formation of a pannus seems to be given by the trachomatous affection of the limbus. Now, then, we
must propound the following questions: 1. Why is it that the limbus in par-
micular is affected so intensely in trachoma? and, 2. Why does the inflam-
ma tion pass from the limbus to the cornea and not in the opposite direc-
tion—i.e., to the scleral conjunctiva? The first question must find its explanation in the
fact that the limbus is by far the most vascular portion of the bulbar conjunc-
tiva, and hence the part that is the most apt to be inflamed. That the inflam-
mation spreads from the limbus in a centripetal direction—that is, upon the
cornea, and not in a centrifugal direction upon the conjunctiva sclera, agrees
with what we have been able to observe in other affections of the limbus and of
the adjacent portions of the cornea. We are acquainted with many diseases in
which inflammatory infiltrations or vessels push their way inward from the
limbus into the cornea. Probably this depends upon the centripetal direction of
the circulation of the blood in the scleral conjunctiva. The arterial vessels run
from the periphery toward the limbus, where they form a dense network of capil-
lar loops. At this point, where the centripetal stream of blood finds its limits,
a circulation of lymph begins, which is directed in the same sense and which
enters the cornea; and it is in the same direction that the inflammatory pro-
ducts advance, and that the blood-vessels which jut out from the marginal loops
of the cornea tend to make their way. Finally, it still remains to be explained
why pannus generally begins at the upper margin of the cornea or why, in
other words, the limbus is first affected at this point. If an eye is infected
with trachoma, the conjunctiva is not attacked by the infection in its whole
extent alike, but the infective matter adheres first to some circumscribed por-
tion of the conjunctiva—generally to the conjunctiva of the tarsus or of the
fornix, which is particularly apt to be affected with trachoma. Now, there are
two ways in which the affection can spread from the portion of conjunctiva
that is first attacked to other parts, namely, by continuity, in which case it
extends gradually over the neighboring parts; and, by contiguity, in which
case through contact with the diseased conjunctiva tarsi there is an infection of
those portions of the conjunctiva bulbi that lie opposite the former, and espe-
cially of the limbus, which is especially predisposed to infection. Now, it is
precisely at the upper margin of the cornea that the limbus is in contact with
the conjunctiva of the upper lid, and that, too, not only at night, but also all
day, while the eye is open, since normally, even when the eye is open, the upper-
most part of the cornea is covered by the upper lid. Here, therefore, the con-
stant contact that exists is most favorable to an infection of the limbus by the
diseased conjunctiva of the lids. That the rough condition of the latter assists
in the production of this infection is likely. Such a condition acts partly as a
mechanical irritant, partly by giving an impetus to infection through the
production of small multiple lesions of the conjunctival and corneal epithe-
lium.

The ptosis which almost always accompanies trachoma and which gives tra-
chomatous patients their characteristic appearance is in many cases attributable
to the fact that the lid droops because it is heavy. Ptosis, however, is ob-
erved even when the thickening of the conjunctiva is inconsiderable, or indeed
not present at all, and sometimes patients come to a physician solely on account
of the ptosis, without having experienced any other trouble from their trachoma.
There must therefore be some other cause for the ptosis beside the thickening
of the conjunctiva. I suspect that the unstriated elevator of the lid (musculus
palpebralis superior—see § 105 and Fig. 21, p), whose muscular fibers lie directly
beneath the conjunctiva of the retrotarsal fold, participates in the inflammation of the latter, and consequently becomes paralyzed.

What relation do the separate forms of trachoma bear to each other? Is trachoma papillare (blennorrhoea chronica, etc.) a disease perfectly distinct from trachoma granulosum (trachoma verum, etc.), or are both merely different forms of the same process? Anatomy shows that in the enormous majority of cases the changes that are characteristic of the two forms (papillary growths and trachomatous granulations) are found simultaneously, so that scarcely any unmixed cases of either form are left. This speaks decidedly for the unitary theory of the disease. We arrive at the same result if we follow out the etiology of the disease. Cases are observed in which one individual affected with one of the two forms infects other persons, in some of whom thereupon the same form, in others the other form develops. Hiringer, moreover, by his inoculations experimentally established the fact that the secretion from one and the same case produced the first form in one individual, the second form in another; indeed, in one and the same person there was once produced by inoculation with the same secretion one form in one eye, the other form in the other. We are therefore quite justified in regarding the two forms of granular and papillary trachoma as one and the same disease.

It still remains to speak of the position of follicular conjunctivitis with regard to trachoma. The former is found chiefly in young people, while trachoma, on the contrary, is very seldom met with in children. The two diseases are very similar, in that lymph follicles occur as characteristic formations in both. In follicular catarrh they are smaller, are more sharply limited, and project farther above the surface of the conjunctiva; in trachoma they are larger, destitute of sharp outlines, and less prominent. Follicles proper are often oblong-oval (cylindrical) and placed side by side, in a row like a string of pearls, while trachomatous granulations are round and more rarely present any such arrangement in rows. But these characteristics are sometimes so obscured that even experts can not, in many cases, make the diagnosis with certainty, and the subsequent course of the disease alone affords the desired information. Even in the histological structure no thoroughgoing distinction can be found between follicles and trachomatous granulations. A further resemblance between follicular catarrh and trachoma consists in the fact that they both chiefly occur among bodies of men who are confined in a small space. It is therefore easy to understand that these two diseases have repeatedly been confounded with each other; and a number of authors, in fact, explain follicular catarrh as being a kind of trachoma distinguished by its mildness and freedom from danger. But to such a view the following objection must be raised: It is not yet certain whether follicular catarrh occurring among confined bodies of men is propagated by infection, like trachoma, or is merely a result of the contamination of the air by dust, exhalations, etc. On the other hand, it is quite satisfactorily established that, under certain circumstances, follicular catarrh can arise without any infection whatever. This is the case after the prolonged instillation of atropine, which is followed in many persons by the development of a typical follicular catarrh with very numerous follicles. But trachoma can never arise without infection. A further and more important distinction between the two diseases is the course. Follicular catarrh is not associated, or is associated to only an inconsiderable degree, with papillary hypertrophy of the conjunctiva; it never leads to shrinking of the conjunctiva, to pannus, or to any of the other
DISEASES OF THE CONJUNCTIVA.

sequela; it is a disease perfectly devoid of danger, one which, even without any treatment, finally gets well and leaves no trace behind; so that on this account alone the differentiation of the two diseases is not only theoretically, but also practically, of great importance.

The question with regard to the relations of the different forms of blennorrhea, trachoma, and follicular conjunctivitis to each other will first receive a definitive solution through the medium of bacteriology. At present only the micrococcos of acute blennorrhea, the gonococcus, has been satisfactorily determined. In conjunctival diseases which, like trachoma and follicular catarrh, are associated with the formation of granulations several observers (Leber, Sattler, Koch, Michel, and others) have also proved the existence of microorganisms, some of which pretty closely resemble the gonococcus without being identical with it. So far, however, the observations of individual investigators are not sufficiently accordant for us to be able to formulate any definite conclusions. Probably we must regard the formation of granulations composed of adenoid tissue not as anything at all specific, but only as a particular form of reaction, which the conjunctiva of the eye, like other mucous membranes, exhibits toward many different sorts of irritants. Such a formation of granulations occurs in its most pronounced form in trachoma and in follicular catarrh. Furthermore, in the chronic stage which follows acute blennorrhea granulations in the retrocular folds are frequently found in conjunction with the papillary hypertrophy of the conjunctiva, and sometimes in such quantity that a true trachoma is thought to be present. Then there are cases of tuberculosis of the conjunctiva (see § 19) which begin with an abundant development of granulations, quite as in trachoma; of these Rhein has described some examples, and I myself have seen several. Again, Goldzieher and Sattler have seen cases in which there was an abundant formation of granulations in a conjunctival affection which they regarded as syphilitic.

The former observer also described under the name of lymphoma conjunctivae a disease in which gigantic lymph follicles are found in the conjunctiva, together with lymphomata in the neck on the same side as the affected eye.

In regard to the follicular catarrh produced by atropine, it appears that the irritation is a chemical one, and hence the catarrh disappears when the atropine is replaced by another mydriatic.

For getting rid of a thick pannus many employ peritomy. This is the operation of dividing the conjunctival vessels running to the pannus, either by simply making an incision round the cornea through the conjunctiva, or by excising a narrow annular strip of the latter.

In order to make an old pannus transparent, it was formerly the practice to deliberately make an inoculation of acute blennorrhea, because it had been found by experience that an eye with pannus which is accidentally attacked by acute blennorrhea, instead of losing its cornea by suppuration, has its pannus made actually more transparent. The procedure is, at the present time, replaced by the treatment with jequirity, which accomplishes the same thing without exposing the eye of the other side, or the eyes of other persons, to the danger of blennorrheal infection.

Jequirity (the seeds of the Abrus precatorius) has for a long time been in use in Brazil, where trachoma is epidemic, as a popular remedy for this disease. To De Wecker is mainly due the credit of having subjected this remedy to scientific examination and of having introduced it into Europe. The action of
jequirity does not depend upon the presence of micro-organisms in the infusion, as was originally believed, but upon an unorganized ferment which is excessively poisonous (Hippel, Neisser, Salomonsen, Venneman).

IV. CONJUNCTIVITIS DIPHTHERICA.

16. Conjunctivitis diphtherica,* like acute blepharitis and trachoma, is a purulent inflammation of the conjunctiva which spreads by contagion and the secretion of which is infectious. But the contagium is different from that of the other two diseases, being in this case the diphtheria bacillus of Löfller. The inflammation produced by this is always violent, and in the severe cases is among the most intense of any that are observed in the conjunctiva. The lids are much swollen and reddened, hot, and painful to the touch. In particularly severe cases the lids are actually of boardlike hardness, so that it is impossible to evert them, and scarcely possible even to open the palpebral fissure. The lymphatic glands in front of the ear or in the neck are swollen. The appearance of the conjunctiva is characteristic of the property that the diphtheria bacillus possesses of producing a profuse exudation which has a great tendency to coagulate. This coagulation either affects the exudate that is poured out upon the surface of the conjunctiva, and which consequently clots to form membranes or it takes place within the tissue of the conjunctiva. Consequently we may distinguish two forms of diphtheria of the conjunctiva.

(a) The superficial or croupous form. This is characterized by the presence of a grayish-white membrane, which adheres pretty closely to the surface of the conjunctiva, but still can usually be removed from it with a forceps. When this is done we find the conjunctiva beneath to be greatly reddened and swollen and in some places bleeding, but we notice no great losses of substance in it. The membrane itself consists of a fibrous meshwork of clotted fibrin, in which pus corpuscles and a few epithelial cells from the conjunctiva are imbedded. The croupous membrane covers the tarsal conjunctiva; more rarely, the retrotarsal fold and even the conjunctiva of the eyeball. In most cases after from one to two weeks the membrane gradually disappears. The eye now merely presents the condition of an intense simple catarrh, which gets well without leaving any permanent changes in the conjunctiva. In severe cases the disease is complicated with corneal ulcers, which, however, but rarely lead to extensive destruction of the cornea.

(b) The deep form (diphtheria of the conjunctiva in the narrower sense). This runs a much more serious course than does the superficial form, as in order for it to occur the exudate must coagulate while still within the tissues of the conjunctiva, so that the vessels are compressed by it, and the mucous membrane consequently is rendered rigid and

* From διόφθερα, a membrane.
bloodless and falls a prey to necrosis. Hence, on evert ing the lids we find beside the marked swelling and redness of the conjunctiva spots in which the conjunctiva is somewhat depressed, smooth, and of a grayish-yellow color, and often contains a few dirty-red speckled markings (ecchymoses). In the severest cases, either a very large portion of the conjunctiva, or even its entire surface, acquires this character and is uniformly gray and hard, just as it is after being intensely canterized, e.g., by the action of quicklime.

The condition just described, which develops rapidly after a short period of incubation, is called the first stage of the disease, or stage of infiltration. It keeps up for from five to ten days, according to the extent of the diphtheritic process upon the conjunctiva. Then the spots of diphtheritic infiltration begin gradually to disappear. Where the infiltration is not so very dense, resorption of the exudate occurs, but in those spots from which the circulation has been altogether cut off by the infiltration and the tissue has consequently mortified the necrotic portions slough away. Thus are produced in the conjunctiva losses of substance, which soon become covered with granulations such as cover a raw surface. Meanwhile the secretion has become more abundant and more purulent, for which reason this second stage is characterized as the stage of blennorrhoea. The third stage is that of cicatrization, in which the granulating surfaces, that are produced by the sloughing off of the gangrenous portions of the conjunctiva, gradually grow smaller and are covered over with a new epithelial lining. Since the latter change is effected by the drawing in of the neighboring conjunctiva, the conjunctival sac as a whole is contracted; frequently, too, in single spots adhesions are produced between the conjunctiva of the lid and that of the eyeball (symblepharon). The more extended the diphtheritic process the more striking is the subsequent cicatricial contraction of the conjunctiva. As a result of it trichiasis, cicatricial entropion, or even xerophthalmus may subsequently develop.

The deep form of diphtheria is more severe than the croupous, not only in regard to its effect upon the conjunctiva, but also in other respects. Hence the cornea is much more frequently and much more seriously affected. The greater the extension of the diphtheritic process upon the conjunctiva the more certain is corneal suppuration to occur. If the entire area of the conjunctiva is infiltrated and rigid the cornea is always irretrievably lost.

The general condition of the little patients is very much disturbed. They have high fever and are greatly prostrated. Weakly children not infrequently succumb to the severity of the general disease. The prognosis, therefore, is very serious, not only as regards the eye, but also with respect to life itself.

Etiology.—That the two forms just described, which differ so much in their appearance and course, are, nevertheless, the same disease,
namely diphtheria, is proved from the fact that Löffler's bacilli are found in the conjunctival secretion in both. Often, too, the patients present other important and undoubted diphtherial affections. Small-sized diphtherial patches are frequently found at the edges or angles of the lids, the nostrils, or the angles of the mouth; sometimes there is also a fully developed nasal or pharyngeal diphtheria.

Diphtheria of the conjunctiva is mainly observed in those countries where diphtheria of all sorts is a frequent occurrence,* and occurs especially at times when an epidemic of pharyngeal diphtheria is prevailing. It can often be proved that children affected with diphtheria of the conjunctiva had previously been thrown with others, who soon afterward developed pharyngeal diphtheria; and such children may themselves in their turn spread the disease to others still. The predisposition to diphtheria diminishes with the age. Consequently, diphtheria of the conjunctiva usually attacks children, and most frequently those between the second and eighth year of life. Adults are only exceptionally attacked, and then by one of the lighter forms.

**Treatment.**—In the severe cases of diphtheria of the conjunctiva the injection of antitoxin is indicated as soon as the diphtherial character of the disease is made out. In the lighter cases we may content ourselves with employing local treatment alone. In the first stage of the disease this is chiefly limited to careful cleansing of the eye, for which purpose the best thing for us to employ is a weak antiseptic liquid (solution of corrosive sublimate, salicylic acid, or potassium permanganate). Cold compresses, which would seem to be indicated by the great swelling and redness of the lids, must be applied only when the conjunctival circulation is not too seriously embarrassed by the diphtherial infiltration. Otherwise, it is better to employ warm compresses which by dilating the blood-vessels increase the circulation. As regards the conjunctiva itself Fieuzal has recommended painting it with lemon juice; and painting it with strong sublimate solution (1 to 1,000) either directly or after the removal of the membrane, if present, is highly spoken of. Except for this purpose there is no object in removing the membranes in the croupous variety, since these at once reform. When, after separation of the membranes or the slough, the conjunctiva has become strongly congested, soft, and succulent, and the secretion begins to be abundant, we may commence the application of a nitrate-of-silver solution, by means of which we bring the swollen conjunctiva more rapidly back to its normal state. In so doing we must at first proceed with great caution, use a pretty weak solution (one per cent) and discontinue the application at once if membranes or deep infiltrations once more develop.

[* In America severe cases of conjunctival diphtheria are of rare occurrence.—D.]*
DISEASES OF THE CONJUNCTIVA.

We keep on making the applications to the conjunctiva as long as the latter is red and swollen and discharges a copious secretion. If in the deep form after the subsidence of the disease partial necrosis and sloughing of the conjunctiva have set in, we try during the subsequent period of cicatrization to oppose, as far as possible, the formation of adhesions between the lids and the eyeball (doing this by frequently drawing the lid away from the eyeball or by laying a pledget soaked in oil between the two), for adhesions once formed can be removed only by an operation. Complications affecting the cornea are to be treated according to the rules that will be given further on for purulent inflammation of the cornea in general.

All operative procedures, whether upon the cornea or upon the lids, should be avoided in the first stage, as the wounds thus produced generally become diphtherial too.

In consideration of the very infectious character of diphtheria, our special aim must be prophylaxis. While acute blennorrhoea and trachoma exert an infectious action only through a transfer of the secretion, infection in diphtheria can, in all probability, occur simply by means of the air, without any direct transfer. Accordingly, we remove from the vicinity of the patient all persons who are not indispensably necessary for purposes of nursing; but, most of all, we insist upon the removal of children, who are particularly susceptible to infection. If diphtheria has attacked only one of the patient's eyes, the other must be protected against infection by a carefully applied occluding bandage, just as in acute blennorrhoea.

The persons who have charge of the patient must be particularly enjoined to cleanse the hands carefully after touching the diseased eye, to destroy at once the materials employed in cleansing, etc.

We owe the first exact description of conjunctival diphtheria to Von Graefe, who, in Berlin, had an opportunity of seeing many cases of this disease. His description relates to the deep variety, of which he distinguishes two groups of cases. In the first group—that of diphtheria en plaques—constituted by the lighter cases, the diphtherial spots in the conjunctiva are found under the form of large or small islands, which occur especially on the conjunctiva of the lids and between which lie areas of tissue that is not so much diseased. In the severer cases, on the other hand, the diphtherial foci rapidly coalesce, so that the entire conjunctiva becomes rigid and bloodless (confluent diphtheria).

After Löffler had discovered in the membranes of pharyngeal diphtheria the bacillus that bears his name, it was soon after shown to be present in diphtheria of the conjunctiva also (Babes, Kolisko and Palfau, and others). On the other hand, no one supposed that the cases in which a membrane forms upon the conjunctiva must also be regarded as diphtheria until the presence of the Löffler bacillus was demonstrated in them also (C. Fränkel, Uthoff, Eschelbrong, Escherich, Sourdille, Schirmer, and others). The same thing occurred in this case as in that of pharyngeal diphtheria and laryngeal croup, whose etio-
logical identity has only very recently been recognized. Many assume that membranous inflammation of a mucous membrane implies a feeblner action of the diphtheria bacilli than does diphtheritic inflammation proper, the comparatively slight effect of the bacilli in the former case being due either to their having lost their virulence or to the patient's being more refractory to the influence. But apart from this, the severity of the inflammation is influenced by the fact that beside the Löfler bacillus there occur on the inflamed conjunctiva other germs, such as the staphylococcus and streptococcus. In fact, the streptococcus by itself is competent to produce a disease of the clinical aspect of conjunctival diphtheria; and in my clinic actually the severest cases were those in which the streptococcus alone was present, the slighter or croupous cases being associated with the Löfler bacillus.

**Croupous Membranes on the Conjunctiva.**—Croup and diphtheria are primarily anatomical terms denoting definite forms of inflammation. Croupous inflammation is characterized by the deposition of an exudate upon the surface of a tissue, where, by coagulation, it hardens into a membrane. The essence of the diphtheritic inflammation, on the contrary, consists in the exudation of a great mass of material within the tissue itself, together with consequent necrosis of the latter. Diphtheritic inflammation may be regarded as a croupous inflammation carried to a higher point, in so far as the same injurious cause may, when acting to a slight extent, produce a croupous, when acting to a greater extent, a diphtheritic inflammation of the mucous membrane. Sordille has demonstrated experimentally that by painting the conjunctiva with ammonia one can at will produce either the croupous or the diphtheritic form of inflammation, according to the intensity, greater or less, with which the agent is applied. We meet with the same experience in our medical practice, when, by making too strong or too frequent applications of the silver solution to an inflamed conjunctiva, we produce a croupous coating upon it, and then, in spite of this result, keep on with the application. In this case a diphtheritic inflammation with circumscribed necrosis of the tissue will ensue. Chemical irritants of an organic nature may bring about the same result. Thus the repeated application of the jequirity infusion produces first a croupous, afterward a diphtheritic inflammation. And, furthermore, the same thing holds good for many of those inflammations of the conjunctiva that are caused by micro-organisms. Thus in an acute blepharorrhea, when the inflammation attains a high degree of severity, either a croupous coating or a diphtheritic infiltration of isolated portions of the conjunctiva may be observed, and such cases are often regarded as genuine diphtheria.

Accordingly, the same clinical picture—e. g., that of a diphtheritic conjunctivitis—may be produced by the most various kinds of pathogenic agents, both of a chemical and a parasitic nature; and, on the other hand, the same pathogenic agent—e. g., the Löfler bacillus—may give rise to a variety of clinical pictures—i. e., to both croupous and diphtheritic inflammation. It is not tenable, therefore, as has hitherto been done, to employ the expressions croup and diphtheria of the conjunctiva both to characterize certain anatomical changes, and also to denote definite types of disease, each of single etiology. With regard to the expression diphtheritis, I have adhered to Roser's proposition, using the word diphtheritis as an anatomical term for that variety of inflammation in which the exudate undergoes coagulation within the tissue itself. On the other hand, diphtheria and diphtherial are used in an etiological sense to denote
DISEASES OF THE CONJUNCTIVA.

those affections which, whatever appearance they may present, are caused by the Löfßer bacillus. The expression croupous conjunctivitis should be used simply as an anatomical term.

Formerly most of the spontaneously developing conjunctivitides that were associated with the formation of a membrane were comprehended under the terms *conjunctivitis cruposa* or *membranacea*, and thought to constitute a single independent disease. But recent bacteriological investigations have shown that the most various pathogenic agents may give rise to the formation of a membrane upon the conjunctiva. As far as is at present known, a croupous conjunctivitis may originate from the following causes:

(a) *Spontaneously* developing croupous conjunctivitis. This usually runs an *acute* course, and is the kind that was formerly described under the name of conjunctivitis *cruposa* as a distinct disease. We have seen above that a part of these cases, being caused by the Löfßer bacillus, are to be attributed to diphtheria. This knowledge is practically important, because we now know that even these apparently light cases of conjunctivitis may by transfer to others produce severe diphtheria of the conjunctiva or of the pharynx, and that we must consequently apply to them all customary precautionary measures.

Croupous inflammations, in part of a serious character, are caused by the streptococcus (Terson, Bourgeois and Gaube, Debiere), and less severe kinds by the pneumococcus (Morax, Parinaud). Among the cases that run a light course belong also those of acute catarrh, that are produced by the bacillus of Weeks, and are associated with the formation of membrane (Morax); and that the acute blennorrhoea caused by the gonococcus not infrequently shows membrane formation has already been stated above.

To the cases of membrane formation upon the conjunctiva that pursue a more *chronic* course belong the very rare instances of herpes iris of the conjunctiva. These latter can readily be diagnosed, provided the characteristic exanthem of herpes iris (a central reddened or pigmented area of skin surrounded by a wall of vesicles) is also to be found upon the skin. This, however, is not always present. Sometimes, too, a formation of membrane like that upon the conjunctiva occurs upon the mucous membrane of the mouth. In some cases the disease recurs frequently. In one case, which probably belongs here, Gerke and Kain isolated a coccus which, inoculated upon a rabbit's conjunctiva, produced a formation of membranes there.

Furthermore, there have been described cases of peculiarly chronic formation of membrane upon the conjunctiva—cases lasting for months, or even years—the nature of which is still doubtful (Arlt, Hulme, Morton, and others).

(b) By the application to it of external irritants of a *chemical nature* the conjunctiva may be thrown into a state of inflammation with the formation of a membrane. As already mentioned, such irritant substances include bodies both inorganic and organic, like ammonia, nitrate-of-silver solution, and jequirity infusion.

(c) *Losses of substance* in the conjunctiva (and the same thing is seen in other mucous membranes) very soon become covered with a membrane of congelated fibrin, under which the healing of the wound proceeds. This process is observed after operations (e.g., tenotomy), injuries, and also spontaneously developing wounds—as, for example, those occurring after rupture of pemphigus vesicles (see § 18).
V. Conjunctivitis Eczematosa.*

17. Symptoms.—In its simplest, typical form, conjunctivitis eczematosa presents the following picture: A little red eminence, of about the size of a millet seed, develops at some point upon the limbus of the conjunctiva. This is the efflorescence (Fig. 28). In the beginning it is conical, its apex being covered by the epithelium of the conjunctiva. In a short time the epithelium at the summit of the efflorescence separates, and the tissue that lay beneath it breaks down, so that the apex of the cone, so to speak, melts away; and the cone itself bears on its top a minute gray ulcer, which thus lies above the level of the neighboring, heavy conjunctiva. By a continuation of the breaking-down process the cone at length disappears entirely, the ulcer sinks to the level of the conjunctiva, and speedily becomes clean and then covered with epithelium. Thus the ulcer heals, without a visible mark being left upon the conjunctiva.

As the efflorescence springs up, the adjacent part of the conjunctiva becomes hyperemic, the injected vessels being directed from all sides toward the little nodule. Hence, the reddened portion of the conjunctiva shows the form of a triangular sector, the apex of which lies in the limbus and corresponds to the nodule. The remainder of the conjunctiva is perfectly free from congestion.

* Synonyms: Conjunctivitis lymphatica (serofulosa, phlyctanulosa, pastulosa, exanthematica), herpes conjunctivae (Stellwag).
DISEASES OF THE CONJUNCTIVA.

The simplest type of conjunctivitis lymphatica, therefore, consists in the formation of a sharply circumscribed, nodular exudate, to which there corresponds an injected district of the conjunctiva. Conjunctivitis lymphatica is hence a focal affection of the conjunctiva of the eyeball, and is thus distinguished from all the varieties of conjunctival inflammation hitherto described which are diffused inflammations, in that they extend in a uniform fashion over large sections of the conjunctiva.

The clinical pictures which conjunctivitis eczematosa actually exhibits present modifications of the type above described, which differ most widely from each other. These modifications concern—

(a) The number of the efflorescences. It is rare that we find but one of these; generally there are several, and not infrequently a good many, present at the same time. The fewer they are the larger they generally grow; in rare cases they almost attain the size of a lentil. When there are many nodules present they are small; often we find the entire limbus, or even the cornea itself, covered with very minute eminences, so that the surface of the eyeball looks as if fine sand had been strewn over it. Such very small nodules commonly disappear in a few days by resorption, without any preliminary disintegration. When multiple efflorescences are present, the injected portions of the bulbar conjunctiva belonging to the separate nodules become confluent, and the conjunctiva then appears reddened all over, so that the focal character of the disease is obscured, and declares itself only by the presence of separate nodular exudates. So, too, when the inflammation is great, the palpebral conjunctiva also participates in the injection, so that, in that case, conjunctivitis eczematosa is no longer an affection limited to the bulbar conjunctiva.

(b) The site of the efflorescences may be not only in the limbus itself, but also exterior to the latter, in the anterior segment of the bulbar conjunctiva, and likewise inferior to the limbus, in the cornea itself. In the latter are situated small gray nodules, which consist of an accumulation of round cells superficially disposed between Bowman’s membrane (Fig. 29, B) and the epithelium (Fig. 29, E), which is bulged forward by them. By the breaking down of the nodule there is produced in the cornea a loss of
DISEASES OF THE EYE.

substance, which is quite shallow, affects merely the epithelium, and heals without leaving a permanent opacity. Often, however, the affection assumes a more serious form, from the fact that the exudations have a tendency to spread farther in the cornea, extending either into the depth of the latter or along its surface. If the infiltration extends through Bowman's membrane into the parenchyma proper of the cornea, an ulcer is produced, when it breaks down, which penetrates more deeply and can even perforate the cornea. In that case, after the ulcer heals, a permanent opacity remains.

(c) The corneal ulcers which result from the efflorescences may assume a serpiginous character—that is, they may spread by a sort of creeping process along the surface of the cornea. In this way is produced the vascular fasciculus (Fischer), which is also called keratitis fascicularis. This affection begins by the development of a small ulcer out of an efflorescence at the rim of the cornea. After some days this ulcer becomes clean in its peripheral half—that is, in the part turned toward the corneal rim. At the same time, in accordance with the ordinary behavior of regressive corneal ulcers, blood-vessels develop, which run from the limbus to that edge of the ulcer that is healing, and which serve to keep up the process of cicatrization. But in the meantime, that margin of the ulcer that is toward the center has remained infiltrated and gray. Inasmuch as at this place the infiltration and the subsequent purulent disintegration keep on extending, the ulcer constantly advances toward the center of the cornea, while on its peripheral side it heals equally fast, and draws the blood-vessels after it. The vascular fasciculus accordingly appears as a narrow red band formed of blood-vessels (hence the name), and extending from the corneal margin some distance into the cornea. At its apex it bears a small gray crescent, the infiltrated, advancing margin of the ulcer. The arrest and recession of the process first occur when the ulcer is completely healed. Until this has taken place the vascular fasciculus can advance far into the cornea, to its center or even beyond it. The small ulcer, however, always remains superficial, and a perforation of the cornea due to it has never been observed. When the vascular fasciculus has at length come to a standstill, the vessels gradually disappear from it, and there only remains a superficial opacity of the cornea which corresponds in shape to the long-drawn-out form of the vascular fasciculus. This opacity never clears up again completely, and hence, when found at any time during the whole subsequent life of the patient, enables us to diagnosticate the previous existence of a vascular fasciculus.

(d) The severest cases of conjunctivitis eczematosa are those in which the exudation, starting from in front, makes its appearance in the deep layers of the cornea as a diffused deep-lying infiltration. We then find the cornea occupied to a considerable extent by an opacity of a uniform gray or yellowish color, becoming fainter toward the edges.
This opacity is situated in the deep layers of the cornea; and the surface of the cornea over it is dotted with minute spots. In the bad cases the infiltrate, originally gray, becomes more and more yellow, and finally breaks down into pus, so that an extensive loss of substance is produced in the cornea. In the benign cases, on the contrary, the infiltrate gradually disappears again by resorption, and the cornea regains its transparency either wholly or in part. It is astonishing to what an extent even extensive infiltrates can undergo resolution.

(c) Instead of appearing as separate circumscribed foci, the exudate may occur under the form of a continuous new formation of tissue upon the surface of the cornea—that is, under the form of pannus. This is called pannus eczematous, to distinguish it from trachomatous pannus. It does not, like the latter, show a predilection for the upper part of the cornea, but develops from any spot whatever upon the corneal margin. It is ordinarily thin and not very vascular, and is quite disposed to undergo complete resolution.

Conjunctivitis eczematosa is generally accompanied by abundant lachrymation. Mucous or muco-purulent secretion, on the contrary, such as occurs in catarrh, is not present as a rule; hence the lids do not ordinarily stick together in the mornings. The only exception to this is formed by those old cases in which the inflammatory process has passed over to the palpebral conjunctiva, and has thrown it into a state of concomitant catarrhal inflammation.

The subjective symptoms consist of photophobia and spasm of the lids (blepharospasm). Slight in some cases, in others they reach an extraordinary pitch; children creep into a dark corner of the room, bury their faces in their hands, and struggle so violently against any attempt at opening their eyes that the examination on the part of the physician is conducted under great difficulties. The intensity of these symptoms bears no definite relation to the severity of the disease; in fact, it is precisely in that form of corneal affection which spreads more extensively and penetrates more deeply that the evidences of irritation are often pretty slight. The annoyance suffered, contrary to what takes place in conjunctival catarrh, is, generally speaking, greater in the morning than in the afternoon and evening.

Course and Prognosis.—A single typical efflorescence upon the limbus passes through all its phases up to complete subsidence in eight to fourteen days. If several efflorescences are present, the process of cure requires a proportionately longer time. Nevertheless, the disease would not last so very long if it limited itself to a single attack. This, however, is but rarely the case. Usually, after a period of quiescence, or even before the first attack of inflammation has quite run its course, the eye becomes red again, and new nodules shoot up in or near the limbus. Thus the disease may, with longer or shorter intermissions, last on for months or years. Its beginning occurs in childhood; the
DISEASES OF THE EYE.

separate attacks, however, are often protracted until the time of puberty, or sometimes even later; the affection being situated now in one eye, now in the other, then in both at the same time. Finally, the attacks become less and less frequent, and at length cease altogether.

The constant wetting of the lids by the tears frequently leads to blepharitis, to eczema of the skin covering the lids, and, as a consequence, to ectropion of the lower lid. Excoriations are frequently present at the external angles of the lids, and blepharophimosis often develops later on.

The prognosis of conjunctivitis eczematosa is favorable, in so far as the eye is but rarely rendered entirely blind by it. Superficial efflorescences disappear without leaving a trace behind; ulcers which penetrate into the parenchyma proper of the cornea leave permanent opacities, which, however, are in most cases thin and superficial (maculae of the cornea). In persons who have gone through with many recurrences of conjunctivitis eczematosa the cornea often bear quite a number of such maculae as signs of past attacks. Thus the sight is impaired, the patients being often incapable of doing fine work. In addition to this, children, in consequence of the frequently repeated inflammations of the eyes, fall behind in their physical and mental development. So, even if conjunctivitis eczematosa only in exceptional cases leads to blindness, it nevertheless does so much harm to those who are attacked by it, that we ought to strive to combat it with every means in our power.

18. Etiology.—Conjunctivitis eczematosa is one of the most frequent of eye diseases, and it has its origin in the scrofulous diathesis. Like the latter, it is a disease of childhood and youth. In very young children—those under the age of one year—it occurs but seldom, and it generally ceases at the time of puberty. Adults are attacked by it only in case they have carried the disease along with them from their childhood. The enormous majority of children affected with conjunctivitis eczematosa belong to the poorer classes. Such children receive insufficient and unsuitable nourishment, live in damp, poorly ventilated dwellings, and are kept constantly dirty. Other children affected are those who, though once healthy, have become run down as a result of other diseases (scarlet fever, measles, typhoid fever, whooping cough, etc.). Such children as these look either pale and thin or bloated and flabby, like a sponge. The glands at the lower jaw, in the neck, and in front of the ear, are swollen. Partly as a result of the suppuration of these glands, and partly as a result of the breaking down of the scrofulous infiltrations in the skin, ulcers and fistulous passages are produced, which require months and years for their cure, and leave characteristic and disfiguring scars behind. Patches of moist eczema occur at various spots upon the body, most frequently upon the face; and the constant coryza from which many of these children suffer is
to be attributed to an eczematous affection of the nasal mucous membrane. In the lids we find blepharitis. The nose and the upper lip are rendered thick by frequently recurring attacks of inflammation. More profound affections that occur are caries of bones (caries of the petrous bones appearing under the form of an otorrhea being frequent), tuberculosis, and, in girls, delayed and irregular menstruation.

Some one of the above-mentioned symptoms of scrofula, and often several of them at once, accompany most cases of conjunctivitis eczematosa. Sometimes, though rarely in comparison with the other cases, the disease is observed in an individual who otherwise is quite healthy, just in the same way that other indications of scrofula also occur at times as altogether isolated phenomena.

**Therapy.**—In the lighter cases, the *local treatment* consists in the application of irritants, of which calomel and the yellow-precipitate ointment (Pagenstecher's ointment) are most in use. The calomel in a finely powdered state is sprinkled in a thin layer upon the conjunctiva of the lower lid by means of a camel's-hair brush; the precipitate ointment (0.05 to 0.15 of yellow precipitate to 5 of fat), on the other hand, is introduced into the conjunctival sac by means of a glass rod or a brush, and is then rubbed about with the lids, so as to be distributed over the whole conjunctiva.

Both remedies are irritant in their action; the precipitate ointment more so than the calomel. Hence, in the beginning of the disease, where the eyes are in a marked state of irritation, it is best to employ calomel; and subsequently, when the inflammatory symptoms are diminishing, to replace this by the yellow ointment. The remedies mentioned are to be applied only once a day. Both find a contraindication in the presence of recent infiltrates or progressive ulcers in the cornea. In such cases, before having recourse to irritant remedies, we must wait, meanwhile employing atropine, until the process of infiltration has subsided or the ulcer has become clean. Pannus and vascular fasciculi do not contraindicate calomel or the yellow ointment. If under their use the vascular fasciculi can not be brought to a standstill, we cauterize the advancing edge of the ulcer with the point of a delicate cauteriy iron (or with a galvano-cautery or thermo-cautery point). In the case of ulcers of larger size covered with exudation, as well as in the case of deep infiltration of the cornea, moist and warm compresses, applied several times a day for one or two hours at a time over the closed eyes, prove most efficient. With regard to the treatment of deep ulcers and of the cicatrices that follow ulcers, the general rules set forth under the head of affections of the cornea are applicable. A bandage should be applied only in case of imperative necessity (e.g., when there are ulcers penetrating deeply into the cornea); otherwise its use had better be avoided. It hinders the ready escape of the tears which are so copiously secreted, and, as it very soon becomes wet
through with the secretion, it is liable to set up eczema of the skin of the lids.

In conjunctivitis eczematosa, general treatment, conducted with due regard to the etiology, is of especial importance. The child’s nourishment should be strengthening and administered at regular hours. Care must be taken that the dwelling place be dry and well ventilated, and the child should be sedulously kept out in the open air, irrespective of any photophobia that may exist. Indeed, in any case, we must not yield too much to this symptom of photophobia, and it would be quite a mistake to keep children in a dark room just because they shun the light. As invigorating measures, spongings with cold water are of service; also a sojourn in the country, especially at the mountains or the seashore. After the acute inflammation has run its course, the use of brine baths or of sea baths is of great service in preventing relapses. Unfortunately, the carrying out of all these regulations is only too often frustrated by the force of circumstances and by the poverty of the patients.

The medicinal treatment of serosula consists in the administration of cod-liver oil and of the preparations of iodine, iron, arsenic, and quinine. The sort of remedy employed and its dose must be adapted to each individual case. Furthermore, the cure of the eye disease is favorably influenced by treating any coexisting serofulous affections, especially blepharitis, and also eczema of the face and of the nasal mucous membrane. In these affections the application of white-precipitate ointment (one to two per cent) does good service. In blepharitis this ointment is smeared at night over the closed palpebral fissure. Eczematous spots upon the face are covered with a pledget of linen smeared with the ointment, and, to relieve eczematous coryza, the ointment is introduced from the anterior nares as far into the nose as possible and rubbed in. For relieving moist eczema of the face, we can also employ with great advantage a five to ten per cent nitrate-of-silver solution applied with the brush, after removal of the crusts, to the raw cutaneous surface, which thus becomes covered with a thin eschar, under which the raw spots heal rapidly. This application must be repeated at first daily, afterward at intervals of several days, and be kept up as long as crusts continue to form.

The synonyms which are used for conjunctivitis eczematosa, such as conjunctivitis phlyctenulosa, conjunctivitis pustulosa, herpes conjunctivae (Stellwag), originate from the view that the efflorescence on the conjunctiva or cornea is a hollow vesicle filled with fluid (φλόκτενω [bladder], pustula, herpes vesicle). But the efflorescence is in reality never a vesicle, but a solid, though soft, projection, which is formed chiefly by an accumulation of lymphoid cells (Figs. 28 and 29). The softening and liquefaction of this cellular mass do not begin in the interior of the projection, but at its apex, so that there is no formation of a cavity (vesicle or pustule), but a loss of substance (ulcer) occurs, lying upon
the free surface at the apex. The name herpes cornæe, moreover, can give rise to a confusion with true herpes cornææ (herpes febrilis and herpes zoster, see § 40).

In accord with the precedent set by the older authors, I formerly denoted conjunctivitis eczematosa under the name of conjunctivitis lymphatica (or serofullosa) on account of its undeniable connection with serofullosis. Now, following many recent authors, I replace this etiological term by that of conjunctivitis eczematosa, which is indicative of the pathological anatomy of the disease, and thus denotes the nature of the morbid process. I do so because there are increasing indications for considering this affection of the conjunctiva as analogous to eczema of the skin. The latter, under the form of moist eczema, is, like conjunctivitis eczematosa, found particularly often in scrofulous children, being present especially upon the face and upon the edges of the eyelids themselves (blepharitis ulcerosa); and the nasal mucous membrane is also frequently attacked by it. This simultaneous occurrence on the skin and in the eye denotes in many cases a common origin from the scrofulous diathesis that is present; but in other cases it is probable that the eczema develops in one spot and has been transferred from it to the other—i. e., from the skin to the eye or from the eye to the adjacent skin. Even in adults who have been attacked by a very extensive eczema I have several times seen inflammations of the eye develop in the course of the disease, which were associated with marginal infiltrates of the cornææ, and even led to perforation, and which therefore presented the picture of a severe conjunctivitis eczematosa.

A certain proof of the identity of conjunctivitis eczematosa with eczema of the skin will not be forthcoming until the same pathogenic agent has been proved to exist in both diseases. Up to the present time observers have been disposed to regard the staphylococcus pyogenes aureus as the agent in question, but further investigations are requisite in order to determine this point.

The authors separate the eczematous affections of the conjunctiva from those of the cornææ; they speak of conjunctivitis and of keratitis eczematosa or phlyctænulosis, of herpes of the conjunctiva and of the cornea, according as the efflorescence is located upon the conjunctiva or the cornææ. In this way, for mere love of system, a picture of disease that, clinically speaking, is a perfect whole, is torn in two. In fact, we have here really but one single disease, which is localized sometimes in one place, sometimes in another. Frequently enough we find in the same eye, at the same time, an efflorescence in the conjunctiva; a second in the limbus, half in the conjunctiva and half in the cornææ; and a third upon the cornææ itself. Hence, in the foregoing description of the disease the expression conjunctivitis eczematosa is employed for the disease in general, no matter upon what part of the surface of the eyeball it is localized. This can be done without doing violence to anatomy, inasmuch as the outermost layer of the cornææ must be looked upon as the continuation of the conjunctiva over the cornea. Accordingly, we can regard the involvement of the cornææ in conjunctivitis eczematosa as an involvement of the "conjunctival layer" of the cornææ. For the same reason pannus trachomatous we regard as one of the symptoms of conjunctivitis trachomatosa, and not as an independent affection of the cornææ.

The differential diagnosis between conjunctivitis eczematosa and the other affections of the conjunctiva and cornea is, as a rule, easily made. The char-
acteristic mark of the former lies in the focal character of the affection as well as in its localization upon and immediately about the cornea. Only one other variety of conjunctivitis, the conjunctivitis ex acnee, shares this peculiarity with conjunctivitis ecematosa; but that disease is readily distinguished from the latter by the accompanying acne rosacea upon the face (see infra). In vernal catarrh (§ 20) also little nodules occur upon the limbus, but never break down into ulcers; moreover, the palpebral conjunctiva, too, is diseased, and in a characteristic fashion. Of the diffuse inflammations of the conjunctiva, catarrh might be confounded with conjunctivitis ecematosa. For in intense and obstinate cases of conjunctivitis ecematosa the affection spreads to the palpebral conjunctiva, which may become very much reddened, swollen, or even velvety; in that case a mucous or mucous-purulent secretion forms upon the conjunctiva. It is often difficult to distinguish between such cases and catarrh, especially if just at the moment of examination there are no characteristic efflorescences present upon the conjunctiva of the eyeball. Fortunately, a mistake in diagnosis does no harm, since, with such a condition of the conjunctiva existing, gentle cauterization with the nitrate-of-silver solution is always indicated, no matter what the origin of the disease. The purulent form of acute conjunctival catarrh forms a sort of intermediate stage between catarrhal conjunctivitis and conjunctivitis ecematosa (see page 48).

_Eczematous pannus_ is to be chiefly distinguished from pannus trachomatous by the fact that an exact examination of the conjunctiva of the lids and of the fold of transition either discloses the changes of trachoma or establishes the fact of their absence. In regard to corneal ulcers which have been preceded by the efflorescences of a conjunctivitis ecematosa, it is sometimes impossible to recognize the fact of this origin with certainty, except when the ulcer is located at the very margin of the cornea and extends into the limbus conjunctiva, corneal ulcers as peripherally situated as this occurring only in connection with conjunctivitis ecematosa. The vascular fasciculus can readily be confounded with an ordinary corneal ulcer, to which, in the course of healing, vessels have made their way from the limbus so as to form a reddish-colored bridge between the limbus and the ulcer. In such a case there is no fear of the ulcer's extending into the pupillary area of the cornea, and, after the ulcer heals, only a small, rounded macula is left, and not a long, opaque stria, as in the case of the vascular fasciculus. The distinction between these two affections can be made as follows: In the vascular fasciculus, the advancing margin of the ulcer, infiltrated with gray, is readily visible; the blood-vessels as they run up to it lie in the furrow which the ulcer has channeled in the course of its progress—lie, therefore, at or below the level of the corneal surface. In the case of a simple ulcer with which a development of vessels has been associated, this furrow and the opacity corresponding to it are wanting.

In the treatment of conjunctivitis ecematosa _calomel_ plays the greatest part. Since this remedy under its own form is insoluble in water, it was at first believed that a purely mechanical action should be ascribed to it (a scratching open of the efflorescences, which were considered to be vesicles). But opposed to this view is the fact that indifferent powders, for instance, finely pulverized glass, which were also employed for inspensions, did not develop the same action. More recent investigations have proved that the action of calomel is a chemical one. The calomel powder, when sprinkled into the eye, remains a long time in the conjunctival sac; minute quantities of it are transformed by
the sodium chloride contained in the tears into corrosive sublimate, which is thus continually being formed in small quantities, and exerts a steadily continued action upon the conjunctiva. According to others, calomel itself is, to a small extent, soluble in a salt solution such as the tears represent, and is hence efficient under its own form. If we undertake the inspersion of calomel in patients to whom at the same time iodine is being administered internally, we not infrequently observe a strong corrosive action from the calomel; for the latter forms with the iodine excreted in the tears the very corrosive mercuric iodide (Schlafke). These two remedies, therefore, are incompatible with each other.

A symptom that is especially tormenting for the patients is the photophobia so often connected with conjunctivitis eczematosa. In many cases this persists obstinately for months. The parents then bring the children to the physician, with the statement that they have been "blind" for such or such a number of weeks. The children offer the greatest resistance to the forcible opening of the eyes, especially when there are excoriations at the external commissure, which give pain and are prone to bleed when the lids are separated. Hence, in such cases the palpebral fissure is to be opened cautiously and not too wide, so as to avoid making the struggles of the children still greater. The lids, and especially the upper lid, are rendered edematous by the constant blepharospasm, because the veins of the lids, which pass between the fibers of the orbicularis, are compressed by persistent contraction of this muscle. Furthermore, a state of inversion of the lids (entropion spasticum) may be induced by this forcible squeezing together of the eyelids. Finally, cases have been described in which children who have suffered for a long time from blepharospasm were perfectly blind after the disappearance of this symptom (Von Graefe, Schirmer, Leber, and others). Such blindness is transient. As in most cases no objective changes were demonstrable as the cause of the blindness, no positive explanation for it can yet be assigned.

In most cases the blepharospasm soon yields if the conjunctival trouble, which forms the basis of it, has been ameliorated by appropriate treatment. In case the spasm of the lid is particularly obstinate, Arlt's ointment (0.5 gramme of extract of belladonna to 5 grammes of blue ointment) may be rubbed into the patient's forehead and temples two or three times a day. Instillations of cocaine, pretty frequently repeated, or douching the entire surface of the body with cold water every day, are also frequently of efficacy. Finally, we can even perform the operation of splitting the external commissure (canthoplasty, see § 188), especially when the palpebral fissure has been abnormally contracted by reason of blepharophimosis.

Herz has called attention to the fact that many children who suffer from conjunctivitis lymphatics are infested with head lice, and that after doing away with these vermin the conjunctival disease, which hitherto may have been obstinate, often heals with surprising rapidity. This is owing to the fact that head lice are among the most frequent causes of eczema of the hairy scalp.

Beside eczema, the following exanthemata, both acute and chronic, are associated with diseases of the conjunctiva.

[* According to some, however, calomel can remain in contact with tear fluid for an indefinite time without change.—D.]*
(a) ACUTE EXANTHEMAT.

Measles is regularly associated with a conjunctivitis. This appears under the form of an acute conjunctival catarrh, develops early (before the eruption of the exanthem upon the skin), and generally disappears of itself after two or three weeks without leaving any bad consequences behind.

Only in exceptional instances does the conjunctivitis of measles take on a blennorrhoal or even a diphtheritic aspect (without actually turning into true blennorrhea or diphtheria). In such cases the cornea is endangered. During convalescence in some cases of measles, when the conjunctival inflammation had already become pretty slight, I have observed numerous Meibomian glands, both on the upper and the lower lids, becoming inflamed and suppurring (hordeola meibomiana, see § 108). The purulent contents were evacuated partly through the orifices of the glands, partly upon the inner surface of the lid after breaking through the tarsus and the conjunctiva.

In variola, smallpox pustules not infrequently develop upon the conjunctiva, generally upon the tarsal conjunctiva near the intermarginal line. Smallpox pustules which develop upon the conjunctiva of the eyeball near the limbus are dangerous from their setting up a purulent keratitis in the adjacent part of the cornea—a condition which should not be confounded with the ulcer serpens that develops metastatically in smallpox (see § 86).

(b) CHRONIC EXANTHEMAT.

(1) ACNE ROSACEA CONJUNCTIVÆ.—This disease of the conjunctiva, described by Arlt, begins as follows: A minute nodule forms, with moderate symptoms of irritation, upon the limbus. This efflorescence breaks down after some days, and the ulcer thus produced heals without leaving any visible cicatrix behind. This affection bears the greatest resemblance to the simple typical picture of conjunctivitis eczematosa, and shares with the latter its peculiar tendency to frequent recurrence. On this account it is very tormenting to the patient. It is possible to make the differential diagnosis chiefly from the fact that conjunctivitis ex acme attacks only adults and those who are at the same time affected with acne rosacea. It is important to make the correct diagnosis, since otherwise we might labor in vain to prevent the recurrences—a thing which can be done only by a suitable and long-continued treatment of the acne rosacea. The conjunctivitis itself is most speedily cured by inspersion of calomel.

(2) PEMPHIGOUS CONJUNCTIVÆ.—In this disease the conjunctiva, although reddened as a whole, displays one or two spots that are deprived of their epithelium and covered with a gray coating. While these spots are slowly undergoing cicatrization—a process attended with shrinking of the subjacent conjunctiva—spots of the same nature appear in other places. Thus there is produced a constantly increasing cicatricial contraction of the conjunctiva, whose progress, it is true, is very slow (extending over months and years), but is irresistible. The conjunctiva becomes whitish, cloudy, and tense. First, the folds of transition vanish, then folds make their appearance, stretching in a vertical direction from the lids across to the eyeball, and finally the lids are retracted so that trichiasis results. The conjunctiva at the same time grows continually drier, and the lachrymal secretion dries up, owing to the fact that the excretory ducts of the lachrymal gland become occluded by the shrinking of the conjunctiva. Ulcers form upon the cornea, which later gets to be clouded all over, and
DISEASES OF THE CONJUNCTIVA.

likewise dry upon its surface. In the bad cases the lids at length become completely adherent to the eyeball, so that the cornea is permanently covered by the lids and the eye is incurably blind (symblepharon totale). Hence, the prognosis of pemphigus is very unfavorable—the more so as both eyes are always attacked.

In pemphigus of the conjunctiva, contrary to what happens in pemphigus of the skin, bullae are only exceptionally found, their place being taken by denuded areas in the conjunctiva. This is explainable from the anatomical character of the latter. Its epithelium is so soft and delicate that it can not, like the epidermis, be lifted up in broad layers by serous exudation, but ruptures and is thrown off in the form of shreds; hence the raw spots upon the conjunctiva, which soon become covered with a gray coating, as is so frequently the case in wounds of mucous membranes.

Pemphigus of the conjunctiva is usually found in conjunction with eruptions of pemphigus upon the skin. Still more frequently there exists with the pemphigus of the conjunctiva an analogous affection of the mucous membrane of the mouth, throat, or nose. In these localities the pemphigus runs a course like that in the conjunctiva and may, particularly in the buccal cavity, lead to shrinking of the mucous membrane, and thus to stenosis of the mouth. But it may also happen that a lesion of the kind just described exists in the conjunctiva without pemphigus being present elsewhere in the body. That such cases as these, which were first described by Von Graefe as essential phthisis of the conjunctiva, are also to be ascribed to pemphigus, is not certain, though probable.

Treatment has no power to restrain the process. Arsenic is administered internally for the pemphigus; and to make the patient easier, mucilaginous remedies are instilled into the eyes as in xerophthalmus (see page 76). Transplantation of pieces from another mucous membrane into the conjunctival sac may be tried in order to replace the conjunctiva that has been destroyed.

(3) LUPUS CONJUNCTIVAE.—Lupus of the skin sometimes is continued over the edges of the lids upon the conjunctiva. In this situation it appears as an ulcer, the bottom of which is covered with granulations in which tubercle bacilli can be made out. Lupus of the conjunctiva must therefore be regarded as a tuberculous disease, for which reason reference for further details must be made to the article on tuberculosis of the conjunctiva (§ 20).

In the case of other exanthemata, too, for instance in macular and papular syphilides, in pityriasis, psoriasis, ichthyosis, herpes iris, dermatitis herpetiformis, lepra, etc., the conjunctiva is sometimes characteristically implicated. In lepra, nodules generally develop near the margin of the cornea, and subsequently grow down into the subjacent sclera and also upon the cornea; when upon the latter they not infrequently have the appearance of a new growth. There is an associated iritis sometimes combined with the formation of lepra nodules in the iris; also cyclitis. The nodules in the different parts of the eye finally break down, and the eye is lost.

VI. VERNAL CATARRH.

19. Symptoms and Course.—Vernal catarrh (Saemisch) is a chronic disease, persisting for years and setting up very characteristic changes in the conjunctiva, both of the tarsus and of the eyeball. The con-
junctiva of the tarsus is covered with papillae, which are broad and flattened, so as to make the conjunctiva appear like a pavement of cobble-stones. Over the whole lies a delicate, bluish-white film, as if a thin layer of milk had been poured over the conjunctiva. The changes in the conjunctiva of the eyeball are still more striking, although not so constantly present. Growths arise from the limbus at the outer and inner side of the cornea, under the form of brownish, uneven, hard nodules of gelatinous appearance. These extend partly into the transparent cornea for a short distance, and still farther in the opposite direction into the conjunctiva. In contradistinction to the nodules of conjunctivitis eczematosa, which break down so speedily, these nodules never ulcerate; on the contrary, they are very stable bodies, often lasting for years with but slight variations in size.

Quite as characteristic as the changes objectively perceptible are the statements given by the patients. They say that during the winter they experience little or no annoyance from their eyes, but as soon as the first warm days come in spring the eyes begin to grow red and to water; the patients are greatly tormented by photophobia, and especially by a constant itching in the eyes. The warmer the weather, the greater the intensity of the subjective troubles; conversely, the patients feel easier if, for instance, there occur in summer a series of cool, rainy days. In autumn the troubles once more abate, and during the cold season they disappear completely, only to begin anew in the following spring. The difference in the objective condition at different seasons of the year is considerably less than one would suppose from the great change in the patient's subjective state, and consists principally in the eyes being free from discoloration in winter and injected in summer, while the growths upon the conjunctiva appear but slightly smaller in winter than in summer.

Vernal catarrh is a pretty rare disease, chiefly affecting the male sex and the ages of boyhood and youth. Many patients seem to be in other respects quite healthy, while others, without being scrofulous, display besides pallor of the complexion multiple swellings of the lymphatic glands, especially on the neck and lower jaw. Almost always both eyes are attacked. The disease generally keeps on making its return annually for three or four years, and often longer still, for ten or even twenty years, until finally it becomes extinct, without leaving any marked trace of its presence behind. The prognosis is therefore good as regards the ultimate outcome, but bad as regards the duration, as up to the present time we know of no remedy for curing the disease or for preventing its annual return. The cause of the disease is unknown.

Inasmuch as we are unable to cure the disease, the treatment must be limited to the amelioration of the subjective symptoms. We combat the inflammation with the remedies used for acute and chronic con-
junctival catarrh. For the itching and photophobia, cocaine in two-
per-cent solution may be instilled. If the growths are of a considerable
size they may be removed.

Vernal catarrh is not a catarrh, as the not altogether suitable name chosen
for it would indicate, but is a disease sui generis. It was first described by
Arlt (1846), who regarded it as a peculiar variety of conjunctivitis eczematosa.
Subsequently Desmarres mentioned it under the title "hypertrophie périkéra-
tique," Von Graefe as gelatinous thickening of the limbus, Hirschberg as
phlyctena pallida. Saemisch first brought into prominence the characteristic
exacerbation of the disease during the warm season, and therefore called it
vernal catarrh, by which name it is at present commonly designated. Horner
discovered the peculiar character of the tarsal conjunctiva, and thus completed
the picture of the disease.

The papillae on the tarsal conjunctiva are hard—sometimes as hard as car-
tilage. They are found to consist of a sort of areolar connective tissue, with a
peculiar, hyaloid degeneration of the cells of the connective tissue and of the
vessels. The epithelium covering the papillae is thickened, and to this is prob-
ably due the macroscopically visible bluish-white film upon the surface which is
characteristic of the disease. The growths upon the limbus consist of con-
nective tissue, which is provided with very many cells and blood-vessels. Here,
also, the epithelium is greatly thickened, and in places penetrates into the parts
below, under the form of solid epithelial plugs (Horner, Vetsch). The growths
are separated from the healthy cornea by sharply defined borders. In the
cornea a slender gray stria, resembling the arcus senilis, may be seen, which
runs parallel to the margin of the nodule, and is separated from it by a slender
strip of transparent cornea.

In the lightest cases of vernal catarrh it often happens that all the sym-
toms are not present. Most frequently it is the growths upon the limbus that
are wanting, the changes upon the tarsal conjunctiva alone being found. The
latter are, hence, more important for the diagnosis of the disease. But there
are also cases in which just the reverse occurs, i.e., the limbus is thickened,
but the conjunctiva of the lids shows no characteristic changes. Some-
times the only thing to indicate the presence of the disease is a peculiar,
constant, tawny redness of the eyeball, made up of a coarse, reticulate conjunc-
tival injection, combined with an evident ciliary injection. In such doubtful
cases the diagnosis can be established only by the history, the specially char-
acteristic features of which are the itching and the dependence of the symp-
toms upon the external temperature.

In severe cases the growths upon the limbus sometimes reach a considerable
extent. They may even go entirely round the cornea, so that the latter is en-
circled by a high, hard wall. In two cases I have seen the cornea itself quite
extensively attacked by the morbid process. The first case was that of a six-
ten-year-old boy, in whom a layer resembling a pannus, but pale, gelatinous-
looking, and devoid of vessels, shot out over the cornea from the thickened
limbus. In spite of all attempts to check by therapeutic measures the progress
of the growth, the whole cornea was ultimately covered by it, and remained
permanently clouded. In the second case, a Greek of thirty years of age, an
analogous growth took place on the cornea of both eyes, although it did not
cover the cornea completely, but left free on both sides a small central area,
about corresponding to the size of the pupil. According to Van Millingen, such cases not infrequently come under observation in Constantinople, where the disease appears to occur much more often than it does here.

The second case is also of interest because it concerned a grown man, while the disease ordinarily occurs only in youth. Quite small children are also exempt from it; there is only one instance of a one-year-old child being observed to suffer from the disease.

The growths in the limbus might lead to a confusion of vernal catarrh with conjunctivitis eczematosa, the papillae upon the conjunctiva tarsi to a confusion with trachoma. The growths in the limbus are distinguished from the efflorescences in conjunctivitis eczematosa, apart from their external appearance, chiefly by their unchangeable character during even a prolonged course of observation. The papillary outgrowths are most of all distinguished by their bluish-white coating, which is wanting in papillary trachoma. The history of the case is also of special importance in making the differential diagnosis. The extremely characteristic statements in regard to the fact of a return of the disease every year in the spring often establish the correct diagnosis before we have even looked at the eye. In hay fever, to be sure, there is also generally a return of the conjunctivitis every year in the spring (see page 48). But this recurrence is an acute one, and runs its course within a few weeks, while, on the contrary, the symptoms of vernal catarrh last during the whole of the warm season.

In the treatment of vernal catarrh I have found the instillation of a three-per-cent solution of boric acid and the inunction of a one to two per cent ointment of white precipitate, as recommended by Arlt, to be the most efficient means for alleviating the patient's sufferings. For the relief of the itching I often and with success use Van Millingen's prescription of dilute acetic acid (one drop of acidum aceticum dilutum to ten to twenty grammes of water) instilled into the eye several times a day.

If the patient is one of the kind with pale face and swollen lymphatic glands, the exhibition of arsenic and iron internally is advisable.

**Amyloid Degeneration of the Conjunctiva.**—This rare disease has hitherto been observed only in Russia and the countries adjacent, and was first described by Oettingen in Dorpat. It consists in a peculiar degeneration of the conjunctiva, by reason of which the latter becomes yellowish, translucent like wax, nonvascular, and very friable. With this there is associated a considerable thickening of the membrane, so that it forms large swellings which look like new growths. The affection begins in the retrotarsal fold, and from this passes over to the conjunctiva of the eyeball and of the lids; in the lids the tarsus also is subsequently implicated in the degeneration. In a case that has lasted a long time the following clinical picture is found: The patient can not open the eye because the two lids, transformed into large, misshapen swellings, cover it up. If the lids are drawn as far apart as possible, the waxlike conjunctiva is seen rising up under the form of a rigid prominence all about the corneas, which latter is either clear or is covered by pannus. Thick swellings, belonging to the retrotarsal fold, protrude between the lids and the eyeball; the plica semilunaris also is enlarged until it forms a misshapen mass. These various swellings are so friable that they often tear when an attempt is made simply to separate the lids for examination, although in so doing they bleed.
DISEASES OF THE CONJUNCTIVA.

very little. The disease runs a very chronic course, dragging on for years without any real inflammatory symptoms, until at length the patient is deprived of the use of his eyes by his inability to open the misshapen lids.

Microscopic examination has shown that the degeneration of the conjunctiva originates from the subconjunctival cellular tissue. This at first is found to be very abundantly infiltrated with cells (adenoid proliferation). This is followed by the formation in the tissues of dully lustrous, homogeneous bodies, which are called by the name either of amyloid or of hyalin, according to the reaction that they give with stains. Hyalin may occur as a preliminary stage in the development of amyloid; but generally it represents a variety of tissue degeneration (hyaline degeneration of the conjunctiva) distinct from the amyloid, and showing no tendency to pass over into the latter. Hyaline and amyloid degenerations present almost precisely the same clinical picture, so that a positive distinction between the two can be made only by examining excised pieces of conjunctiva. Finally, calcification or ossification may take place in the degenerated mucous membrane.

The disease attacks people in middle life, and ordinarily both eyes are affected. Very frequently amyloid degeneration is preceded by trachoma of the conjunctiva, which, however, should not be regarded as the cause of the affection, inasmuch as the latter can develop in eyes that previously were healthy. The actual cause of the disease is not known. In every instance it is a purely local process, for the individuals attacked by it are sound as far as the rest of the body is concerned, and do not suffer from amyloid degeneration of the internal organs, with which, therefore, amyloid degeneration of the conjunctiva has nothing at all to do.

Medical treatment is powerless against this disease. We must confine ourselves to removing the growths upon the conjunctiva to such an extent that the lids can be opened and vision thus rendered possible. It is by no means necessary, indeed it is not at all advisable, to remove by a radical operation all the diseased parts, since the portion of the growth that is left behind generally atrophies of itself afterward.

VII. TUBERCULOSIS OF THE CONJUNCTIVA.

20. In the conjunctiva tuberculosis ordinarily appears under the guise of ulcers. Tuberculous ulcers are located as a rule in the tarsal conjunctiva. The diseased lid even on external inspection looks thickened. In evertinf the lid there appears upon its conjunctival surface an ulcer which is either covered by grayish-red granulations, or has a yellowish-red, lardaceous-looking base. In its vicinity small gray nodules (tubercle nodules) or outgrowths resembling a cock’s comb are often found in the conjunctiva. The ulcer shows no disposition to heal; on the contrary, it spreads, although it does so very slowly. It may pass over to the conjunctiva of the eyeball; and even the cornea is sometimes covered over by a sort of pannus. In especially severe cases the ulcer does not remain confined to the conjunctiva, but eats through the entire thickness of the lid, so that even on external examination a deficiency of tissue is observable in the lid. Quite early in the disease the lymphatic gland in front of the ear becomes swollen;
afterward, the lymphatic glands about the lower jaw and in the neck also become enlarged. The clinical picture afforded by the disease is thus pretty characteristic, although the diagnosis is to be considered as established only when fragments of tissue have been removed from the ulcer, and tubercle bacilli have been proved by the ordinary methods to exist in them, or when tuberculosis of the iris can be produced in rabbits’ eyes by inoculation with fragments of this sort.

Tuberculosis of the conjunctiva generally attacks only one eye. The patient does not suffer pain; it is only by the swelling of the lid, the purulent secretion, and subsequently by the diminution of visual power, that he is annoyed and made aware of the existence of his trouble. The disease occurs, almost without exception, in young people, and runs an uncommonly chronic course, being often protracted over many years. Even after an apparently radical cure it shows a great tendency to recur, and it can, by infecting the rest of the organism, finally lead to the patient’s death from tuberculosis. The treatment in the cases where a complete removal of all the diseased parts seems still possible consists in the radical excision or curettage of the ulcer with a subsequent thorough cauterization of the raw surface. The wounds made by the operation are strewn every day until they are completely healed with finely powdered iodoform, a remedy which just in tuberculous processes is of particular efficacy. In some cases a cure has been effected by the injection of Koch’s serum.

Tuberculosis and lupus of the conjunctiva are to be looked upon as affections which are identical in their essential character, in so far as both represent ulcerative processes which are produced and maintained by the presence of tubercle bacilli. In fact, the first cases of tuberculous ulcers of the conjunctiva were described as primary lupus of the conjunctiva (that is, lupus of the conjunctiva without any coincident lupus of the skin) (Arlt). The two processes are distinguished only by external points of difference relating to their outward aspect and their course. Thus, as a rule, lupous are distinguished from tuberculous ulcers of the conjunctiva by the fact that they have migrated from the skin to the conjunctiva, and that, like lupus of the skin, they show a spontaneous cicatrization on one side, while on the other the ulcer keeps advancing (see also p. 103).

Tuberculosis of the conjunctiva may be primary or secondary. It is primary if no sign of tuberculosis is present in the rest of the body at the time when the affection of the conjunctiva begins. In that case tuberculosis of the conjunctiva represents a purely local affection which has, without doubt, been excited by direct infection of the conjunctiva. A particle of dust containing bacilli gets into the conjunctival sac, and with its sharp angles produces a small superficial lesion of the conjunctiva which is thus infected (tubercle bacilli, according to the researches of Valude, not penetrating into the conjunctiva when the epithelium is intact). In favor of an infection of this sort is the fact that we see tuberculous ulcers so frequently beginning in the region of the sulcus subtarsalis, where small foreign bodies are most readily retained. Some cases of primary tuberculosis have also been described, which originated in the conjunctiva bulbi and even in the cornea itself.
Primary tuberculosis of the conjunctiva may remain for a long time confined to the latter; indeed, in exceptional cases it may even heal spontaneously. The rule, however, is for tuberculosis to spread from here to the other parts of the organism. This extension may take place by way of the lymphatic circulation, the neighboring lymph glands becoming first affected with tuberculosis. Or, the disease may extend by continuity, the lachrymal passages first and subsequently the nasal mucous membrane being infected by means of the tears which contain bacilli.

Those cases of conjunctival tuberculosis are to be regarded as secondary in which either there is at the same time an evident tuberculosis of the internal organs (especially of the lungs) or in which tuberculosis is transmitted to the conjunctiva from places in its vicinity. A tuberculous affection of the nasal mucous membrane may be transferred to the conjunctiva by way of the lachrymal passages. Not infrequently, therefore, we find conjunctiva, lachrymal sac, and nasal mucous membrane attacked at the same time by tuberculosis, and a careful study of the history of the case and an exact examination generally render it possible to make sure whether the affection has passed down from the conjunctiva to the nose or vice versa.

It is of the greatest importance for the prognosis and treatment to determine whether tuberculosis is confined to the conjunctiva or not. In the former case we would regard the operation of removing thoroughly all the diseased parts as of very great value, since by it the patient may be permanently relieved of his tuberculosis; while in the second case a radical cure is not to be thought of.

Ulcers of the Conjunctiva.—Ulcers of the conjunctiva, besides occurring as a result of tuberculosis, are also observed in the following conjunctival affections:

(a) As one of the symptoms of a conjunctivitis, an example being the minute ulcers originating in the efflorescences of conjunctivitis ecematosa or those which have given its name to the pustular form of catarrh.

(b) After the separation of necrotic portions of the conjunctiva, as in diphtheria, or after burning of the conjunctiva with heat or caustics. Here belong also the eschars produced artificially by the use of too strong applications.

(c) As a result of exanthemata; ulcers, for instance, which are derived from a variolous pustule or from the rupture of a bulla of pemphigus upon the conjunctiva.

(d) Upon the tarsal conjunctiva there is quite often found a small raw spot, from which rises a little mass of granulations. Here we have to do with a chalazion which has broken through on the inner side of the lid. As a rule, a slender sound can be introduced through the granulations into the cavity of the chalazion.

(e) I have seen in some cases on the conjunctiva of the eyeball or the plica semilunaris, ulcers covered with a thick layer of pus, which were of acute origin. These were accompanied by violent inflammatory symptoms in the conjunctiva, and by swelling of the lids and of the lymph gland in front of the ear, and were associated with quite considerable pain. It seems to me that these should be attributed to infection from without, produced perhaps by the stings of insects or by small infected foreign bodies. Ulcers of this kind may also be produced by the transfer of vaccine virus from a vaccination pustule.

(f) Ulcers which have developed from the breaking down of epitheliomata of the conjunctiva.
(g) Syphilitic ulcers. Generally we have here to do with those losses of substance which have arisen from the breaking down of an initial sclerosis. These, as a rule, are situated near the free border of the lids, but are also observed in the retrotarsal fold and even in the conjunctiva of the eyeball. The transmission of syphilis appears to take place most frequently by kissing, and in small children also by the practice which many nurses have of moistening the agglutinated edges of the lids with saliva in order to open them. Occasionally, also, syphilitic ulcers have been observed, which were produced by the breaking down of gummata of the conjunctiva (Hirschberg). Syphilitic ulcers of the conjunctiva are among the greatest of rarities.

VIII. Injuries of the Conjunctiva.

21. The following varieties of injuries of the conjunctiva, which are of such frequent occurrence, are observed:

(a) Foreign bodies in the conjunctival sac. Small-sized foreign bodies, like grains of dust, particles of coal or of ashes, which so often get into the eye during a railroad journey, the wing cases of small beetles, etc., fall first upon the surface of the eyeball, are brushed away from this spot by the movements of the upper lid, and then generally stick to the inner surface of the latter at a spot not far from its free border, where a shallow furrow, the sulcus subtarsalis, runs parallel to the edge of the lid and catches the foreign body. The pain which such a foreign body causes, and which is often quite considerable, does not originate in the conjunctiva itself, which has very little sensitiveness, but in the cornea, inasmuch as with every movement of the lid the foreign body is carried over the cornea and scrapes it. Hence the pain is absent as long as the eye is kept quietly closed. It is easy to remove the foreign body after the lid is everted.

In other cases, small, sharp-pointed foreign bodies penetrate into the conjunctiva, and may remain there a long time. Grains of powder remain fixed in the conjunctiva of the eyeball without giving rise to any further irritation, and may therefore be left in the conjunctiva. Larger-sized foreign bodies are retained in the conjunctival sac only when they get into the upper retrotarsal fold. In this spot they stay, remaining still even during the act of winking, cause no irritation of the cornea, and therefore produce but little trouble. After some time has elapsed they begin to excite the symptoms of chronic conjunctival catarrh.

(b) Solutions of continuity of the conjunctiva are not rare, and often associated with extensive infiltration of blood (ecchymosis). If the edges of the wound are not too greatly lacerated, the conjunctival wound can be closed with a stitch.

(c) Burns of the conjunctiva and injuries by caustics are pretty frequent. Burns are the result of hot water or steam, hot ashes (especially cigar ashes), exploding powder, flames striking against the eye,
molten metal, etc. Of the injuries by caustics, which may be produced both by acids and by alkalies, those that arise from the action of lime are the most frequent, the lime getting into the eye usually under the form of mortar.

The action of burns is the same as that of caustics; the conjunctiva at the affected spots is destroyed and converted into an eschar. These spots stand out as gray or white patches in the midst of the reddened and swollen portions of the conjunctiva that are not escharotic. The eschars separate in consequence of a delimiting suppuration, and the resultant granulating losses of substance in the conjunctiva heal by a drawing in over them of the neighboring healthy conjunctiva. The final result is therefore always the formation of a cicatrix. This can lead to a diminution in size of the conjunctival sac, or, if of great extent, to adhesion of the lids to the eyeball (symblepharon).

The prognosis of an injury by burns or caustics with regard to the preservation of sight depends primarily upon the condition of the cornea, which, indeed, is always simultaneously affected when there is an extensive lesion of the conjunctiva.

Next, although of secondary consequence, the losses of substance in the conjunctiva itself must be considered, inasmuch as the adhesions that develop from them may cause subsequently more or less disturbance of the function of the eye.

The prime therapeutic requisite, when we get an eye under treatment a short time after it has been injured by caustics, is the complete removal of any corrosive substance that may still be present. We remove solid particles with a pledge of linen or with forceps, and then wash the conjunctival sac out thoroughly. For this latter purpose we use, as far as possible, such solutions as shall neutralize the corrosive substance or render it insoluble, and so put a stop to its injurious action. In the case of caustic alkalies we do not use water, but milk. In burns produced by lime our best plan is to wash the eye out with oil and afterward to drop in a concentrated solution of sugar, since cane sugar forms with lime an insoluble compound.

In the further course of an injury produced by burns or caustics, it is incumbent upon us to restrain the subsequent inflammation by means of cold compresses, atropine, the application of a bandage, etc. After the separation of the eschars, our aim must be to confine the resulting adhesions within the smallest possible limits. For this purpose we repeatedly draw the lids away from the eyeball in order to prevent the adhesion of the two opposite raw surfaces. If the loss of substance extends so far as to implicate the retrotarsal fold, an adhesion between the lid and eyeball, starting from the fornix (symblepharon posterius), can not in any way be avoided. Such an adhesion must be removed, as far as can be done afterward, by operative measures.
Sometimes foreign bodies are introduced into the eye purposely. Chief among these thus used are what are called crab’s eyes—the *lapides cancrorum*. These are flat, calcareous concretions derived from the stomach of the crab, which are in great favor among the laity as a means of removing foreign bodies from the eye. The crab’s eye is introduced between the lid and the eyeball, and then is pushed across the cornea, carrying with it, it may be, mechanically any foreign body that chances to be there.* Sometimes it happens in the performance of this manipulation that the crab’s eye slips into the superior fornix and remains there unnoticed. We may then find it there months or even years afterward, entirely imbedded in the outgrowths of the conjunctiva, which has undergone chronic inflammation.

Foreign bodies, such as sand, ashes, and the like, are also intentionally introduced, for the purpose of simulating an eye disease, into the eye, where they set up a conjunctival catarrh.

With regard to the presence of caterpillar’s hairs in the conjunctival sac, see § 74 (Ophthalmia nodosa).

After the action upon the eye of irritant substances, consisting either of acrid vapors or of liquids which are injected into it, an acute traumatic conjunctivitis is produced, evidenced by intense reddening of the conjunctiva with great photophobia, lachrymation, and pain, with which is associated in violent cases an edematous swelling of the lids. A similar picture is presented by that variety of conjunctivitis which occurs after the action of intense light upon the eye, as, for example, after dazzling by the reflection from snow (snow blindness), or by the electric arc light (ophthalmia electrica). In violent cases of this sort there are found, besides the inflammation of the conjunctiva, contraction of the pupil and also slight opacities and erosions of the cornea. These symptoms, like the erythema of the skin occurring as a result of insolation, are produced by the action of the ultra-violet, chemically active light rays (Widmark). These cases of traumatic conjunctivitis, in spite of the violent symptoms which they present in their beginning, generally get well within a few days without further bad results.

IX. Pterygium.

22. Symptoms and Course.—A pterygium is a triangular fold of mucous membrane which extends from the conjunctiva of the eyeball to the cornea, either at the inner or the outer side of the latter (Fig. 30). The apex of the triangle lies in the transparent portion of the cornea, and is solidly and immovably united to it. The base of the triangle spreads out in the conjunctiva of the eyeball, and passes into it without there being any sharp line of division between the two. The apex is called the head, the base the body, of the pterygium. The part that lies between the two and corresponds to the margin of the cornea is the neck of the pterygium. Here the limits of the fold of conjunctiva are the most sharply defined, as its borders are rounded in such a way that a small sound (§, Fig. 30) can be pushed beneath them.

---

* [In this country eyestones (the flat opercula of certain mollusca) are used for the same purpose.—D.]
DISEASES OF THE CONJUNCTIVA.

for a short distance. A pterygium of recent origin is succulent, and abounds in vessels which run converging from the base to the apex and impart to the pterygium its red color. In fact, from its similarity in form and vascularity (venation) to the wings of many insects (Hymenoptera), the name of pterygium is derived.* The fold of conjunctiva forming the pterygium is tightly stretched, so that there are produced a number of radially disposed furrows or flutings; furthermore, in pterygia which are situated at the inner side of the eye the plica semilunaris is often quite obliterated and is included in the body of the pterygium (Fig. 30).

In the course pursued by a pterygium two stages must be distinguished. In the first the pterygium keeps on gradually growing, for years it may be, toward the center of the cornea, which it may finally reach or even pass (progressive pterygium). Finally, the pterygium comes to a standstill so as to remain permanently attached to the same point upon the cornea (stationary pterygium). Whether in any given case we are dealing with a progressive or a stationary pterygium is determined mainly by the character of the apex of the growth. In the progressive stage this appears surrounded by a gray non-vascular zone which looks thick and gelatinous. In a stationary pterygium this marginal zone is found to be thin and cicatricial looking and the whole pterygium is thin, pale, nearly destitute of vessels, and tendinous.

Pterygium occurs only in that part of the cornea corresponding to the interpalpebral fissure. It is found most frequently on the inner side of the cornea; when there is one in this spot already another may form on the outer side also. The two pterygia may even meet in the center of the cornea. A genuine pterygium is practically never observed at the upper or the lower margin of the cornea; on the other hand, it is not infrequently the case that both eyes are attacked simultaneously by pterygium, so that we sometimes see patients who have four pterygia, one on the outer and one on the inner side of either cornea.

Among the injurious results which a pterygium entails, the worst is the damage done to the eyesight. This begins to be produced as

* From πτερύγιον, the diminutive of πτερόν, a wing.
soon as the point of the pterygium projects into the pupillary area of the cornea, and it increases in proportion as the point approaches the center of the latter. Moreover, pterygium by the tension to which it gives rise often causes a condition of irritation in the eye, as is shown by the marked injection and succulence (catarrhal inflammation) of the pterygium itself. In addition, the membrane, particularly if very much reddened, forms a striking disfigurement and can also cause a restriction of the mobility of the eye. If, for example, a pterygium is situated on the inner side of the cornea and the eye is meant to be turned strongly outward, the eye may be restrained in its movement by the tension of the pterygium, and therefore fail to move laterally as far as the other or healthy eye, so that binocular diplopia may be produced in consequence of this faulty placing.

Etiology.—A pterygium is nothing but a fold of conjunctiva drawn up over the cornea and fastened to it. It originates from the pinguecula, the degenerative process which exists there making its way into the limbus, and then gradually upon the cornea itself. The pinguecula, therefore, grows up, as it were, over the cornea, and in so doing draws the conjunctiva after it. Since the pterygium originates in the pinguecula, it is evident why, like the latter, it should occur only at the inner and outer margins of the cornea. And as the pinguecula develops in consequence of the injurious influences which the conjunctiva in the region of the palpebral fissure is exposed to in the course of years, the like is true of pterygium and in a still greater degree. Hence it is found only in elderly people,* and in them especially when they are much exposed to wind or dust, as in the case of country people, coachmen, masons, stonecutters, etc., while among the well-to-do classes pterygium belongs among the rarities. The forcible traction which the conjunctiva exerts upon the cornea explains the triangular form of the fold, its incurved margin, and its great tension in a horizontal direction.

Treatment.—The treatment of pterygium consists in its ablation by Arlt's method. With a toothed forceps we grasp the pterygium at its neck, where the incurring of its margin permits it to be partially lifted from its bed. Starting from this point, we carefully dissect off the head from the cornea, upon which it lies, keeping strictly to the line of division between the tissue of the pterygium and the cornea. We must be particularly careful to remove thoroughly the gray, gelatinous zone at the apex of the pterygium, scraping or curetting the surface when necessary to complete the abscession. When the whole of the head as far as the limbus has been separated from the cornea we circumscribe this segment by carrying from the upper and lower margins of the neck

[* But in this country at least is observed in comparatively young persons. Thus I have seen it in a boy of nineteen.—D.]
two converging incisions into the body of the pterygium (the dotted line, Fig. 30). In this way a rhomboidal piece, containing the head and part of the body, is excised and a raw surface remains, one portion of which lies in the cornea, the other in the conjunctiva of the eyeball. This last is covered by uniting the upper and lower margins of the section by means of one or two interrupted sutures. The wound in the cornea heals by a cicatrix forming over it, in consequence of which a permanent opacity remains. Care in sewing up the conjunctival wound is of the greatest importance, especially in the neighborhood of the limbus, as otherwise the conjunctiva grows anew over the raw surface of the cornea, and thus the pterygium recurs. However, even after carefully performed operations relapses are not infrequent, and then a second removal is required.

Ablation is indicated in every case of progressive pterygium. Even though the pterygium is still small, we can not be sure that it will not grow on into the pupillary area of the cornea. Hence we prefer by performing ablation to guard in time against injury to the eyesight. If the pterygium has approached sufficiently near the center of the cornea to cause disturbance of vision, this disturbance is indeed rendered less by the operation of ablation, but is not completely done away with, since those spots of the cornea, which were occupied by the pterygium, never again become perfectly transparent. In any case, the associated symptoms of irritation, the restriction of mobility, and the disfigurement are removed by the ablation. A stationary pterygium does not necessarily require ablation; in this case we shall be guided mainly by the wishes of the patient with reference to the removal of the disfigurement, etc.

The older writers distinguished a pterygium crassum (vasculosum, carneum, sarcomatosum) and a pterygium tenue (membranaceum). The former corresponds to a catarrhally inflamed, and hence therefore red and thick pterygium, the latter to a stationary pterygium, which has become thin and tendinous.

A pterygium has been shown to be histologically identical with the conjunctiva of the eyeball, of which indeed it is only a drawn-out and projecting fold. It consists mainly of fibrillar connective tissue, which is covered with the epithelium of the conjunctiva. The apex of the pterygium, however, is often covered by the corneal epithelium, so that the pterygium may be said to force its way underneath the latter. In the tissue of the pterygium are found new-formed tubular glands and also larger spaces lined with epithelium; from both of these small cysts may develop. Bowman’s membrane, where it lies beneath the pterygium, is destroyed; indeed, the uppermost lamellae of the cornea even are replaced here and there by the tissue of the pterygium. This explains why, even after the ablation of the pterygium, the cornea does not regain its normal transparency.

Arlet deserves the credit of having made the operation for pterygium a success by demonstrating the necessity of closing the conjunctival wound. Previously people had been satisfied with simple ablation, and had so frequently
had recurrences after this operation that with many it had altogether fallen into disrepute. In very broad pterygia it is difficult or impossible to unite the edges of the conjunctival wound by a suture. In that case liberating incisions are made through the adjacent conjunctiva in order to facilitate the process of drawing it down; and, instead of cutting off the point of the pterygium, it may be sewed into the gaps which have been made by the liberating incisions.

**Pseudo-pterygium (Cicatricial Pterygium).**—Sometimes we observe as a result of inflammatory processes fixation of a fold of conjunctiva upon the cornea, giving a picture similar to that of true pterygium. For example, there may be an acute blennorrhoea of the conjunctiva, with great chemosis, and a pretty large marginal ulcer of the cornea. The chemotic protuberance of the conjunctiva becomes applied to the surface of the ulcer and adheres to it. After the inflammation has abated, the swelling of the conjunctiva goes down, the chemotic protuberance disappears; but, in the spot where union of the cornea has taken place, the conjunctiva remains permanently fixed to the latter. We then see a triangular fold formed of conjunctiva extending over the limbus and upon the cornea, and attaching itself there. Ordinarily, at that part of the fold corresponding to the limbus a fine sound can be passed all the way beneath the fold, a sign that the latter is adherent to its bed at its apex only and not throughout its whole extent. This is the most important distinguishing mark between a true and a false pterygium; another consists in the fact that a pseudo-pterygium does not keep on growing over the cornea, as a true pterygium does, but remains steadily fixed to the spot at which it first became adherent. In its origin and its behavior a pseudo-pterygium is more like a symblepharon than a genuine pterygium.

Pseudo-pterygia are observed not only after acute blennorrhoea, but also after diphtheria, burning by heat and by caustics, prolapses of the iris, the removal of new growths, etc. It is evident that they may develop not only at the outer and inner sides, but at any side whatever of the cornea. The pseudo-pterygia remaining after acute blennorrhoea are usually found above, those produced by burns, etc., most frequently at the lower part of the cornea (the region corresponding to the palpbral fissure).

Another kind of pseudo-pterygium is that which develops after a chronic superficial ulceration of the marginal portions of the cornea (keratitis marginalis superficialis, Fig. 51). Owing to the cicatization which follows the ulcerative process the conjunctiva is steadily drawn up over the cornea. These pseudo-pterygia are very similar to true pterygia, for like the latter they keep on growing slowly over the cornea, and unlike other pseudo-pterygia are not completely perforate at the limbus. The differential diagnosis between these and the true pterygia can be made only in case we find the ulcerative process or its sequelæ (a superficial corneal opacity) upon the marginal portions of the cornea not implicated in the pterygium.

Small pseudo-pterygia may without disadvantage be left undisturbed; larger ones we generally remove in the same way as genuine pterygia, and unite with stitches the wounds left in the conjunctiva. In those cases in which the pseudo-pterygium is not adherent to the surface of the eyeball at the spot corresponding to the limbus, ablation and the use of the suture may be dispensed with; it is sufficient simply to free the point of the pseudo-pterygium from the cornea, upon doing which the former retracts of itself and disappears by a process of atrophy.
It sometimes happens that an old pannus which has already been transformed into connective tissue is united to the subjacent cornea only by loose cellular tissue, and thus acquires a certain freedom of movement, so that it can be shifted this way and that upon its bed along with the conjunctiva of the eyeball. In this way too, then, a picture similar to that of a pterygium may be produced.

X. Symblepharon.

23. Symptoms.—By symblepharon* we understand a cicatricial adhesion between the conjunctiva of the lids and the conjunctiva of the eyeball. In that case, when we attempt to draw the lid away from the eyeball, we observe that in one or more places bands extend from the inner surface of the lid to the surface of the eyeball, and that these become tightly stretched and prevent us from drawing the lid away completely. These bands generally look tendinous, more rarely fleshy, and may be attached not only to the conjunctiva sclera, but also to the surface of the cornea itself. If the adhesion between the two conjunctival surfaces extends so far peripherally as to reach into the fornix, we call this symblepharon posterior (Fig. 31 B). If the adhesion does

not extend as far as this, so that the cicatricial bands stretch like a bridge between the lid and the eyeball, and we can introduce a sound beneath them and carry it along the fornix between the lid and the globe, it is then called symblepharon anterior (Fig. 31 A). This distinction has been established for practical reasons, inasmuch as symblepharon anterior can be readily cured by an operation, while symblepharon posterior can be cured with difficulty or not at all. Symblepharon totale is a total adhesion between the lids and the eyeball—a condition which occurs but rarely.

Etiology.—Symblepharon develops whenever two opposed spots of the conjunctiva of the lid and of the eyeball have raw surfaces which

* From σύν, together, and βλέφαρον, eyelid.
come into contact with each other, and in consequence become adherent. Such a process of adhesion results of necessity when the two raw surfaces extend up into the fornix and there pass into each other, since two raw surfaces which meet at an acute angle always begin to unite at this angle of junction. Causes which can give rise to the formation of raw surfaces upon the conjunctiva are burns by the action of heat, burns from caustic substances, diphtheria, operations, ulcers of all kinds, etc.

The expression symblepharon is also employed in a somewhat different sense to denote the contraction of the conjunctiva which occurs as a result of its gradual shrinking, as, for instance, after trachoma (see page 71). In this case it is not a question of an adhesion between two raw conjunctival surfaces, but of a gradual diminution in size of the conjunctival sac. The folds of the region of transition are first smoothed out; the conjunctiva of the lid extends directly to the eyeball (Fig. 31 C), and whenever the lid is drawn away is made tense and drawn out into transversely disposed folds. In advanced cases the conjunctival sac is converted into quite a shallow groove between the eyeball and the lid. Since contraction of the conjunctival surface in consequence of shrinking always makes itself first apparent by disappearance of the retrotarsal fold, all these cases belong to symblepharon posterius. This kind of symblepharon is observed principally after trachoma; furthermore, in the rare cases of pemphigus of the conjunctiva.

Very light cases of symblepharon produce no bad results worth mentioning. When there are more pronounced adhesions, the excursions of the eye are hindered, and thus possibly diplopia may be produced just as in the case of pterygium. Inasmuch as with the movements of the eye traction is made at the site of the adhesions, the eye gets to be in an irritated condition. If the adhesions extend into the region of the palpebral fissure they become disfiguring, and if they extend as far as the cornea they may injuriously affect the sight. Sometimes the lids are so fastened down by extensive adhesions that their complete closure is impossible, and lagophthalmus is produced with its consequences that are so baneful to the cornea. Total symblepharon is obviously associated with complete blindness (or at most with quantitative perception of light).

Treatment.—This involves an operation. Cases of symblepharon anterius are easily cured. We separate the adhesions between the lid and eyeball with great care, so as not to cut into the sclera or the tarsus. When the lid has been set free, we must then make it our business to prevent a readhesion of the freshly made raw surfaces, and to make each of these cicatrise by itself. This is effected by repeatedly drawing the lid away from the eyeball, and also by interposing a pledget dipped in oil or smeared with ointment between the lid and the eye.
In *symblepharon posterius* we also begin by separating the adhesions as far back as the fornix. We then see, when we have drawn the lid away from the eyeball, two corresponding raw surfaces, one in the eyeball, the other on the lid (Fig. 32). These two opposed surfaces, which meet at the fornix, would soon reunite, beginning at the fornix, if we did not take care to have one of the raw surfaces covered with conjunctiva, so that a place coated with epithelium lies opposite to the raw surface remaining. The wound on the eyeball is the one we select for covering over, because the conjunctiva of the eyeball can readily be displaced, while the conjunctiva of the lid is adherent immovably to the tarsus. We loosen the conjunctiva of the eyeball on both sides of the wound, draw it down over the latter, and unite it by sutures. Especial care must be devoted to uniting the wound in the neighborhood of the fornix. If, after dividing the adhesions, the raw surface upon the eyeball is so large that it can not possibly be covered by conjunctiva, reunion of the symblepharon will inevitably result. Hence, cases of extensive symblepharon posterius, and obviously also cases of symblepharon totale, are incurable. The same is true of symblepharon induced by the gradual shrinking of the conjunctiva.

We sometimes also operate for symblepharon in the case of a blind and shrivelled eye so as to be able to introduce an artificial eye over it.

Different methods have been devised to enable us to operate for cases of symblepharon posterius with extensive adhesion. Himly, in an operation analogous to that for syndactylism, first made a preliminary perforation of the adhesion along the fornix, and carried a lead wire through the canal so formed. The latter, after the wire has been in it a pretty long time, becomes covered with epithelium (like the canal made by piercing the lobule of the ear for earrings), so that the symblepharon posterius is changed into a symblepharon anterior, and can be operated upon, like the latter, by simply separating the adhesion. Some have attempted to cover a large loss of substance upon the eyeball, caused by the removal of a symblepharon, by making the conjunctiva that is to be drawn up over it movable by means of liberating incisions, or by fashioning pedicellate flaps out of conjunctiva and attaching them to the wound (Teale, Knapp). Others (Stellwag, Wolfe) have grafted nonpedicellate flaps formed out of bits of mucous membrane from other localities (the conjunctiva of the other eye, the mucous membrane of the lips, or that from the mouth or vagina, or even the mucous membrane of animals) upon the raw spot, and have obtained union. Others again, for covering a loss of substance, take the external skin
either in the form of small flaps grafted upon the surface, or as pedicellate flaps which are thrust in between the eyeball and the lid through a fenestra cut through the latter (Kuhnt, Snellen). Generally speaking, we are obliged to acknowledge that in extensive adhesions all methods have but scanty results to offer, since the symblepharon commonly returns on account of the subsequent shrinking of the conjunctiva.

XI. Xerosis.

24. Symptoms.—Under the name of xerosis* conjunctivae we designate an alteration of the conjunctiva, the essential character of which is that the latter is dry. The surface of the conjunctiva at the xerotic spots shines like fat and is of a whitish color, and looks either like epidermis or as if it were covered with dried foam. In such places the conjunctiva is thicker, less pliable, and lies in stiff folds. The tears flow over the diseased spots without moistening them. An analogous change is also observed in the cornea, the surface of which looks dull, lusterless, and dry, while the parenchyma of the cornea at the same time is found to have lost its transparency (xerosis corneæ).

Etiology.—The cases in which xerosis is observed are divided into two groups. In the first, xerosis is the result of a local affection of the eye; in the second, it is an accompanying symptom of a general disease.

Xerosis resulting from a local affection of the eye is found:

(a) In cicatricial degeneration of the conjunctiva. It is observed most frequently as the final outcome of trachoma, and also, but more rarely, after diphtheria, pemphigus, burns, etc. It begins in isolated spots, but may ultimately spread over the entire conjunctiva, and over the cornea also. In the latter case, since the xerotic cornea grows opaque, the eye becomes blind. This form of xerosis is incurable.

(b) Deficient sheltering of the conjunctiva, so that the latter is constantly in contact with the air, can likewise lead to xerosis. This occurs in ectropion and in lagophthalmus (incomplete closure of the lids). In the former case the exposed portion of the tarsal conjunctiva, in the second case that part of the scleral conjunctiva and of the cornea lying in the course of the palpebral fissure, becomes covered with a thickened, dry, epidermoid epithelium, by means of which these parts protect, so to speak, their deeper layers against desiccation. In such cases assistance can be rendered only when it is possible (by operative interference) to provide the exposed conjunctiva or cornea with its normal shelter again.

Xerosis, resulting from a general disease, occurs under a light and a severe form:

(a) The light form is associated with hemeralopia (night blindness). Simultaneously with the peculiar disturbance of vision (see § 104) there

* From ἅρπας, dry.
are found on the outer and inner side of the conjunctiva bulbi small triangular spots, which are covered with what resembles fine dried foam, and which are not moistened by the tears (Bitot). This form of the disease attacks adults.

(b) The severe form is associated with keratomalacia (see § 38). Here also xerosis makes its appearance first in the region of the conjunctiva corresponding to the palpebral fissure, but subsequently it spreads to the cornea, which breaks down into pus. The disease attacks children only, who often die with the symptoms of a severe general disease. It is conjectured that the light and the severe form are but different grades of one and the same disease, the essential nature of which is still unknown to us. The xerosis, which in these cases attacks a hitherto perfectly healthy conjunctiva and cornea, must be looked upon as a consequence of the disturbance of nutrition produced by the disease. Its particular importance to us, therefore, is as a symptom of this general affection, against which, accordingly, treatment must be particularly directed.

The separation, first made by Cohn, of xerosis into a variety dependent upon local causes and one caused by a general disease corresponds nearly to the ordinary division into xerosis parenchymatosa and xerosis epithelialis. In local xerosis the mucous membrane is diseased in its deeper as well as in the superficial layers (xerosis parenchymatosa); while in xerosis produced by a general disturbance of nutrition the change affects the epithelium only (xerosis epithelialis). Many also make a distinction between xerosis partialis (sive glabra) and xerosis totalis (sive squamosa).

The anatomical changes which form the basis of xerosis principally affect the epithelium. The uppermost layers of epithelial cells undergo keratosis, the protoplasm of the succeeding layers containing abundant granules of keratohyalin (Fig. 33). In consequence the epithelium appears thickened, whitish, cloudy, and epidermoid. Moreover, it is covered with the sebunlike secretion of the Meibomian glands, and hence assumes a fatty character, in consequence of which the lachrymal fluid does not adhere to it. To this circumstance the peculiar dry appearance is chiefly owing, for if the diseased spots are freed from their fat by the application of soap they become capable of being wetted by the tears (Leber).

Reymond and Colomiatti and shortly afterward Kuschbert and Neisser described as occurring in xerosis a special micro-organism, the bacillus of xerosis, which is extremely like the diphtheria bacillus. This is found under the form of short rods adhering in great quantities to the surface of the epithelial cells. It is, however, neither the cause of xerosis, nor indeed characteristic of the latter. It occurs frequently in the conjunctival sac at all times, and simply
seems to find in the dying epithelium of the xerotic spots a specially favorable 
soil for growth, so that it develops there in great quantities (Fig. 33.) In any 
case, it can not be the special exciting cause of the disease; on the contrary, we 
must assume that coming from the air it gets upon the conjunctiva, and finds in 
the epithelium of the latter a soil favorable for its growth, whenever this epitel-
ethelium has had its nutrition injuriously affected.

What part does the lacrimal secretion play in xerosis? The real cause of 
the dryness of the conjunctiva is not, as has been believed, the deficiency of 
tears. In the beginning of the disease, as long as only small isolated spots of 
the conjunctiva are xerotic, we often find actually an increase in the lacrimal 
secretion. Per contra, xerosis of the conjunctiva has never been known to 
occur after extirpation of the lacrimal gland. The real cause of the dryness 
of the conjunctiva is rather the fact that the tears do not adhere to it. Never-
theless it is true that in advanced xerosis the lacrimal secretion diminishes, 
and may even disappear altogether, for, owing to the marked shrinking of the 
conjunctiva, the excretory ducts of the lacrimal gland, which empty in the 
upper retrotarsal fold, are closed, and as a result of this, atrophy of the gland 
itself ensues. The patients, when led to weep by their melancholy state, feel 
only a sensation of fulness in the eyes; the tears do not come. Arlt found in 
a case of xerosis obliteration of the efferent ducts of the lacrimal gland pro-
duced by the great shrinking of the conjunctiva, the lacrimal gland itself 
being diminished to one third of its normal volume and transformed into a 
tissue resembling fat. In that form of xerosis also which occurs in connection 
with keratomalacia there is a striking deficiency in the lacrimal secretion; but 
here probably we have to do with a nervous disturbance, namely, with an ab-
sence of the reflex lacrimal secretion, due to depression of the general nu-
trition, and particularly of the nervous functions. In a case of this sort Cirin-
cione has found on autopsy an inflammation of the ciliary ganglion and ganglion 
Gasser.

XII. EXTRAVASATION OF SERUM AND BLOOD BENEATH THE 
CONJUNCTIVA.

25. Edema and also extravasation of blood, if of any great extent, 
are observed only in the conjunctiva of the eyeball and in the retro-
tarsal fold, as these, on account of the laxity with which they are fixed to 
the subjacent parts, can be readily lifted up over quite large areas 
by fluid. The same thing does not occur in the conjunctiva tarsi, because 
it is too intimately adherent to the underlying cartilage.

In the conjunctiva of the eyeball we meet with both inflammatory 
edema (edema calidum), occurring in inflammations of the eyeball or 
the organs near it, and with non-inflammatory edema (edema frigi-
dum), resulting from simple transudation of fluid. Since edema, as a 
rule, is of importance merely as a symptom of some other affection, 
treatment will have to be directed to the latter. Should it be desirable 
to take any special measures against the edema itself, the most suita-
bale means for this purpose would be a pressure bandage, or, in the case of 
a tense edema, scarification of the conjunctiva.
The exudation of blood beneath the conjunctiva of the eyeball is known as *ecchymoma subconjunctivale*. We then see a spot of varying extent and of a vivid-red or dark-red color; sometimes the whole conjunctiva sclera is suffused with blood. Ecchymosis is easily distinguished from an inflammatory redness of the conjunctiva by its uniformly red coloration, in which no network of vessels can be recognized, and also by its sharp limitation from the unsuffused portions of the conjunctiva, which are ordinarily quite normal and uncolored.

Ecchymoses of the conjunctiva develop after injuries and operations upon the conjunctiva (particularly after squint operations), and, furthermore, in violent inflammations, especially in catarrhal ophthalmia. Spontaneous suffusions in an otherwise healthy conjunctiva are frequent in old people, whose blood-vessels have brittle walls, the rupture of the vessels being often occasioned by great bodily exertion, or by coughing, sneezing, vomiting, great straining, etc. In children also spontaneous ecchymoses of the conjunctiva are observed, chiefly after whooping-cough. A special symptomatic significance belongs to those ecchymoses which develop, to all appearance spontaneously, after an injury to the skull. Here we have to do with cases in which a fracture of the base of the skull has occurred, and the blood, as it escapes, gradually oozes forward through the orbit until it lodges beneath the conjunctiva (see § 132).

Subconjunctival ecchymoses become absorbed in from a few days to a few weeks without producing any further serious consequences, and in themselves require no treatment whatever. We generally prescribe compresses of lead water, more for the purpose of appeasing the patient than of obtaining a more speedy resorption.

*Inflammatory oedema* is associated with the most various inflammatory affections, such as inflammations of the lids (erysipelas, hordeolum), of the margin of the orbit (periostitis), of the lacrimal sac (dacryocystitis), of the conjunctiva (particularly acute blepharorrhoea), of the eyeball itself (purulent keratitis, irido-cyclitis, purulent choroiditis, and panophthalmitis), and, furthermore, of structures posterior to the eyeball (tenonitis, phlegmon of the orbit). Inflammatory oedema, as also exudations of serum or of blood, is especially apt to occur in old people, whose conjunctiva is eminently extensible and so loosely attached that we observe oedema in this situation sometimes with trifling conjunctival catarrhs. We commonly find the oedema most pronounced in the region of the palpebral fissure, because here the counter-pressure exerted by the lids is wanting; and not infrequently an oedematous fold of conjunctiva is found in the palpebral fissure, pinched off, so to speak, from the rest by the lids.

*Non-inflammatory oedema* is caused by hydremia or by stasis. In the former case it occurs as a symptom of albuminuria, and sometimes then recurs a number of times, but each time rapidly disappears again (oedema fugax). A peculiar sort of oedema is the *filtration oedema* of the conjunctiva of the eyeball. It is observed after operations or injuries which have produced a perforation in the most anterior sections of the sclera, and arises from the fact that the aqueous
from the anterior chamber oozes between the incompletely closed edges of the wound and lodges under the conjunctiva. Accordingly, when cicatrization occurs, the edema commonly disappears. But if a minute opening remains in the sclera, the edema too persists—a condition which is designated as cystoid cicatrization (see Fig. 65). Edema from filtration is found either in the region of the fistulous opening or in the lower part of the bulbar conjunctiva, the fluid sinking in obedience to gravity.

Not infrequently we see in the scleral conjunctiva small bright vesicles, arranged in a row like a string of pearls, or even joined so as to form longer sausage-like swellings. Here we have to do with dilated lymph vessels that are filled with a clear liquid—that is, with lymphatic ectasia. These occur both in inflammation of the conjunctiva and also when the conjunctiva is perfectly healthy.

Eccymoses of the conjunctiva, free from danger as they are, terrify the patient by their conspicuous look, especially if, as is frequently the case, they spread still further in the next few days after their first development. In these cases the pinguecula stands out with peculiar distinctness, as a bright, white, or yellowish spot upon the red substratum. On the side of the transparent cornea the eccymosis is limited by a narrow gray border. This is the inner margin of the limbus, which is too closely adherent to the cornea to be lifted up by the blood. In eyes with blue iris, the latter often has its color apparently changed to green in the spot corresponding to the ecchymosis. This is caused by the extension of the blood in a very thin layer (in which it appears green) between the lamellae of the cornea, so as to make the iris which lies behind it seem green.

The entrance of air beneath the conjunctiva of the eyeball (emphysema) is sometimes observed simultaneously with the escape of air beneath the skin of the lids or into the orbital tissue (see § 114).

XIII. Tumors of the Conjunctiva.

26. Both malignant and benign tumors occur in the conjunctiva. The most important form of benign tumors is the

Dermoid Tumor.—This is a flat growth of solid consistence, which, so to speak, straddles the margin of the cornea, being situated partly in the conjunctiva and partly in the cornea, with which latter it is immovably connected. It most frequently occurs on the external (temporal) side of the cornea (Fig. 34). Its color is white or reddish, its surface epidermoid and often dry. It is sometimes covered with fine down, or even with longer hair. Histological examination shows that the growth possesses the composition of the external skin; it consists of a stroma of connective tissue, covered with epidermis, and contains hair follicles, sebaceous glands, and sweat glands. It is, so to speak, an island of skin upon the surface of the eyeball.

Dermoid tumors are always congenital, and are frequently found along with other congenital anomalies, like congenital harelip or wart-like appendages of skin in front of the ears. Sometimes they grow still larger after birth. According to Remak, their development, as in
the case of the allied dermoid cysts (see § 134), depends upon a foetal invagination of the external germ layer. On the other hand, Von Duyse conjectures that they owe their origin to a circumscribed adhesion between the amnion and the surface of the eyeball. The adhesion subsequently is drawn out into the form of a cord, and at length breaks quite in two, its point of attachment to the eye remaining behind as a dermoid tumor.

The chief harm that dermoids do is to produce a considerable disfigurement. If they are large, and especially if they are covered with hair, they cause mechanically an irritation of the eye, and also interfere with vision, in so far as they encroach upon the pupillary area of the cornea. They are removed by a simple process of ablation, which consists in separating the tumor as exactly as possible from the subjacent cornea and sclera. The resulting wound in the cornea should, as far as possible, be covered by drawing the adjacent conjunctiva over it. That portion of the cornea upon which the tumor was formerly situated remains clouded permanently. If remnants of the tumor have been left, the latter may in part form again.

Of malignant tumors, epithelioma and sarcoma of the conjunctiva occur. These originate ordinarily in the limbus conjunctivae, and thence extend both into the conjunctiva and into the cornea.

Epithelioma of the conjunctiva forms a non-pigmented, flat, sessile tumor with a broad base. It remains for a long time confined to the superficial layers of the conjunctiva and cornea, its extension in the latter often resembling a pannus. The tumor shows a great tendency to superficial ulceration.

The sarcomata that start from the limbus are generally pigmented (melano-sarcomata). In opposition to an epithelioma, they grow more in height than in breadth, and are attached to the substratum by only a slender base. They hence form dark-colored, very prominent mushroomlike growths, which often overlie a great part of the cornea, although, if we lift them up, we find the cornea beneath for the most part normal.

Both epitheliomata and sarcomata develop in advanced life, and,
if they are not removed, spread steadily; sarcomata especially grow, until at length they form gigantic tumors. At last the patient succumbs from exhaustion, or from metastases which form in the internal organs. The tumors must therefore be removed as early and as radically as possible. As long as they are still quite small and superficial radical removal can be performed with preservation of the eyeball. The tumor is removed as completely as possible, partly with the knife, partly with the sharp spoon, and the spot which it has occupied is thoroughly burnt with caustics, or, still better, with the actual cautery. If complete removal of the growth is no longer possible in this way, the eye, too, must be removed, even though it still possesses visual power.

Of benign growths, the following, although of rare occurrence, are also observed:

Lipoma subconjunctivale forms a tumor, situated upon the upper and outer circumference of the eyeball, between the rectus externus and rectus superior muscle, and appearing of a yellowish color as seen through the conjunctiva. It is of triangular form, the sharply defined base of the triangle looking toward the cornea, while the two sides of the triangle, which are directed to the outer side, pass gradually into the orbital fat. If the tumor is small it ordinarily remains concealed beneath the outer canthus, and can be brought into view only by turning the eye strongly inward (Fig. 34). Larger lipomata are visible in the palpebral fissure even when the gaze is directed straight forward, and hence cause disfigurement; but they do no other harm. Microscopical examination shows that the tumor consists of fat lobules. The conjunctiva that coats it is thickened and of a character resembling skin, and in this regard a lipoma is akin to the dermoids (lipo-dermoid). Like the latter, it is congenital, but sometimes grows to a considerable size at the time of puberty. If it is desired to remove the tumor on account of the disfigurement it produces, we take away from it, after dividing the conjunctiva that covers it, as much of the mass of fat as is visible in the palpebral fissure; a radical removal of all the adipose tissue is unnecessary.

Cysts in the conjunctiva are commonly represented by small vesicles filled with a limpid liquid. Most of these vesicles, and particularly those situated upon the conjunctiva of the eyeball, originate from dilated lymph vessels (see page 124). In the retrotarsal fold cysts occur which take their starting point from Krause’s glands, or from new-formed glands in the conjunctiva (page 43); and there are also cysts that are produced in the conjunctiva by traumaism. Larger cysts situated beneath the conjunctiva are formed by the cysticercus cellulose. The latter is observed for the most part in children or in the young. In such a case the conjunctiva at one particular spot is found permeated with vessels, and forms a nodular protuberance. Underneath may be felt the cyst which, as a rule, can be readily pushed about upon the subjacent parts; in individual cases, however, it is intimately adherent to the subjacent sclera or to one of the ocular muscles. If the cyst has very thin walls, the head of the worm can be recognized as a whitish spot in its interior. It is easy to remove the cysticercus by splitting up the conjunctiva and dissecting out the cyst, which consists of the cysticercus vesicle inclosed in a capsule of connective tissue that has been formed about the animal.
Under the name of polypi of the conjunctiva we understand soft, rarely rather hard, outgrowths attached to the conjunctiva by a pedicle, and having a smooth surface covered with mucous membrane. These originate most frequently in the retrotarsal fold or in the conjunctiva of the lids. As a rule, they are so small as not to be disclosed until the lids are everted; sometimes, however, they are large enough to project out between the lids. Larger polypi are frequently ulcerated upon their surface, as a result of the mechanical injuries to which they are necessarily subjected. In their nature polypi are small fibromata, which thrust the conjunctiva like a sac before them. Their treatment consists in ablation and a subsequent cauterization of their base with the silver-nitrate stick.

Papillomata of the conjunctiva are frequently confounded with polypi, but are distinguished from them by their surface being not smooth, but papillary—that is, nodulated, like a raspberry or cauliflower. They are either provided with a pedicle or are sessile, having a broad base and extending in a flat layer over quite a large section of the conjunctiva. They start most frequently from the region of the caruncle, but can also take their origin from other portions of the conjunctiva, and sometimes several papillomata at once are present in different portions of the conjunctiva. They must be removed very thoroughly, since they are extremely prone to recur.

A third form of tumor, having an external resemblance to polypi of the conjunctiva, are the granulation tumors. These, like polypi, form small, mushroomlike, pedicled tumors. Unlike polypi, however, they are not covered by conjunctiva, but consist of naked granulation tissue. They develop in places where a loss of substance exists in the conjunctiva, whether as a result of ulcers (or even large efflorescences in cases of conjunctivitis eczematosa) or as a result of injuries or of operations (most frequently after tenotomies, at the site of the conjunctival wound, and, after enucleation, at the bottom of the conjunctival sac). In the case of chalazia, also, which have broken through the conjunctiva of the lids, we quite often see a granulation mass growing out of the opening. After existing for some time granulation tumors become more and more constricted at their base by the cicatricial contraction of the surrounding conjunctiva, so that they ultimately fall off of themselves if they have not been previously removed.

The three varieties of tumors above mentioned often contain an abundance of dilated vessels; in fact, some cases of very vascular polypi have been described as pediculated angiomata of the conjunctiva. It is hence easy to conceive how these tumors can readily give rise to repeated hemorrhages, especially if they are ulcerated in spots and are mechanically injured, as, for example, by the rubbing of the lids upon them. Many legends of tears of blood may be referred to this cause.

Angiomata of the conjunctiva are, as a rule, those which were originally situated in the lids and have gradually passed over upon the conjunctiva. Primary angiomata are of rare occurrence in the conjunctiva, and are generally found in the region of the inner angle of the eye. They are as a rule congenital, and increase in size after birth. With regard to their treatment, see Angiomata of the Lids (§ 115).

As regards the malignant tumors, the epitheliomata and sarcomata, we must distinguish between those which originate in the surrounding structures, especially the lids, and secondarily pass over upon the conjunctiva, and those which
DISEASES OF THE EYE.

are from the beginning situated upon the conjunctiva and are hence to be looked upon as primary conjunctival tumors. These latter originate mostly from the limbus. The predilection shown by epitheliomata for the boundary line between the conjunctiva and cornea is to be considered as an analogue of the fact that, in other parts of the body also, epitheliomata occupy by preference those spots where one kind of epithelium passes into another, as, for instance, the boundary line between skin and mucous membrane (anus, lips, margins of the lids, etc.). An additional factor giving rise to the development of epitheliomata at the limbus is probably furnished by the peculiar disposition of the epithelium at this spot, for we find here sometimes, even in the healthy eye, a proliferation of epithelium, the latter growing in the form of conical processes into the depth of the tissue.

Sarcomata of the conjunctiva are, as a rule, pigmented. In this respect they are distinguished from the epitheliomata, although, as an extreme rarity, cases of pigmented epitheliomata do occur. Melanotic sarcomata, as is known, develop in those localities in which pigment is already normally present. They hence occur upon the conjunctiva of the lids, and above all upon the limbus, two divisions of the conjunctiva, which even under physiological conditions contain pigment. At the limbus particularly the quantity of pigment contained is sometimes so considerable in persons of the brunette type that even with the naked eye we notice in it either discrete dark-brown spots or a more uniform brown coloration. Spots of pigment occur sometimes also in other portions of the conjunctiva, both of the eyeball and of the lids, and from these spots melanotic sarcomata may subsequently develop.

It is impossible to make a radical removal of epibulbar epitheliomata and sarcomata and at the same time preserve the eye, in cases in which these tumors have so great an extent superficially that the conjunctiva has to be extensively sacrificed; for in that case there would occur as a result of the operation so extensive a formation of cicatricial tissue, with consequent distortion and fixation of the eyeball, that the latter would become unserviceable for purposes of vision, and it would have been better to extirpate it at the beginning. So, also, the eyeball must be sacrificed in those cases in which the tumor grows down into the depth of the tissues at any one point—a thing which is especially apt to happen along the anterior ciliary vessels. Such an occurrence is often not discovered until after the removal of the superficial growth, or may even not be discovered at all. In the latter case a recurrence in the same locality occurs soon after the apparently radical removal. The following history serves to show the malignancy of these tumors which in the beginning are of such insignificant minuteness:

In the year 1879 a woman, fifty-seven years of age, appeared in the eye-clinic, at that time directed by Arlt, having a melano-sarcoma on the right eyeball. This had developed from a minute red spot which had already existed for a series of years, and which had begun growing larger the year before. It had the dimensions of a large pea, was of reddish-brown color, and was situated in the conjunctiva on the outer side of the cornea. The base of the tumor projected from the limbus somewhat into the cornea, but nevertheless did not extend into the pupillary area, so that the visual power was perfectly normal. I extirpated the tumor by cutting through the conjunctiva at a certain distance from the edge of the tumor, and then removed the latter as carefully as possible from its base. The wound surface thus formed, which lay for the most
part in the conjunctiva and to a smaller extent in the cornea, was scraped, and then the edges of the wound in the conjunctiva were united by a suture. Healing followed by first intention, and for a time the patient remained well. It was not till May, 1886—that is, seven years later—that the patient returned, having again an epibulbar melanoma-sarcoma on the right eye, which, however, this time was situated on the limbus at the inner side of the cornea, and formed a brown tumor half the size of a lentil. The thin cicatrix remaining from the first tumor was still present, quite unchanged, at the outer margin of the cornea; the limbus at the upper and lower margins of the cornea also was quite normal. For this reason it was impossible to regard the melanoma-sarcoma, now situated at the inner corneal margin, as a recurrence of the tumor removed seven years before from the external corneal margin. In fact, it could only be referred to a disposition toward the formation of tumors, inherent in the limbus, so that after the removal of a tumor at one point a similar one developed in another. (The same thing holds good for a case of epithelioma that I observed, which developed simultaneously and quite independently in both eyes, and in both at the inner margin of the cornea.) The small tumor was removed, and the place where it had been situated was superficially cauterized with the galvano-cautery loop. Recurrences, however, followed this extirpation in rapid succession. Four months later, in September, 1886, the woman returned with a recurrent growth at the upper corneal margin, and upon the removal of this, after another four months, two nodules formed in the conjunctiva to the inner and lower side of the corneal margin and at some distance from it. In order the more certainly to remove everything that was diseased, I resolved this time to enucleate the eye, although it was still serviceable for purposes of vision. In spite of this, a solid nodule made its appearance, not more than six months later, at the bottom of the orbit. The woman put off having this removed, and did not come to the clinic until five months later. Meanwhile the glands in front of the ear, at the lower jaw, and on the anterior aspect of the neck had become enlarged and could be readily felt. Although now a radical operation, consisting of a complete exenteration of the orbit and the removal of all discoverable glands, was performed, nevertheless only a few months afterward enlarged glands were again observed. Since then (in February, 1890) the woman has succumbed to an extension of the growth to the internal organs.

Fibromata, osteomata (which are commonly congenital), myxomata, cylindrromata, and lymphangiomata, although of very rare occurrence, should also be mentioned as tumors of the conjunctiva.

The *plóos semilunaris* and the *caruncle* which is situated upon it participate in the inflammations of the conjunctiva, so that it is unnecessary to treat of the disease of these parts separately. Sometimes the little hairs which the caruncle always has upon it are so long as to irritate the eye; in that case the hairs must be epilated. The new formations of the caruncle are designated by the old name enanthias; *benign* new formations, such as simple polypoid or papillary outgrowths of the caruncle, are called enanthias benigna; malignant new formations are called enanthias maligna.

*From ἐν, in, and ἀνάθος, angle of the eye.*
CHAPTER II.

DISEASES OF THE CORNEA.

Anatomy.

27. The cornea, together with the sclera, represents the outer fibrous envelope of the eyeball, of which the cornea forms the transparent portion. Seen from in front, the cornea has the form of a horizontal ellipse, the horizontal diameter of its base, which is twelve millimetres, surpassing the vertical diameter, which is eleven millimetres. It is thinner in the center than at the edges, where its thickness amounts to about one millimetre. Hence it follows that the curvature of the posterior surface is somewhat greater than that of the anterior. The latter has a radius of curvature of 7.5 millimetres. Since the radius of curvature of the whole eye is more than this—amounting, in fact, to twelve millimetres—the curvature of the cornea is greater than that of the rest of the eyeball; the cornea therefore is placed like a watch crystal upon the sclera. The same comparison also obtains for the method in which the cornea is inserted into the sclera; for, in its posterior layers the cornea extends farther toward the periphery than in the anterior, where the sclera, as it were, laps over the edge of the cornea (Fig. 23). The microscope, however, does not show any sharp boundary line between cornea and sclera; on the contrary, the fibers of one pass continuously into those of the other.

The healthy cornea is transparent. Almost all morbid changes of the corneal tissue make themselves known at once by a diminution of this transparency. In advanced age, however, a cloudiness makes its appearance even in the healthy cornea (arcus senilis corneae or gerontoxon*). This consists of a narrow gray line which runs near the corneal margin, and is concentric with it. It shows itself under the form of a gray arc, first at the upper, soon after at the lower, margin of the cornea; finally the two arcs unite at the outer and inner side of the cornea to form a closed ring. The outer boundary of the arcus senilis is sharply defined, and is separated from the limbus by a strip of perfectly clear cornea; on its inner aspect, or the one turned toward the center of the cornea, on the other hand, the cloudiness gradually shades away until it is lost in the transparent cornea.

* From γήρας, an old man, and τάξις, bow.
The cornea consists of the following layers:

1. The anterior epithelium (Fig. 35, E). This is a pavement epithelium consisting of several layers; the lowermost cells (foot cells, Fig. 29, a) are cylindrical, then follow rounded cells (Fig. 29, w), and finally flat cells (Fig. 29, o).

2. Bowman's membrane (lamina elastica anterior, Fig. 35, B). This is a thin, homogeneous membrane intimately connected with the lamellae of the cornea lying beneath it. It may be said to represent the uppermost layer of the stroma of the cornea, which has become homogeneous and destitute of cells. From the epithelium it is separated by a sharply defined border; and, under pathological conditions as well as after death, the epithelium separates very readily from Bowman's membrane.

3. The stroma (Fig. 35, S). This is composed of a ground substance and of cells. The ground substance in its ultimate constitution consists of fine fibrillae of connective tissue, united by a cement substance into flat bundles. The bundles are so applied to one another that lamellae (Fig. 35, l) are produced; by the arrangement of these lamellae in layers one above another, the cornea is built up. The latter has, therefore, a laminated structure. The individual lamellae, however, are not sharply separated from each other, but are connected by the interchange of bundles at frequent intervals. Hence, when we attempt to strip off the individual lamellae of the cornea, we find that this cannot be done smoothly, but only with the simultaneous laceration of the numerous connecting fibers.

In many places between the individual bundles of the cornea, and also between the lamellae formed from the bundles, open spaces of greater or smaller size exist, which are filled with lymph and are hence called lymph spaces (seen in surface view in l, Fig. 36, and in
cross-section in $K$, Fig. 35). These are connected with one another by numerous minute canals (lymph canals, Fig. 36, $C$), and in this way constitute a continuous system of hollow passages, or system of lymph passages, permeating the cornea in every direction. This system is designed for the circulation of the lymph, and is of the greatest importance for the cornea, for, as the cornea does not possess any blood vessels, it is forced to depend for its nourishment solely upon its system of lymph passages.

The cells of the stroma of the cornea, the corneal corpuscles, are contained in the spaces of the lymph system, and are of two kinds—non-motile and motile cells. The former are the fixed corpuscles of the cornea. They are cells with a large nucleus and a very flat, protoplasmic cell body, and they lie in the lymph spaces, to whose anterior or posterior wall they attach themselves ($P$, Fig. 36). Protoplasmic processes extend from their cell body into the lymph canals which start from the lymph spaces. These processes anastomose with the processes of neighboring fixed corneal corpuscles, so that in this way there is formed a system of connected protoplasmic bodies (cells and their processes). We have thus in the cornea two connected systems—a positive one formed of protoplasm, and a negative one consisting of hollow passages (lymph spaces and lymph canals). The former system lies wholly within the latter, and, together with it, permeates the entire cornea. The protoplasmic system, however, nowhere completely fills the cavity of the system of passages; the space which is left unfilled is occupied by the circulating lymph.

The second variety of cells belonging to the stroma are the motile corpuscles of the cornea (wandering cells), which were discovered by Recklinghausen. These are nothing but white blood corpuscles which have made their way into the cornea, and which move about in its system of lymph passages. In the normal cornea they are present in very small amount; but whenever any irritation acts upon the cornea they at once increase considerably in number, since they escape from the network of blood vessels forming the marginal loops and pass into the cornea. These cells play an important part in inflammation of the cornea.
4. Descemet's membrane (D, Fig. 35) is a homogeneous, hyaloid membrane which forms the posterior boundary of the cornea. Unlike Bowman's membrane, it is quite sharply separated from the stroma of the cornea, from which also it is chemically different. It is very resistant to chemical reagents, and likewise to pathological processes going on in the cornea. When the entire stroma of the cornea has already broken down into pus, we often see the thin Descemet's membrane still for days offering resistance and remaining unimpaired (see § 33).

5. The posterior epithelium (endothelium, e, Fig. 35). This, under the form of a single layer of flattened cells, coats the posterior surface of Descemet's membrane.

The cornea at its margin abuts against three membranes, the conjunctiva, the sclera, and the uvea (iris and ciliary body). Embryology teaches us that the cornea consists of three superimposed layers, each of which corresponds to one of the membranes adjacent, and may be said to represent its continuation over the most anterior portion of the eyeball. The cornea hence consists of three divisions—a conjunctival, a scleral, and a uveal. According to Schwalbe, the anterior epithelium forms the conjunctival portion of the cornea (the so-called conjunctiva cornea). Descemet's membrane, together with the posterior epithelium lining it, belongs to the uvea, while the entire stroma of the cornea, together with Bowman's membrane, represents the continuation of the sclera. In the fully developed eye these three divisions are fused into a common whole, although their community of origin with the adjacent membranes still finds expression under pathological conditions; the conjunctival division suffering most of all in diseases of the conjunctiva, the uveal division in diseases of the uvea.

The cornea contains no vessels. These cease at the margin of the cornea, forming there at the limbus the network of marginal loops, which is supplied by the anterior ciliary vessels (see page 41, and q, Fig. 22). From the marginal loops the blood plasma passes over into the system of lymph passages, by which the nutrition of the cornea is effected.

The nerves of the cornea arise partly from the ciliary nerves, partly from the nerves of the bulbar conjunctiva. They are very numerous, particularly in the uppermost layers of the stroma, from which the nerve fibers pass forward through Bowman's membrane into the epithelium as far as the most anterior layers of the latter (Fig. 35, n). The cornea is therefore extremely sensitive to the touch. In the induction of narcosis the reflex that follows from touching the cornea (screwing together of the lids) is employed in order to test the depth of the narcosis, since this reflex is among those that are the last to disappear. Lesions of the cornea are particularly painful whenever they affect the uppermost layers which are so rich in nerves, as, for in-
stance, in the case of exfoliation of the epithelium, by which the numerous fibers of the epithelial plexus of nerves are laid bare.

While the cornea, viewed from in front, appears elliptical, it is circular, if looked at from behind. Hence the elliptical form of the front surface of the cornea is due to the fact that both sclera and conjunctiva overlap it farther above and below than at either side.

There is not yet perfect unanimity of opinion as to the division of the cornea into three layers. Waldeyer holds a different view from that represented in the text, regarding as the conjunctival portion the anterior epithelium, Bowman's membrane, and the most anterior of the lamellae of the corneal stroma; the uveal portion would then be formed by the posterior epithelium, Descemet's membrane, and the most posterior of the lamellae of the corneal stroma, so that only the middle lamella of the cornea would be left to form the scleral portion (cf. Fig. 89).

The older authors ascribed an important part in the nutrition of the cornea to the aqueous humor, which was supposed to be constantly soaking through it, and thus supply it with nourishment and provide for the maintenance of its transparency. From experiments, performed especially by Leber, this view must be considerably modified. An exchange of fluid between the parenchyma of the cornea and the aqueous humor is conceivable as occurring in two ways: by diffusion, which takes place only by means of osmosis, and by the more rapid process of filtration, in which the fluid passes through comparatively large gaps in the tissue. The first sort of interchange—that, namely, by diffusion—is the only one that takes place in the healthy cornea; and the aqueous humor which gets into the cornea in this way may contribute to the nutrition of its posterior layers. Diffusion may also occur in the reverse direction—that is, from before backward. If, for instance, a solution of atropine is dropped upon the cornea, atropine is found a short time afterward in the aqueous humor. But interchange of fluids by filtration does not occur in the normal cornea. Leber has shown that it is the posterior epithelium which opposes the filtration of fluids. If this is removed, the aqueous humor penetrates in considerable quantity into the cornea, which in consequence becomes cloudy and swollen.

**Clinical Examination of the Cornea.**

23. An examination of the cornea must have regard to the following points:

1. The size and form of the cornea. Both may be altered either in consequence of congenital defects or because of morbid processes. Overlapping of the cornea by the limbus to an unusual extent, or the presence of marginal opacities in the cornea, not infrequently simulates a diminution in size or an irregularity of form.

2. The surface of the cornea must be examined with regard to its curvature, its evenness, and its polish. In respect to (a) the curvature of the cornea as a whole, marked anomalies are recognizable at the first glance; slighter changes, however, require more precise examination by means of the reflex images (see page 2). The cornea acts as a convex mirror, the greater the curvature of which the smaller is the reflected
image. In order to be able to judge whether the reflex image given by a particular cornea is of abnormal dimensions, we must compare it with the image reflected from another cornea which is healthy, and most conveniently with that from the cornea of the other eye, in case it is normal. The diagnosis is easy when the curvature varies at different portions of the same cornea (as, for instance, in keratoconus, in which the central portions have a greater curvature than those at the periphery). In such a case we cause the eye to move about in such a way that the reflection of a window opposite falls successively upon different portions of the cornea, and then we see the reflex image becoming larger or smaller according to the varying curvature of the cornea.

The _evenness_ (b) of the corneal surface, together with the perfection of its polish, gives to the normal cornea its brilliant luster. Here again the reflex images afford the best means of testing both of these properties. These images lose their regularity of form at the place where the cornea is uneven; they appear distorted, owing to their outlines being irregularly bowed in or out. The _form_ and _extent_ of the _inequality_ may be deduced from the kind of distortion of the reflex image. By the ophthalmoscope, too, we can recognize inequalities of the corneal surface, on account of the irregular astigmatism which they produce (page 18). The uneven spots upon the corneal surface are either depressions (losses of substance) or elevations. Furthermore, the cornea may be uneven from being wrinkled (rhytidosis* corneae) or from being entirely collapsed (collapsus corneae). Both of these conditions occur in cases of great diminution in the tension of the eyeball, hence particularly after the escape of the aqueous or vitreous humors. If (c) the _polish_ of the cornea is entirely lost, the latter

---

* From _pris_, a wrinkle.
becomes lusterless (dull); it looks like glass that has been breathed upon, or looks as if it had been smeared with grease. The reflex images show their normal size and form, but have lost their sharp outline. Lack of luster of the cornea is also caused by the presence of inequalities so minute as to be nearly or quite imperceptible to the naked eye. Such inequalities may consist either of elevations or depressions. The latter are produced by the detachment of isolated epithelial cells in a number of places, thus leaving minute excavations (Fig. 37, b); the surface of the cornea looks as if stippled by needle pricks. In other cases we see the roughness of the cornea produced in the opposite way—that is, by its surface being covered with numerous small elevations, in which case the cornea looks as if it were made of shagreen. Here we have to do with multiple elevations, produced by a lifting up of the epithelium, and occurring under the form of minute vesicles.

3. The transparency of the cornea is a property which belongs to its parenchyma, not its surface; which latter, in fact, is only a mathematical concept, an expression for the superficial space bounding the cornea and lying between it and the air.

Dense opacities of the cornea are visible from a distance; but for the recognition of slight opacities, lateral illumination, and often also the use of the magnifying glass, are indispensable. By means of these aids to diagnosis we determine the form, extent, and denseness of the opacity. We make out whether it is found in the superficial or in the deep layers of the cornea, and further whether it is diffuse or is composed of separate small points, spots, or striae. Many an opacity which appears diffuse when seen with the naked eye proves, when looked at with the magnifying glass, to be compounded of smaller opacities. Such an opacity may subsequently become really homogeneous by the enlargement and confluence of its components.

4. The sensitiveness of the cornea is tested by touching it with the end of a thread or a shred of paper. In many diseases the sensitiveness of the cornea is diminished, or is abolished altogether.

I. Inflammation of the Cornea.

General Statement.

29. In the course of an inflammation of the cornea (keratitis*) we observe the following stages. The inflammation begins with an infiltrate (Fig. 38). Cells in increased number make their appearance within the parenchyma of the cornea, and these constitute the exudate. As a consequence of this the diseased part loses its transparency. The level of the cornea remains normal at this spot, only the epithelium suffers to the extent of losing its polish, so that this portion of the cor-

* From κέρας, horn.
neea appears dull upon the surface. The clinical signs of the existence of an infiltrate hence are cloudiness of the cornea, and loss of luster over the clouded portion, but no unevenness of the surface. The subsequent fate of the infiltrate varies. It may go on to resorption or to suppuration.

(a) Resorption occurs in those cases in which the accumulation of exudate between the lamellae of the cornea is not excessive, so that the lamellae of the cornea are not broken down by reason of its presence, and hence there is nowhere produced any destruction of the tissue of the cornea itself. In this case the resorption of the exudate represents the second or regressive stage of the inflammation, and with it the morbid process comes to a conclusion. In favorable cases, when the cells constituting the exudate have disappeared by resorption, the diseased spots may become perfectly normal once more and regain their transparency (healing without permanent sequelæ—i.e., without opacities). But it may also happen that the stroma of the cornea may not be absolutely destroyed by the deposition of the exudate, and may yet have experienced such an alteration of its structure that, even after the disappearance of the exudate, it never again becomes perfectly transparent. Or it may be that the exudate deposited between the lamellae of the cornea does not disappear completely by resorption, but in part becomes organized and is left permanently fixed in the cornea. In both of these cases the infiltrate disappears by a process of healing, but leaves a permanent opacity behind. All those cases in which resorption of the exudate occurs without breaking down of the corneal stroma are grouped together under the common name of non-suppurative keratitis.
(b) The infiltration goes on to suppuration, when the exudation is such as to be no longer compatible with the maintenance of life by the corneal stroma, so that the latter breaks down. The inflammation then enters upon its second stage, that of suppuration, which is associated with a localized destruction of the cornea. These cases of keratitis are known as suppurative keratitis.

The most frequent form of suppurative keratitis is the corneal ulcer in which the process of purulent disintegration begins in the most anterior layers of the cornea (Fig. 39). In this way a superficial loss of substance is produced which is recognizably as a depression in the corneal surface. In the beginning, the loss of substance represents only those parts which are most markedly infiltrated, and hence are the first to break down. Surrounding these are layers, which likewise are infiltrated with the exudate, although not to as high a degree. Hence both the floor and the walls of the ulcer are still infiltrated, for which reason we call it a foul (coated, infiltrated, or progressive) ulcer. Later on the infiltrated portions forming the floor and the wall of the ulcer, so far as they are incapable of living, are also cast off; but those parts of the corneal tissue which have retained their ability to live remain, are freed by a process of resorption from the exudate which infiltrates them, and become once more transparent. The ulcer has, it is true, become somewhat larger than before, but the cloudiness surrounding it has disappeared; the ulcer has acquired a smooth, transparent base and edges; it is a cleansed (regressive) ulcer (Fig. 40).

Among the clinical signs by which we diagnosticate an ulcer, the most important is the unevenness of the corneal surface, the latter presenting a depression or loss of substance. In foul ulcers this depression is surrounded by clouded corneal tissue, which, moreover, is dull upon its surface; the floor of the ulcer also is gray and uneven. In clean ulcers the cloudiness surrounding them is very slight, or is wanting altogether, and the floor and edges of the loss of substance are smooth and shining; the ulcer gives a mirrorlike reflex.
Every keratitis suppurativa entails a loss of substance in the cornea. This must be filled up again by newly formed tissue, in doing which the process enters upon its third stage—that of cicatrizaton. The newly formed tissue is not corneal tissue, but connective tissue, and is accordingly opaque (Fig. 41). Hence suppurative keratitis always leaves a permanent opacity after it. The opacity, indeed, is the principal clinical sign of a cicatrix, for the corneal surface has completely reacquired its luster, because its epithelium is restored to the normal state, and the excavation or loss of substance has disappeared, at most a slight flattening of the surface being present.

Recapitulation.—As has been stated above, non-suppurative keratitis has two stages, the stage of infiltration and that of resorption. In suppurative keratitis, on the other hand, we distinguish three stages: the stage of infiltration, the stage of suppuration, and the stage of cicatrization (reparation). The stage of suppuration is composed of two periods, the progressive period (foul ulcer) and the regressive period (clean ulcer).

In the clinical diagnosis of the form and the stage of an inflammation of the cornea we proceed in the following manner: We first examine the corneal reflex. If the surface is dull, we are dealing with a recent affection, and in that case, if there is no loss of substance, with an infiltrate; but if a loss of substance is present, with a foul ulcer. If the surface is lustrous, the affection is an old one, and, if a loss of substance is present, is a clean ulcer; but if no loss of substance is visible, we are dealing with a cicatrix.

30. Vascularization of the Cornea.—In inflammations of the cornea we very frequently observe the development of vessels which grow in upon the cornea from its margin. This occurs most frequently during the process of healing of corneal ulcers. At the time when the ulcer begins to become clean, we see vessels starting out from that part of the limbus lying next to the ulcer. These vessels lie in the most superficial layers of the cornea and extend toward the ulcer, whose edges they soon reach (Fig. 40, g). Their chief office seems to consist in supplying the necessary material for filling in the loss of substance.
Their advent is therefore to be regarded as a favorable occurrence; we know that at the spot where the vessels have reached the ulcer the further progress of the latter is no longer to be apprehended—that, on the contrary, it will there enter upon the process of healing. After the loss of substance has been filled in the vessels gradually disappear, so that a corneal cicatrix contains fewer and fewer of them as it becomes older. Nevertheless, the blood-vessels never entirely disappear from the large cicatrices.

In other cases the formation of new vessels accompanies the progress of the inflammatory process, and hence belongs, like the exudation itself, to the clinical picture of the inflammation. The best example of this is afforded by the vascular form of parenchymatous keratitis (§ 41).

A kind of vascularization differing from both of these varieties is that which forms one of the symptoms of pannus. Here the vessels do not lie in the cornea itself, but in a newly formed tissue which is deposited upon the cornea and of which they form an essential constituent (Fig. 27).

It is very important to determine the situation of the vessels in the cornea—that is, whether superficial or deep—since by this fact alone we can often diagnosticate what sort of keratitis we are confronted with. The type of superficial vascularization is afforded by pannus, that of deep vascularization by keratitis parenchymatosa.

The signs which enable us to distinguish the two kinds of vascularization from each other may be contrasted as follows:

**Superficial Vessels**

(Fig. 42)

Spring from the network of marginal loops of the limbus, and can therefore be followed from the cornea into the limbus, and thence on to the vessels of the conjunctiva.

On account of their superficial position are clearly visible and well-defined, and have a vivid-red color.

The vessels branch in an arborescent fashion.

**Deeply situated Vessels**

(Figs. 43, 44)

Spring from the vessels of the sclera close to the margin of the cornea, and hence appear to come to an end suddenly at the limbus, as they disappear behind the latter to enter the sclera.

Are not distinctly recognizable, or are even unrecognizable, except as a diffuse red coloration, and have a dirty-red (grayish-red) hue; the reason for both of these appearances being that the vessels are veiled by the clouded layers of cornea lying in front of them.

The vessels form fine twigs which run parallel to each other (besom form of branching).
DISEASES OF THE CORNEA.

The surface of the cornea is uneven, from the fact that the vessels raise up the epithelium that lies directly over them.

The surface of the cornea is lusterless, it is true, but not uneven.

![Fig. 42. Superficial Blood-vessels in Pannus. Magnified 2 x 1.]

![Fig. 43. Deep-lying Blood-vessels in Pannus. Keratitis. Magnified 2 x 1. Recent case with penicillate branching.]

![Fig. 44. Deep-lying Blood-vessels in Pannus. Keratitis. Magnified 2 x 1. Old case with besom-like branching of vessels.]

Participation of Neighboring Organs in the Process.—Every keratitis is accompanied by inflammatory symptoms, the most important of which is—

(a) The injection of the blood-vessels. The characteristic mark of corneal inflammation is ciliary injection. When the inflammation is great, conjunctival injection also makes its appearance, and may conceal the ciliary injection to a greater or less extent. Very violent suppurative inflammations of the cornea are accompanied by edematous swelling of the conjunctiva and even of the lids.

(b) The iris and even the ciliary body become inflamed in cases of marked keratitis, so that we see the symptoms of iritis and iridocyclitis set in (see §§ 67 and 68). These accompanying inflammations may be intense enough to bring about the destruction of the eye.

(c) Hypopyon * is the accumulation of a purulent exudate at the bottom of the anterior chamber. It forms a frequent symptom in keratitis suppurativa. We then find collected in the lowest portion of the chamber a yellow mass which, because it is fluid, is limited above by a horizontal line, and for the same reason is seen to change its place and seek the deeper portions of the chamber when the head is moved. In other cases the mass is viscid or pultaceous, so that when seen from in front it has a border that is convex upward, or it lies quite like a solid ball at the bottom of the chamber and does not change its position with the movements of the head. The quantity of the pus produced in this way varies greatly, ranging from a scarcely perceptible crescent lodged in the lowest sinus of the chamber up to masses of such size that the entire chamber is filled by the hypopyon. Hypopyon may

* From ὑπό, beneath, and πῦς, pus.
disappear by resorption, this process taking place the more rapidly the more fluid the hypopyon is. Pretty thick masses of exudation may become organized and lead to occlusion of the pupil, or, in rare cases, to adhesion of the iris to the posterior surface of the cornea.

(d) The subjective phenomena associated with keratitis are pain and photophobia, together with the lachrymation and blepharospasm which these conditions cause, and also disturbance of vision—symptoms which are met with in very varying degree.

The histological processes occurring in inflammation of the cornea have been the subject of the most zealous investigations, and especially of investigations experimentally conducted, because the attempt was made to study in this field the problem of inflammation in general. For such studies the cornea is particularly adapted on account of its transparency, and also on account of the characteristic form of the fixed elements of its tissue. There is no doubt that in every keratitis there occurs an increase in the number of the cellular elements, whose accumulation causes the cloudiness of the cornea, visible to the naked eye, and finally, if very considerable, terminates in the formation of pus. Nevertheless observers could not agree as to the source of the new cells which made their appearance in the cornea. Some, the leader of whom was Cohnheim, look upon them as white blood corpuscles which have migrated into the cornea from the vessels of the corneal margin. Others, and especially Stricker, consider them derived from an increase in number of the normal fixed cells of the cornea. It is certain that both processes occur, although a different significance attaches to the two. Whenever an irritant productive of inflammation affects the cornea numerous white blood corpuscles wander into the latter. These are derived from two sources: In part they originate from the conjunctival sac, getting from there into the affected region of the cornea, because the epithelium here is lacking; in part they arise from the vessels of the corneal margin, from which they make their way between the lamellae of the cornea until they reach the inflamed spot. The cells derived from the corneal margin in certain cases form a ring shaped infiltration (invasion ring) about the diseased area, giving to the latter, especially in the case of ulcer serpens, a characteristic appearance. The white blood corpuscles that have emigrated from the network of marginal vessels into the cornea form the main mass of the exudate. On the other hand, the fixed corneal corpuscles, while taking but an insignificant part in the formation of the exudate, do produce by their proliferation most of the material for the reparative process, that follows the inflammation, and which results in the development of new tissue.

In the healing of the losses of substance produced by inflammation, the regeneration of the epithelium and the regeneration of the stroma of the cornea require separate consideration. The epithelium of the cornea is replaced by the growth of the epithelium from the edge of the ulcer. Losses of substances which affect the epithelium only, heal with a perfect restoration to the normal state and without leaving a permanent opacity. On the other hand, every loss of substance of the corneal stroma is filled up by cicatricial tissue which forms from the bottom and sides of the ulcer. The chief part in this is taken by the fixed cells of the cornea in the immediate neighborhood of the ulcer, as these increase by division, and the cells which thus arise grow into connective-tissue
fibers. The tissue thus formed is, however, essentially different from the normal tissue of the cornea (Fig. 42). The regular arrangement of the normal fibers of the cornea is wanting, and so, too, are the stellately branched fixed corneal corpuscles, which are replaced by ordinary connective-tissue cells. Bowman's membrane (Fig. 41, b) is never regenerated. The epithelium (Fig. 41, c) hence lies directly upon the cicatricial tissue, from which, being thinner in some places and thicker in others, it is separated by an irregular line.

As a consequence of these peculiarities, the cicatricial tissue never possesses the perfect transparency of the normal cornea, and is hence recognizable even with the naked eye as an opacity. After having existed for a long time, the texture of the cicatricial tissue approximates somewhat more closely to the regular structure of the corneal tissue. It accordingly gains in transparency, and a “clearing up” of the opacity is observed to take place—a process, however, which never gets to the point of producing a complete disappearance of the opacity except in the case of quite small and superficial cicatrices.

In deep losses of substance the restoration of the normal epithelial coating does not delay making its appearance until the ulcer itself has been completely filled up by cicatricial tissue. On the contrary, from the moment when the ulcer has become clean the epithelium begins to grow over the latter, and hence begins to cover it at a time when there is no cicatricial tissue present, or only a very thin layer of it (Fig. 40, at b). At this time the ulcer (on account of the absence of opaque cicatricial tissue) is still almost completely transparent, and, as a consequence of the restoration of the epithelial covering, is smooth and shining. The formation of cicatricial tissue now goes on beneath the epithelium, and by this process the latter is gradually lifted up to its normal level.

In proportion as the layer of cicatricial tissue becomes thicker, the degree of opacity naturally increases; but it would be a very great mistake for the physician to conclude from this fact that the disease was advancing.

The signs before given, having regard to changes in the luster, evenness of surface, and transparency of the cornea, serve for the diagnosis of the variety of corneal disease that is present. They are not always, to be sure, found combined in a manner as schematic as has been represented. Some examples may show in what way exceptions to them occur. The opacities that are present upon the cornea may be old, and yet the cornea, because of a coincident increase of tension, may look dull and stippled. The surface of the cornea is not always smooth when there are infiltrates, nor yet when there are cicatrices. In the case of infiltrates, a bulging forward of the surface of the cornea often takes place on account of the deposition of an excessive quantity of exudation; in the cases of cicatrices, on the other hand, a flattening may take place in consequence of an insufficient filling in of the loss of substance. In doubtful cases, we must take still other factors into consideration, which may furnish points that will establish our diagnosis. Thus, in the case of a cicatrix, the outline of the opacity is commonly better defined than in the case of a recent opacity due to inflammation. The color of the latter form of opacity varies from gray to yellowish white and to yellow; cicatrices, on the contrary, present rather a pure white, or, if thin, a bluish-white hue. Recent inflammatory processes are associated with attendant inflammatory symptoms (ciliary injection, etc.), which are wanting in the case of cicatrices. By putting all these facts together the right diagnosis can almost always be made.

Fluorescin is used to make more apparent those spots upon the cornea that
DISEASES OF THE EYE.

are destitute of epithelial covering (erosions and ulcers). If a one-per-cent solution of potassium fluorescein is instilled into the conjunctival sac, and then washed out again with water, the highly fluorescent liquid penetrates solely into those portions of the cornea that are unprotected by epithelium, and such portions consequently are stained a vivid green. I use this method in clinical instruction to make small losses of epithelium more plainly visible; but for the actual diagnosis of defects of the sort it is not necessary.

The exudation into the anterior chamber, which accompanies every well-marked keratitis, depends upon the fact that irritant substances from the inflamed cornea diffuse into the aqueous and then act upon the vessels of the uvea (i.e., the iris and ciliary body). As the first result of this, the aqueous, which under normal conditions contains only a trace of albumin, gets to contain such an amount of it that a layer of fibrin is precipitated upon the posterior surface of the cornea and often also upon the anterior surface of the iris (Figs. 90 and 90). In such cases the cornea, in addition to the circumscribed opacity that corresponds to the area diseased, presents over its entire extent a delicate diffused cloudiness produced by the layer of exudate upon its posterior surface.

When the irritating substances produced by the inflammation are such as to excite a more intense action, leucocytes pass out in considerable quantities from the vessels of the iris and ciliary body, and cause a cloudiness of the aqueous, in which they become suspended. Later, by sinking to the bottom of the anterior chamber these cells form the hypopyon. The latter, therefore, originates not from the cornea, but from the vessels of the uvea, as, indeed, is also apparent from the fact that many of the pus corpuscles contain pigment granules, which they have transported with them from the inflamed uvea.

Since the hypopyon has this origin, we understand why it is found to be free from pus cocci. It is owing to this freedom from germs that the hypopyon is tolerated by the tissues bordering the anterior chamber, and produces no special reaction in them. If ordinary pus containing cocci is injected into the anterior chamber of a rabbit, the eye is rapidly destroyed by panophthalmitis. But the pus that constitutes a hypopyon is not only tolerated by the eye with impunity, but can even undergo absorption without leaving any injurious effects behind.

The resorption of the hypopyon takes place chiefly through the meshwork of the ligamentum pectinatum (§ 60). The rapidity with which absorption proceeds varies exceedingly. In many cases a hypopyon of considerable size disappears so completely that after twenty-four hours scarcely a trace of it is to be found; in other cases the hypopyon remains lying at the bottom of the chamber so long that it becomes organized. Sometimes we observe a rapid alternation in the height of the hypopyon which at times decreases, and again increases once more.

Subdivision of Keratitis.

31. The subdivision of keratitis into keratitis suppurativa and keratitis non-suppurativa corresponds most fully to practical requirements. Every suppurative keratitis, since it is associated with destruction of corneal tissue, leaves behind it a permanent opacity, which in many cases injuriously affects the visual power. On the contrary, so long as purulent dissolution of the cornea has not taken place—that is, in non-
suppurative keratitis—a complete restoration of its transparency, and
with it of the normal power of vision, is possible, and, in fact, often does
take place. Moreover, the above subdivision also corresponds to the
esential characters of the corneal inflammations. For it is not merely
a matter of accident whether an infiltrate in the cornea goes on to
suppuration or to resorption. On the contrary, the forms which tend
to the production of suppuration ordinarily present from the very be-
ginning characters differing from those borne by forms in which there
is no progress toward suppuration, so that these two categories are dis-

tinct not only in their consequences but also in their clinical aspect.
To each of the two categories a number of different forms belong, the
most important of which are set forth in the following list:

A. Keratitis Suppurativa.
   1. Ulcer of the cornea.
   2. Ulcus serpens corneæ.
   5. Keratitis neuroparalytica.

B. Keratitis Non-Suppurativa.
   (a) Superficial forms.
      1. Pannus.
      2. Keratitis with the formation of vesicles.
   (b) Deep forms.
      3. Parenchymatons keratitis.
      5. Sclerosing keratitis.
      6. Keratitis starting from the posterior surface of the cornea.

A. Suppurative Keratitis.

1. Ulcer of the Cornea.

32. Symptoms and Course.—Every ulcer of the cornea develops
from a superficially disposed infiltrate. In the beginning we find one
spot upon the cornea cloudy and the surface over it dull (infiltrate).
Then the epithelium exfoliates upon the surface of the affected spot,
and soon, by the breaking down of the most strongly infiltrated por-
tions of the cornea, a loss of substance forms in the parenchyma of the
cornea, so that an ulcer is produced. This is at first surrounded by
infiltrated portions of the cornea—a fact which we recognize by the base
of the ulcer being gray and uneven, and its walls likewise gray and
clouded. The walls of the ulcer are often surrounded for quite a dis-
tance by a gray area, or slender gray striae, extending from the ulcer in
different directions into the transparent cornea. This is an unclean or progressive ulcer (Fig. 39). In a favorable case, only so much of the corneal tissue breaks down during the further progress of the disease as was from the very beginning too strongly infiltrated to live. In this case the ulcer rapidly becomes clean without attaining great dimensions. But it very often happens that, simultaneously with the breaking down of the parts that are most strongly infiltrated, the inflammatory cloudiness keeps spreading, new portions of the cornea being constantly attacked by the infiltration. And since these, too, break down into pus, the ulcer grows constantly larger. This progressive growth of the ulcer takes place sometimes more in the direction of its depth, sometimes more along the surface. In the former case, perforation of the cornea is to be apprehended; in the second case, larger and larger areas of the cornea may be destroyed and thus extensive opacities be produced. Progressive growth along the surface often takes place chiefly in one direction—a fact which can be easily recognized by a particularly marked gray cloudiness, or even a yellow cloudiness, of the ulcer wall on the corresponding side. It may even happen that the ulcer keeps constantly advancing in one direction, while on the opposite side it heals just as fast, so that it goes creeping over the cornea (serpiginous ulcer).

The progressive stage of the ulcer is accompanied by symptoms of irritation like ciliary injection, lachrymation, photophobia, and pain, which not infrequently reach a considerable height; moreover, in this stage hyperemia and even inflammation of the iris make their appearance (evidenced by turbidity of the aqueous humor, hypopyon, discoloration of the iris, contraction of the pupil, posterior synechia). There are, however, cases of ulceration in which the irritative symptoms are very slight, or are wanting altogether—cases constituting what are called torpid or asthenic ulcers—which nevertheless may be very dangerous.

When the infiltration has finally come to a standstill, the ulcer enters upon its regressive stage. The tissue that has been destroyed is cast off, that which has not been destroyed becomes transparent once more from resorption of the exudate. The ulcer "cleanses" itself (Fig. 40). A clean ulcer presents a smooth base and edges with little or no opacity, and is chiefly to be diagnosticated by the excavation of the surface of the cornea, which we recognize when examining the corneal reflex. In proportion as the ulcer becomes clean, the associated symptoms of irritation disappear.

After the ulcer has become entirely clean, cicatrisation begins. Vessels extend from the nearest portions of the limbus to the ulcer, which latter, in consequence of becoming filled with the opaque mass

* From serpere, to creep.
DISEASES OF THE CORNEA.

of the cicatrix, becomes again more clouded, but at the same time constantly shallower, until finally it reaches the level of the adjacent normal cornea. Not infrequently, however, the new formation of the cicatricial mass comes to a standstill before the loss of substance has been quite filled up, so that the surface of the cicatrix remains permanently a little sunken. When such cicatrices are small they are, on account of the thinness of the cicatrical tissue, almost or quite transparent, and disclose their presence by a flattening of the cornea (corneal facet), only discernible upon examination of the corneal reflex. On the other hand, cicatrices not infrequently occur which project above the level of the surrounding cornea. Such are the cases in which the cornea at the base of the ulcer, having become thinned, does not offer resistance to the intra-ocular pressure, and bulges forward. The bulging may disappear, owing to the contraction of the cicatrical tissue; but it may also remain permanently (ectastic cicatrix, keratectasia * ex ulcere, Fig. 45). The formation of ectastic cicatrices is, however, of much more frequent occurrence after perforation of the cornea.

33. **Perforation of the Cornea.**—The course which an ulcer takes is much more complicated when the latter perforates the cornea. Perforation takes place when the ulcer has penetrated down to the deepest layers of the cornea. The patient suddenly experiences violent pain, and feels a hot liquid (the aqueous humor) gushing out of the eye, after which, not infrequently, the severe pains previously existing subside. Perforation may occur spontaneously or in consequence of a sudden increase of the intra-ocular pressure, such as may be caused by bodily exertion (even, for example, stooping), or by coughing, sneezing, screwing together the lids, crying (in children), etc. The increase in intra-ocular pressure, which develops under these circumstances, is to be referred to two causes: it is partly a result of the increase of blood

---

* From κέρας, horn, and ἐκτασίς, distention, from ἐκτείνεσθαι, to stretch out.
pressure (from the straining of the muscles, and also from congestion in the district drained by the superior vena cava), partly produced by direct compression of the eyeball, and particularly by the pressure which the ocular muscles, and especially the orbicularis palpebrarum, at such times exert upon it. The perforation produced by such causes may develop with violent symptoms and entail very damaging results.

After perforation has occurred we find the anterior chamber obliterated in consequence of the escape of the aqueous humor; the iris and, in the region of the pupil, the lens also are applied to the posterior surface of the cornea. If the aperture made by the perforation is of suitable position and size, we see lying in it the iris which has been swept into the wound by the jet of escaping aqueous. The eye feels quite soft.

Perforation is often preceded by a keratocele.* For, Descemet's membrane being distinguished by the great resistance which, in comparison with the corneal lamellae, it offers to the inflammatory process, it often happens that the stroma of the cornea is destroyed throughout its entire thickness by suppuration, while Descemet's membrane still remains resistant. In that case it is protruded by the intra-ocular pressure under the form of a transparent vesicle which is visible upon the floor of the ulcer, or which may even project above the level of the adjacent cornea (keratocele or descemetoccele). When this vesicle, too, ruptures, the perforation becomes complete. Sometimes the ulcer heals without the keratocele either rupturing or being flattened out. The latter then remains permanently under the form of a vesicle which projects above the surface of the cornea, and which, itself transparent, is surrounded by a cloudy, cicatricial ring.

The direct effect of a perforation upon the course of the disease is for the most part favorable, inasmuch as not only the pain and the other symptoms of irritation abate, but the progress of the ulcer also is, as a rule, arrested, and the ulcer rapidly becomes clean. The reason for this favorable influence is probably to be looked for in the fact that after the escape of the aqueous humor the intra-ocular pressure sinks considerably, and the resulting diminution in the tension of the cornea facilitates the circulation in the latter.

The method in which the perforation in the cornea closes again varies according as it is placed in front of the iris or the pupil. If the opening is found in front of the iris, as is generally the case, it is quickly covered by the iris, which, after the escape of the aqueous humor, is driven forward as far as the cornea. In this way it becomes possible for the anterior chamber to be restored within a very short time, although, to be sure, the iris at the site of the perforation remains permanently connected with the cornea. If the perforation is quite

* From κύρας, horn, and κάλυπτω, rupture.
DISEASES OF THE CORNEA.

small, the iris simply applies itself to it from behind and there becomes solidly adherent. In case, however, the perforation is larger, the iris, as a rule, is driven into it by the escaping aqueous humor, and thus a prolapse or hernia of the iris is produced (Fig. 46). This is represented by a hemispherical prominence which, while recent, has the gray or brown color of the iris. Soon, however, this color is changed because of a layer of gray exudation (ε, Fig. 46) which covers the prolapse like a cap, and may be removed with a forceps. When the prolapsed portion of the iris is much stretched, the proper color of the iris is lost and the prolapse looks black, because of the retinal pigment on its posterior surface, which appears through the thinned stroma. This is particularly often the case in large prolapses of the iris. The extent of the prolapse of the iris is proportional, first of all, to the size of the perforation. In the worst cases the perforation may comprise the whole cornea, which has suppurred throughout; in that case the iris prolapses through its entire extent (total prolapse of the iris, Fig. 47). The pupil is then generally closed up by a plug of exudation (p). But the way in which the prolapse occurs has also an influence upon its size. If the perforation takes place with great force (e.g., while the patient is straining hard), or if the patient behaves in a restless manner after it has taken place, a relatively larger portion of the iris will be driven into the perforation.

The cicatrization of a corneal ulcer, which is associated with a prolapse of the iris, occurs in the following manner, if the prolapse is left to itself: The prolapsed iris in the first place becomes solidly agglutinated to the walls of the opening caused by the rupture, and wherever it is exposed it is converted by inflammation into
a sort of granulating tissue, so that the prolapse soon loses the color of
the iris and becomes grayish-red. Subsequently there develops from
the proliferating tissue of the iris cicatrical tissue, which first becomes
visible under the form of isolated gray bands. By the contraction of
these latter, constrictions are formed upon the surface of the prolapse.
As the formation of the cicatrix proceeds, these bands become broader,
fuse together, and render the prolapse constantly flatter and flatter.
Hence in favorable cases the process terminates in the formation of a
flat cicatrix situated at the level of the rest of the cornea, and at the
site formerly occupied by the bulging prolapse. This cicatrix being
mainly a portion of iris that has become cicatrical, it follows that the
remainder of the iris still lying in the anterior chamber is solidly
united to it. Such an adhesion of the iris to a corneal cicatrix is called
an anterior synechia.*

Owing to the fact that the iris is drawn forward to the scar, the
pupil loses its round shape and is drawn in toward the site of the adhe-
sion. To what extent this is the case depends upon where the perfora-
tion is situated and what part of the iris is prolapsed. In peripherally
situated ulcers, it is a portion of the ciliary zone of the iris that pro-
apses into the corneal wound. In this case the pupil is drawn strongly
toward the site of the perforation; it has the shape of a pear, the
sharp end of which is directed toward the site of the synechia. If, how-
ever, the perforation is situated near the center of the cornea, the pupil-
ary portion of the iris becomes engaged in it in healing (Fig. 46), and
in this case the distortion of the pupil is slight, or entirely absent. If
the perforation is so large that the entire pupillary margin of the iris is
involved in the prolapse and becomes attached to the cornea in healing,
the pupil is permanently closed by the cicatrix that is formed; there
are produced occlusio and seclusio pupillae, together with their de-
structive consequences.

In the healing of large perforating ulcers of the cornea, the shrink-
ing of the cicatrical tissue is often so great that the corneal cica-
trix appears flattened when compared with the normal curvature of
the cornea. This flattening, moreover, may extend beyond the cica-
trical spot to the portion of the cornea which is still transparent, and
which in that case becomes flatter over its whole surface (applanatio
corneae). If the cornea has been entirely destroyed by suppuration,
so that a total prolapse of the iris has developed, the latter ultima-
tely becomes reduced to a small and perfectly flat cicatrix, which
takes the place of the cornea (phthisis corneae). The distinction be-
tween applanatio and phthisis of the cornea is as follows: In the
former the cornea is still present, although it is in part cicatrical, and

* From συνέχει, to connect. The term leucoma adherens (from λευκός, white)
is also employed to denote a cicatrix of the cornea with anterior synechia.
DISEASES OF THE CORNEA.

thus as a whole is flattened. In the latter, on the other hand, nothing of the cornea is left except a very narrow marginal rim, which generally withstands the destructive process of ulceration. The flat scar which takes the place of the cornea is, in this case, the cicatized iris.

The healing of a prolapse of the iris with the formation of a flat cicatrix must be regarded, even though the latter is opaque, as a comparatively favorable outcome of a large corneal perforation. Such an eye, of course, is seriously impaired as regards its function, but yet, after the process has run its course, it remains in a state of quiescence, and generally causes its owner no further trouble. The case is different when healing takes place with the formation of an ectatic cicatrix. This occurs in the following manner: The prolapsed iris becomes covered with cicatricial tissue, but this is not strong enough to effect the flattening of the prolapse. Hence the latter becomes consolidated in its original form as a protrusion, and is converted into an ectatic cicatrix with inclusion of the iris (staphyloma cornea). A large-sized perforation opening and restlessness on the part of the patient favor the formation of such an ectasis. Whenever a prolapse of the iris has become so extensive that it is constricted by the margin of the perforation, and hence has acquired a mushroom shape, the formation of a flat cicatrix, without artificial aid, becomes altogether impossible.

If the perforation in the cornea is not in front of the iris, but lies in the region of the pupil, it can not be covered by the iris. Its occlusion in this instance takes place more slowly by an outgrowth of new-formed tissue (cicatricial tissue) from the margins of the opening, until the opening is filled up. In such a case the anterior chamber remains absent for a somewhat longer time, and meanwhile the lens is in contact with the posterior opening in the cornea. The lens may bear away permanent marks of this contact, most frequently in the form of a circumscribed opacity at its anterior pole (anterior capsular cataract; see § 89). If during cicatization the delicate membrane occluding the opening is repeatedly ruptured (which generally occurs from improper behavior on the part of the patient), the perforation may end by remaining permanently open, and a fistula of the cornea is formed. This appears under the guise of a small dark point, surrounded by whitish cicatricial tissue; the anterior chamber is absent, the eye is soft. If the fistula of the cornea persists for a long time, the eye gradually perishes. The cornea flattens out, the eye grows softer and softer, and at length goes blind from detachment of the retina. On the other hand, as soon as the fistula closes up, an increase of tension is apt to set in, that may lead to a renewed rupture of the occluding substance, which is still but slightly resistant. An alternation of this sort between an open fistula with softness of the eyeball, gradual closure of the fistula, and a consequent steady increase of pressure until the cicatrix ruptures anew, may be repeated for a long time, until finally a severe inflamma-
tion occurs, which leads to the atrophy of the eye, and thus puts an end to the process.

Other bad consequences of perforation of the cornea, which are sometimes observed, are:

(a) *Luxation of the Lens.*—After the escape of the aqueous humor, the lens, to reach the cornea, must be pushed forward through the entire depth of the anterior chamber (2.5 millimetres), a movement associated with a considerable degree of stretching of the zonula of Zinn. If the forward movement takes place very suddenly, or if the fibers of the zonula have been rendered fragile by disease, the zonula ruptures. In consequence the lens may become tilted, or, if the perforation is large enough, may even be expelled from the eye.

(b) *Intra-ocular hemorhages* are the result of the rapid diminution in tension, by virtue of which an increased quantity of blood flows into the vessels of the interior of the eye, which have been thus suddenly relieved of external pressure, and causes their rupture. Hemorrhage takes place if the perforation occurs very suddenly, or if the eye beforehand was under an abnormally high tension. The latter is the case in glaucomatous and staphylomatous eyes, in which, furthermore, there is generally also a degeneration of the vessels associated with an increased fragility of their walls. The hemorrhage may be so great that the entire contents of the eyeball are extruded by reason of it; nay, more, the patient may almost be in danger of bleeding to death.

(c) Suppuration starting from the cornea may be carried over into the deeper parts of the eye and lead to the destruction of the latter by *purulent irido-cyclitis*, or even by *panophthalmitis*. This occurs mainly in the case of extensive destruction of the cornea, especially if, at the same time, the suppuration is of a particularly virulent character, as in acute blennorrhoea or in ulcus serpens.

The Clearing of Corneal Cicatrices.—After a long time has elapsed—months or years, that is—the cicatrix left by an ulcer appears less large and less opaque than it was directly after the healing of the ulcer was completed; the cicatrix has partially “cleared up.” In this way quite small cicatrices may become altogether invisible. The extent to which clearing takes place depends principally upon two circumstances: upon the thickness of the cicatricial tissue and upon the age of the individual. The deeper the cicatrix penetrates into the cornea, the less it clears up; perforating cicatrices of the cornea, if they are ever so small, remain permanently opaque. (A fine example of this is afforded by the punctures which the discission needle makes, and which remain visible as gray points upon the cornea all during life.) The age of the individual influences the process of clearing, in that the latter makes greater advances the younger the patient is. For this reason cicatrices after blennorrhoea neonatorum often clear up in a wonderful way.
34. Etiology.—With reference to their etiology, all inflammations of the cornea may be divided into two great groups: primary and secondary keratitides. By the former, we understand those which have their starting point in the cornea itself; by the latter, on the contrary, those which have passed over to the cornea from other structures, and most frequently from the conjunctiva. This distinction, true with regard to keratitis in general, is especially so with respect to ulcers of the cornea.

Primary ulcers of the cornea most frequently owe their development to traumatism. Under this head belong not only injuries in the narrower sense of the word, but also a lesion of the cornea by means of small foreign bodies, by faultily placed cilia, by papillary growths on the free border of the lids, etc. Primary ulcers, furthermore, develop after the separation of eschars produced by burns or the action of caustics. Other ulcers are dependent upon a disturbance in the nutrition of the cornea, as the ulcers in eyes with absolute glaucoma where the cornea has become insensitive, or ulcers which develop in old cicatrices of the cornea (atheromatous ulcers).

Secondary ulcers are the results of an affection of the conjunctiva. All inflammations of the conjunctiva may be complicated with inflammations of the cornea; and in severe inflammations of the conjunctiva, as in acute blennorrhea and diphtheria, this is quite the rule.

In accordance with our present views regarding suppuration we must expect to find that in the majority of cases the direct cause of the formation of ulcers in the cornea is constituted by the entrance of micro-organisms into the corneal tissues. We may have to do in this case either with specific organisms, as in the case of acute blennorrhea, diphtheria, etc., or with the ordinary pus cocci. The latter are always found in the secretion of a conjunctiva affected with catarrh. If, now, owing to slight traumatism, to detachment of the epithelium by the formation of a vesicle (in herpes corneae), or to any other cause, the protective epithelial covering of the cornea is injured at some spot, the door is opened for the entrance of cocci into the tissue of the cornea.

In people of the working class ulcers of the cornea occur much more frequently than among the well-to-do classes, because they very often suffer from neglected chronic catarrhs, and at the same time very frequently render themselves liable to injuries of the cornea.

Treatment.—Ulcers of the cornea are very amenable to proper and energetic treatment. They hence in general afford a favorable prognosis if they come under treatment early; in the great majority of cases it is possible to put a stop to their progress, and produce regular cicatrization. The treatment varies according to the stage in which the ulcer comes under treatment.

(a) Recent ulcers that are still fount (progressive) require, most of all, the consideration of the causal indication. In traumatic ulcers
any foreign bodies that are still present must in every case be removed. Cilia which are directed against the cornea must be epilated; papilomata of the edges of the lids, when causing trouble in the cornea, must be removed. In the numerous cases in which the ulcer of the cornea is caused by a conjunctival lesion, the treatment of the latter forms, as a rule, the most important part of our therapeutics, and under it, moreover, the ulcer advances toward recovery. Hence, in corneal ulcers resulting from catarrh, trachoma, or acute blepharorrhoea of the conjunctiva, we must by no means desist from cauterization of the latter, if it is required by the conjunctival trouble. The only precaution that must be observed is that the caustics applied should not come into contact with the cornea itself—a contingency which can be avoided by carefully washing off from the conjunctiva any excess that may be present. Furthermore, we should cauterize with the silver solution only, and not with the copper stick, which is too irritating, and still less with the acetate of lead, which might lead to the formation of incrustations of lead upon the cornea. Moreover, as long as progressive ulcers are present in the cornea, no irritating collyria, such as the collyrium adstringens luteum and the like, should be instilled, as they would then come into contact with the cornea.

The indicatio morbi requires in most cases the application of a bandage. Bandages are distinguished into protective bandages and pressure bandages, according as they are applied lightly or firmly. In recent ulcers a simple protective bandage is sufficient. The object of this is to keep the lids closed and at rest without exerting any pressure upon the eyeball. The immobilization of the lids acts chiefly to prevent the floor of the ulcer from being swept by the lids with every movement of winking, which would give rise to constant irritation of the ulcer, and also to pain through contact with the nerve fibers lying exposed in it. Hence the pain is sometimes cut short at once by the application of a proper bandage. The bandage acts also to protect the ulcer from dust. The dust which is always falling upon the cornea is continually carried off by the movements of the lids; but in the depression which constitutes the ulcer it is not reached by the lids as they sweep over it; it consequently remains lying where it is, and may infect the ulcer. The bandage, as a rule, is to be kept on until the ulcer gets to be clean and becomes lined with an epithelial covering which protects the cornea against exterior influences. When the floor of the ulcer is thinned and shows a tendency to bulge, the use of the bandage must be kept up until the freshly formed cicatrix is sufficiently strong to offer resistance to the intra-ocular pressure.

A contraindication against the bandage is furnished by a profuse secretion, because the latter would be retained in the conjunctival sac by the closure of the lids, and would remain in constant contact with the ulcer. For this reason, in ulcers resulting from conjunctivitis the
bandage must be very often dispensed with. In quite small children, also, the bandage is generally useless, since it soon gets displaced; and a badly applied bandage is more hurtful than any exposure of the eye could be.

Next to the bandage atropine plays the most important part in the treatment of ulcers. It combats the inflammation of the iris, hence diminishes the general state of irritation, and so reacts favorably upon the ulcer itself. It must be instilled as often as is necessary, in order to keep the pupil steadily dilated. With these two remedies alone—the bandage and atropine—we attain our object in light cases. For those ulcers, however, which from the purulent hue or from the strong infiltration of their surrounding parts show a rapidly progressive character, we must employ still other remedies. These are moist warm compresses, iodoform, subconjunctival injections, the actual cautery, and paracentesis of the anterior chamber.

Moist warm compresses are made by taking a very light linen cloth folded several times, which simply covers the closed eye without pressing upon it by its weight. Before being applied this is dipped in hot water and then well wrung out; and it must be changed frequently in order to be constantly warm. The warm compresses are applied every day for an hour or more, and the dressing must be left off each time for the same period.

Very finely powdered iodoform may be sprinkled upon the ulcer itself.

Subconjunctival injections of a 1-to-1,000 sublimate solution may be also made beneath the bulbar conjunctiva.

If in spite of these remedies the ulcer is evidently spreading, we must proceed to the operation of cauterizing the ulcer by means of the actual cautery (Gayet). For this purpose we use a small sharp-pointed cautery iron, or the galvano-cautery loop, or Paquelin’s thermo-cautery. With one of these instruments the ulcer is cauterized wherever it shows a gray coating. In the case of extensive ulcers it is not necessary to cauterize the entire ulcerating surface, but it is sufficient to destroy the most infiltrated portion of its margin, at which an advance of the ulcerative process is to be expected. In performing the cauterization we make the cornea insensitive by the repeated instillation of a five-per-cent solution of cocaine hydrochloride.

Another potent remedy for combating rapidly spreading ulcers is paracentesis of the anterior chamber (for the method of its performance see the section on Operations, § 154). People were led to do this operation by observing that ulcers after spontaneous perforation generally went on to rapid healing. In a similar manner, artificial perforation—i.e., puncture of the cornea—performed early prevents the extension of the ulcer and its threatened rupture. Why should we not wait until the ulcer spontaneously perforates the cornea? Because in
the meantime the ulcer keeps enlarging superficially and thus would produce a more extensive opacity, and, furthermore, because after ulcerative perforation of the cornea a prolapse of the iris almost always develops, leading to the formation of an anterior synechia, while with a properly performed puncture this is not the case.

If perforation is imminent, and we prefer not to bring it about artificially by puncture, we take care to have the patient kept quiet—a thing best done by making him lie in bed, in order that the perforation may take place slowly, and that as little as possible of the iris may be driven into the opening.

(b) When perforation of the cornea has taken place treatment has to aim at the following objects: in the first place, that the iris shall not adhere to the cornea, or at least shall do so to the smallest possible extent; in the second place, that a firm and flat (not ectatic) cicatrix shall be formed. The two objects are attained as follows:

1. If the perforation is small the iris does not prolapse into it, but simply becomes applied to its posterior orifice. In such cases, rest, a bandage, and atropine suffice for the treatment. There then remains only a punctiform adhesion of the iris to the corneal cicatrix, and this is often subsequently drawn out into a thin filament. In particularly favorable cases no anterior synechia at all may be produced; for instance, if the iris, before it has become firmly adherent to the site of perforation, is pushed away from it again by the reaccumulating aqueous.

2. If—in the case of a perforation of greater size—the iris has prolapsed, it should be excised. A replacement of the iris into the anterior chamber (reposition) is in most cases impossible of performance, and, even if it should succeed, would have no lasting results, since the iris would continually prolapse again. For the performance of excision we first make the cornea insensitive by means of cocaine. Then with a sharp-pointed instrument (conical sound) we separate on all sides the adhesions of the prolapse to the perforation opening, draw the iris as far as possible out of the wound with the forceps, and snip it off close to the cornea (Leber). If the operation has been successful, the iris ought no longer to be attached anywhere to the margin of the aperture; on the contrary, there should be a coloboma of the iris with free pillars, as after a regular iridectomy. In this way we obtain a firm cicatrix without inclusion of the iris.

The performance of excision is possible only in recent prolapses (prolapses a few days old), as afterward the prolapsed iris becomes so solidly adherent to the margins of the perforation that the separation of the iris from the latter is no longer feasible. Similarly it is not to be recommended in the case of a very large perforation. In these two cases—i. e.,

3. In old or very extensive prolapses of the iris we abstain from re-
leasing the iris from the cornea; we confine ourselves to the attempt to transform the prolapse into a firm and flat cicatrix. In many cases a pressure bandage applied for a long time accomplishes this end. If we can not attain our object in this way, as is particularly the case when the prolapse is constricted at its base like a mushroom, we must produce flattening of the prolapse by repeatedly puncturing it or by excising a small portion. In the case of a very bulging total prolapse of the iris, it is advisable to split it transversely, and then, after opening the anterior capsule, to expel the lens. If there is a remnant of sound cornea left broad enough for the performance of an iridectomy, this operation is an excellent means for securing the formation of a flat cicatrix.

4. In keratocele, the maintenance of rest, the application of a bandage, and ultimately the puncture of the protruding vesicle, are employed.

5. In fistula of the cornea, in order to effect its closure, everything must be avoided that might temporarily increase the ocular tension, and thus force the fistula open again just as it is closing. For this purpose we order rest in bed, with the application of a light bandage to both eyes, while at the same time we instill a miotic (eserine or pilocarpine, see § 64) in order to diminish the pressure in the anterior chamber. An iridectomy has a very good effect, but this can be performed only when the anterior chamber has been, at least to some extent, restored. If these measures fail, we must remove the cicatricial margins of the fistula either by excising or by cauterizing them (with a blunt galvano-cautery or thermo-cautery point) so as to fill the fistula up with new, firm scar tissue. If, however, we are going to perform cauterization, there must be some remnant, even though a shallow one, of the anterior chamber present, as otherwise we should singe the anterior surface of the lens.

(c) The treatment of ulcers in the regressive period, or period of cicatrization, should aim at filling the loss of substance completely with a resistant cicatrix, and at rendering the latter as transparent as possible. For the attainment of both objects irritants are employed. We begin cautiously with the weaker remedies, passing gradually, if these are well borne, to the stronger ones. One of the mildest of irritants is powdered calomel; more energetic is the action of the yellow-precipitate ointment (from one to four per cent), the collyrium adstringens luteum,* and tinctura opii crocata.† In applying the yellow-precipitate ointment, we insert it into the conjunctival sac.

[* See p. 53.]
[† The tinctura opii crocata of the Austrian Pharmacopoeia is made by extracting 10 parts of saffron with 100 parts of aqua cinnamomi aquosa (cinnamon-water containing 5 per cent of alcohol) and mixing the solution thus obtained with opium in the proportion of 10 parts of the former to 1 part of the latter.—D.]
with a brush or glass rod, and then rub it about with the upper lid so as to perform a sort of massage upon the clouded cornea. Another irritant remedy that is recommended is nebulization—that is, the application of hot vapor (of water either alone or with the addition of irritant fluids) to the cornea by means of an atomizer, such as is employed for inhalation. It is advisable to continue the application of these irritants for a long time in order to secure the greatest possible clearing up of the cornea, but in so doing the remedies must be changed from time to time, as otherwise the eye gets accustomed to them and they lose their efficacy.

Ulcers of the cornea are among the most frequent affections of the eyes, and special significance attaches to them because the opacities that they leave very often impair the sight. Ulcers of the cornea, if we except those resulting from conjunctivitis eczematosa, are found much more frequently in adults, and especially in elderly people, than in children. It seems that in the later years of life the cornea is less well nourished, and is hence more disposed to disintegrate than in youth.

The physician who is called to a patient with an ulcer of the cornea must, after examining the eye, have acquainted himself not only with the diagnosis but also the prognosis; he must tell the patient beforehand to what extent his sight will suffer permanent impairment, in order that such impairment may not afterward be charged against the medical treatment. The prognosis for vision depends upon the situation, the extent, and the density of the opacity which the ulcer has left behind it. Small opacities, even when dense, are generally less injurious to vision than those which are less dense but extensive (§ 45). It is hence less serious for an ulcer to extend into the depth of the tissues than upon the surface. If an ulcer is progressing in the direction of the center of the cornea, every millimetre of advance causes additional injury to the vision, while an extension toward the corneal margin is almost a matter of indifference. No further disintegration is to be apprehended at those portions of the margin of the ulcer to which vessels have already penetrated, and so, too, a portion of the cornea, covered by pannus, is protected against suppuration in acute blennorrhoea. In every instance the ulcer is arrested at the limbus, as it never makes its way into this or into the adjacent sclera. The only exception to this is formed by those ulcers which not infrequently develop from the nodules of conjunctivitis eczematosa situated in the limbus. Even extensive suppuration of the cornea, as in acute blennorrhoea, ulcus serpens, etc., always leaves a narrow rim of cornea intact, which, to be sure, is often not of sufficient size to render possible an iridectomy for the restoration of vision.

Corneal ulcers occur under many various forms, some of which are well characterized, partly by their etiology, partly by their aspect and course. These may be enumerated as follows:

1. In **conguncitivitis eczematosa**, as well as in **conguncitivitis ex acне romanco**, we find small, superficial, generally marginal ulcers, which, as a rule, get well rapidly. There are, however, cases of conjunctivitis eczematosa in which the ulcers, without spreading along the surface, keep on steadily penetrating deeper and deeper until abrupt crater-shaped losses of substance are produced which speedily perforate the cornea. These ulcers, too, are commonly situated at the
DISEASES OF THE CORNEA.

margin of the cornea, and hence leave behind those peripheral incarcerations of the iris with marked displacement of the pupil that are characteristic of a conjunctivitis eczematosa which has run its course.

2. The vascular fasciculus (keratitis fascicularis) is likewise observed in conjunctivitis eczematosa, and is produced by an ulcer making its way from the margin of the cornea farther and farther into the latter, and trailing after it a leash of vessels from the limbus (page 94).

3. Catarhal ulcers are characterized by their crescentic shape, as well as by their position near the corneal margin, and concentric with it.

4. In pannus trachomatosus small ulcers frequently occur, which develop from the infiltration at the margin of the pannus. Sometimes along the margin of the pannus a whole series of such ulcers is found, which also may coalesce into one large crescentic ulcer. Other ulcers develop in the midst of the pannus in spots where the infiltration penetrates more deeply into the cornea and leads to ulcerative disintegration.

5. The central, non-irritative ulcer occurring in trachoma develops generally in the center of the cornea. It is distinguished by the absence of accompanying symptoms of irritation, so that often the disturbance of vision is the only thing that calls the patient's attention to his trouble. Objectively, the ulcer is distinguished by the fact that even during the progressive period it is but very slightly clouded, so that it scarcely gives any evidence of its presence, except the loss of substance that it produces; it may therefore be very easily overlooked if we do not examine the cornea by carefully testing its reflex. It has a tendency to fill up incompletely with cicatricial tissue, so that a central facet remains which causes very great deterioration of sight by the production of irregular astigmatism.

6. Ulcers in acute blennorrhoea and in diphtheria of the conjunctiva generally spread rapidly, and often lead to destruction of the entire cornea, or even to panophthalmitis.

7. Traumatic ulcers of the cornea are, as a rule, small and superficial, and occur for the most part in elderly people. They are located in the zone of the cornea that lies in the palpebral fissure; the upper third of the cornea, which is covered by the upper lid, therefore generally is exempt from them. But besides these ulcers, which run a rapid course and are benign, there also occurs—and usually after inconsiderable injuries—the dangerous sort known as ulcer serpens (see § 35).

For the ulcers which develop as a result of desiccation of the cornea, see keratitis e lagophthalmo (§ 87).

8. Small marginal ulcers of the cornea occur frequently in elderly people, especially of the male sex, without any conjunctival lesion or external traumatism being discoverable as their cause. They develop with pretty violent complications, but are scarcely of the size of a pin's head, and heal rapidly without penetrating deeply. They are particularly troublesome from the fact that they are prone to recur, so that many people have to go through with attacks of this kind of keratitis one or more times every year. The uratic diathesis appears to be a frequent cause of these ulcers, and general treatment directed against this diathesis and consisting of the proper dietary regulations or the use of mineral waters often puts an end to the recurrence of the ulceration.

9. Herpes cornae fibrillosus (rarely also herpes cornae voser, see § 42) may give rise to ulcers formed from the ruptured herpetic vesicles. These have the prop-
DISEASES OF THE EYE.

Property of not penetrating deeply, but of being very prone to spread superficially. This superficial extension may take place in two ways: either the ulcer extends in all directions uniformly, in which case we have a large but quite superficial loss of substance everywhere surrounded by a narrow, sharp, usually festooned, gray, and infiltrated margin, which pushes its way farther every day (Fig. 48); or extension takes place in certain directions only. In the latter case, from the loss of substance, which originally is small, gray striae extend in one or more directions into the transparent cornea, and grow constantly longer, at the same time becoming forked, and also sending out lateral branches. Thus there is produced in the cornea a very pretty gray figure which is branched like a tree, and often bears nodular swellings at the extremities of its branches—keratitis dendritica (Emmert). This branched infiltrate breaks down into an ulcer having the form of a deep, branched furrow, with gray margins encircling it (Fig. 49). Then this ulcer becomes clean and heals, leaving behind it an opacity, whose

branched form allows us to recognize, even some time afterward, the nature of the antecedent affection.

In many cases of herpes, instead of a single large ulcer, numerous minute ulcers develop which are star-shaped and provided with short processes (keratitis stellata) (Fig. 50).

All these forms of keratitis are characterized by their long duration (one to three months).

10. Ulcer rodens (Mooren). A superficial ulcer develops from the margin of the cornea (usually the upper margin) with marked inflammatory complications. From the sound portion of the cornea it is limited by a gray, clouded margin, which is evidently undermined. This latter symptom is characteristic of ulcer rodens. After a short time the ulcer begins to grow clean and to cicatrize, becoming covered with vessels from the limbus. Just when one supposes the process to be nearing complete recovery, a relapse sets in with a return of the symptoms of irritation, and in this the ulcer pushes its way forward somewhat farther in the cornea. So the disease goes on with discontinuous attacks and intervening remissions, until the ulcer has covered the entire cornea. The latter is thus everywhere deprived of its superficial layers, and hence remains permanently clouded throughout its entire extent, so that vision is very greatly diminished. Perforation of the cornea in this affection has never been observed. This rare disease attacks elderly people, and not infrequently invades both corneas either simultaneously or in succession. It was regarded as incur-
able as long as surgeons were unacquainted with the cauterization of the cornea by means of the actual cauter. If, however, we destroy the margin of the ulcer by this means, the ulcer itself is sure to be cured.

11. *Keratitis marginalis superficialis* is another rare disease, found in persons in middle life. A quite superficial ulceration spreads over the cornea, starting from its margin. It does not, however, start from all parts of the margin at the same time, nor does it advance uniformly. Consequently the ulcerated marginal zone of the cornea is demarcated from the transparent central portion by a sinuous border formed by a fine gray line (Fig. 51). This variety of keratitis drags on for a long time—sometimes for years—periods of intermission alternating with relapses, which are associated with moderate symptoms of irritation. It is distinguished from ulcus rodens in that the ulcer is extremely shallow, and hence the cornea within its limits shows only a very faint and grayish opacity. Moreover, the edge of the ulcer, scarcely visible in any case, is not undermined. The ulceration never reaches the center of the cornea, so that the extremely faint opacities that remain do not interfere with sight. *Keratitis marginalis superficialis* often gives rise to a drawing of the conjunctiva up over the cornea in the form of a pseudo-ptyerium (see page 116).

The vascular fasciculus, keratitis dendriticis, ulcus rodens, and keratitis marginalis superficialis have the common trait of creeping along slowly in the cornea, for which reason they are also designated by the name of serpiginous ulcers of the cornea.

12. *Atheromatous* ulcers develop in old cicatrices of the cornea when the latter have undergone degeneration through the deposition of lime or colloid masses or when they are exposed to mechanical injuries (as, for example, when at the apex of a corneal staphyloma). These ulcers torment the patient by the frequency of their recurrence and the associated symptoms of irritation; they may also produce perforation of the cornea, and through this panophthalmitis.

13. In the eyes which are rendered blind by *glaucoma absolutum*, purulent ulcers, usually under the form of ulcus serpens, may develop. These are ordinarily associated with considerable hypopyon, and frequently terminate either in perforation of the cornea with resultant hæmorrhages from the eyeball or in panophthalmitis. Like atheromatous ulcers, they are caused by insufficient nutrition and innervation of the cornea, an insufficiency already made apparent from the insensitiveness of the latter. With both varieties of ulcers, the enucleation of the blanded eye is sometimes the only remedy that permanently relieves the patient of the repeatedly recurring tormenting ulceration.

The treatment of corneal ulcers has very recently made great progress, chiefly because of the introduction of *cauterization* by means of the actual cauter, which we owe principally to Gayet; for those very purulent and infiltrated, rapidly progressive ulcers that we hitherto were often powerless to oppose are just the ones that are usually arrested at once by this means. The application of the cauter is painless when cocaine is employed, and does not, as might be supposed, cause any marked irritation of the eye. On the contrary, after its application, the pain often ceases instantly, while the other symptoms of irritation abate. In private practice, when one has no other means to resort to,
the head of a probe or of a knitting needle, heated red-hot, may be employed for cauterization. The chief thing is to make the cauterization extensive enough. Perforation of the thinned floor of the ulcer can, with care, be easily avoided; should it occur, however, it has no bad results beyond what the perforation itself gives rise to, since the hot point is cooled at once by the outpouring aqueous humor. An opacity remains permanently at the cauterized spot; but since we only cauterize such places as would otherwise go on to purulent disintegration, the final opacity is no greater than it would have been in any case.

Among antiseptics, iodoform dusted in the form of a fine powder on the diseased spot is of most service. From other antiseptic remedies I have seen no special results accrue, at least when applied externally. However, sublimate under the form of subconjunctival injections has been repeatedly employed in corneal ulcers (Reymond, Darier). After the eye has been cocainized, a few minims of a 1 to 1,000 sublimate solution (to which cocaine may also be added) are injected beneath the bulbar conjunctiva, not too close to the limbus. The injection is followed by pain as well as by marked congestion and swelling of the conjunctiva, the latter symptoms not usually disappearing until after several days. The injections are made at intervals of several days. Besides being employed in supplicative processes in the cornea, they are used in parenchymatous keratitis, scleritis, iritis, and irido-cyclitis; likewise also in chorioiditis and retinitis. Moreover, the attempt has been made to apply them in purulent infection from wounds of the eyeball, whether consequent upon injury or upon operation.

Subconjunctival injections of sublimate are mainly of service in progressive corneal ulcers; in other sorts of cases the results obtained from them are rather uncertain.

Eserine is employed by many in the place of atropine in purulent ulcers of the cornea. It seems to me, however, to have no action upon the corneal process itself, and, on the other hand, enhances the condition of irritation of the iris and leads to the formation of numerous posterior synechiae. It is more indicated in those cases in which there exists near the margin of the cornea a small perforation, to the posterior aperture of which the iris has become applied after the escape of the aqueous humor. Here we may hope to produce, by means of eserine, so powerful a contraction of the sphincter iridis that the iris will be drawn away from the aperture, and thus the formation of an anterior synechia be prevented. On the other hand, if the site of perforation should be nearer the center of the cornea, so that the pupillary portion of the iris is applied to it, we must employ atropine in order to draw the iris away from the opening. If, however, the iris has already fallen through the opening in the cornea, so that a real prolapse exists, neither atropine nor eserine, as a rule, is able to release the iris from the wound and return it to the anterior chamber. In this case excision of the prolapse, as recommended by Leber, is the only remedy.

Fistula of the cornea mainly occur as a sequel of perforations that lie opposite the pupillary margin of the iris, so that the iris can not cover the opening completely, but is simply attached by its pupillary border to the cicatricial tissue closing the gap. In this case, the iris, by continually dragging upon the cicatricial tissue, prevents it from becoming consolidated. While, then, such corneal fistulae do not as a rule present wide canals lined with epithelium, and while, on the contrary, we find the perforation opening filled with scar tissue, this
tissue is not dense, but is permeated by fissures through which the aqueous keeps oozing until it reaches the exterior surface of the cornea (Czermak). The origin of other fistulae is that the prolapsed iris splits apart under the strain produced by the pressure of the aqueous, and the opening thus formed never closes solidly again. Lastly, in very extensive prolapses of the iris, it may happen that in the process of cicatrization a fistula is left at the spot corresponding to the pupil.

It is usually hard to effect firm union in fistulae of the cornea. In some cases I have ultimately obtained success by sewing over the fistula a flap taken from the adjacent conjunctiva. The flap by growing fast to the surface of the scar, whose epithelium had previously been removed, closed the fistulous opening. Another procedure consists in excising by means of the corneal trephine the fistula, together with the cicatricial tissue surrounding it, and implanting in the opening an equally large piece of healthy cornea.

2. Uculus Serpens Corneae.*

35. Symptoms.—A recent ulcer serpens appears under the form of a grayish-white or yellowish disk, which occupies nearly the center of the cornea. The opacity of the disk is greater at its edges than in the center, and generally the edges themselves show a particularly well-marked gray or yellow opacity in one special direction. The disk is surrounded by a delicate gray area, and frequently fine, radiating, gray striae extend from the margin of the disk into the transparent part of the cornea. The surface of the cornea over the disk is dotted, and often at the beginning is raised some distance above the level of the surrounding parts. Soon, however, this spot is seen to be depressed, although not with abruptly depressed edges, as in the case of an ulcer, but rather under the form of a shallow dimpling. Moreover, the rest of the cornea that is not occupied by the serpentine ulcer proper is less lustrous, being covered with a delicate uniform cloudiness. These changes in the cornea are always associated with a violent iritis. The aqueous humor is turbid, a hypopyon lies at the bottom of the anterior chamber, the iris is discolored and is fastened by posterior synechiae to the lens capsule. Corresponding to the severity of the inflammation is the violence of the irritative symptoms: slight oedema of the lids, intense injection of the conjunctival and ciliary vessels, photophobia, and pain, which latter often reach a very considerable height. Nevertheless there are also torpid cases, which are associated with very slight symptoms of irritation.

The subsequent course consists in the enlargement, both super-

* Synonymous terms for uculus serpens corneae (Saemisch) are hypopyon keratitis (Roser) and abscess of the cornea. The latter name, used by the older authors, I myself employed to denote the affection in former editions of this text-book, but the name ought to be given up, since in uculus serpens there is no actual abscess cavity in the cornea.
ficially and in depth, of the serpient ulcer. The superficial enlargement takes place chiefly in that direction in which the margin is marked by a specially dense opacity—an opacity which not infrequently looks like a yellow crescent placed upon the serpient ulcer. Inasmuch as the anterior lamellae of the cornea within the region occupied by the ulcer serpents keep breaking down more and more, there is formed an extensive ulcer, the floor of which is coated with pus. Soon after this, generally, those lamellae of the cornea which now form the base of the ulcer are also destroyed, so that an extensive perforation of the cornea is produced. The contents of the anterior chamber, consisting of aqueous humor and pus, are evacuated, and a large prolapse of the iris forms.

While the ulcer serpents is going through with its process of development, the accompanying iritis keeps on increasing in the same proportion up to the time of perforation of the cornea; the hypopyon, too, keeps growing until it fills the greater part of the anterior chamber, and the pupil is closed by an exudation membrane.

After the perforation of the cornea has taken place the irritative symptoms generally abate and the suppuration may now come to a standstill. In other cases, however, the purulent disintegration of the cornea keeps on just the same, so that the latter is entirely destroyed, with the exception of a narrow marginal rim. Panophthalmitis may even result from the suppuration passing over into the deep parts.

An ulcer serpents always leaves a very dense corneal cicatrix which can not be cleared up, and in which the iris is almost always incarcerated. Furthermore, in consequence of the iritis, there are usually left adhesions of the iris with the capsule (posterior synechias), and even a closure of the pupil by a membrane (occlusio pupillae). The corneal cicatrix itself is in favorable cases flat, in unfavorable cases ectatic, so that the ulcer serpents ends by forming a staphyloma. If panophthalmitis has followed upon the ulcer serpents, a shriveling up of the eye (phthisis bulbi) takes place.

The clinical picture which is characteristic of ulcer serpents and by which the diagnosis is made is only present in the beginning of the disease. Its important features are the disklike form and central situation of the opacity, the more pronounced opacity of the margin in comparison with the center, the character of the corneal surface, which, at the site of the ulcer serpents, shows only a shallow depression, and finally the early onset of hypopyon and iritis.

The prognosis of ulcer serpents is always serious, as, on account of the malignancy of its course, it belongs to the most dangerous of the diseases of the eye, and, if not checked early, it generally ends by producing blindness through an incurable opacity of the cornea. And even in the favorable cases, which either spontaneously or with the help of art come to a stop early, a dense, centrally situated opacity re-
mains, so that usually the sight can only be restored by the performance of an operation (iridectomy).

36. Etiology.—An ulcus serpens originates in infection of the cornea by organisms (the pneumococcus) which set up in it a purulent inflammation. Such infection presupposes two conditions: first, a lesion of the corneal epithelium, which in the normal state protects the cornea against the entrance of micro-organisms; and, second, the presence of pyogenic organisms which find their way to the spot where the epithelium is wanting. Both of these conditions occur in many cases of injury of the cornea. The body which inflicts the injury may itself be the carrier of infection and inoculate the cornea with germs. Much more frequently the injury, by producing a loss of substance in the epithelial covering, simply affords the opportunity for the entrance of infection, the infecting germs being furnished by the secretion contained in the conjunctival sac. The injuries which in this manner lead to the formation of ulcus serpens are, as a rule, very slight, consisting in a simple scaling off of the epithelium. Among such injuries, for example, is the scratching of the cornea with the finger nail, a thing which children very often do to their mothers who are carrying them in their arms. A rough cloth, a leaf, or a branch grazing the cornea, and small foreign bodies, especially minute fragments of stone, which fly into the eye, likewise produce these superficial injuries. Even in those cases in which a typical ulcus serpens has appeared to originate spontaneously, it is probable that there has been an antecedent injury, since such slight injuries of the cornea as these are readily overlooked by the patients. In exceptional cases severe perforating injuries, and in a similar way operation wounds, may also give rise to an ulcus serpens. Associated with the injury, as the second factor in the production of ulcus serpens, is the presence of a chronic lesion of the conjunctiva (catarrh or trachoma), or a blennorhoea of the lachrymal sac (present in about one third of the cases of serpent ulcer), by which the infecting secretion is furnished.

Traumatic ulcus serpens attacks adults exclusively, and especially those belonging to the working class. These are more frequently exposed to injuries of all kinds, and, besides, more often suffer from neglected affections of the conjunctiva and lachrymal sac than do members of the well-to-do classes. Great heat favors the formation of ulcus serpens, which is hence much more frequent in the hot season than in winter. For this reason reapers are not infrequently affected with the disease, since in cutting the grain they scratch their eyes with its awns, and, besides, they do their work during the hottest days of the year. Stone masons also are particularly apt to be attacked by ulcus serpens.

In ulcus serpens resulting from acute blennorhoea and from diphtheria of the conjunctiva there is likewise without doubt a penetration of phlogogenic germs into the cornea from the conjunctiva.
Ulcus serpens also occurs in acute infectious diseases, such as smallpox, scarlet fever, measles, typhus, etc. The form that results from variola is most frequently observed. In this case it makes its appearance not at the height of the disease but in the stage of desiccation, and, in fact, sometimes even in patients who have already left their beds. These variolous ulcers are found in children as well as in adults, and not infrequently affect both eyes so that total blindness may be produced by them.

Since the ulcus serpens in variola develops such a length of time after the stage of eruption, it obviously can not be regarded as a smallpox pustule that has been localized upon the cornea. Hence in this case as well as when occurring with other infectious diseases, it has been considered to be a metastatic affection. If the metastasis is supposed to occur in the way of embolism, we should have to assume, since the cornea itself is bloodless, that the embolus is arrested at some point in the marginal network of vessels surrounding the cornea, and that acting from this point it sets up the suppuration. But the clinical picture presented by ulcus serpens, which is a process that begins in the center of the cornea, does not agree with this view. Hence observers are now inclined to the belief that the variolous ulcer, like other ulcers, is to be referred to infection from without. There is no lack of opportunity for such infection to take place, since the free border of the lids is a favorite seat for variolous pustules, which thus can come into direct contact with the cornea.

Treatment.—In consideration of the rapid progress which an ulcus serpens usually makes, and which threatens the entire cornea with destruction, a particularly prompt and energetic interference is required. The treatment is partly medicinal, partly operative.

The medicinal treatment is the same as in purulent ulcers of the cornea—namely, the application of a bandage, atropine, iodoform, moist and warm compresses, and subconjunctival injections of sublimate. At the same time, any lesion of the conjunctiva or lachrymal sac that may happen to be present is to be suitably treated. This treatment is only adapted to the case of small recent ulcers without an excessively large hypopyon. It should be undertaken only under the condition that the disease is closely watched, so that in case the latter progresses in spite of it, we may immediately proceed to operative treatment.

Operative treatment must be initiated without delay in all severe cases of ulcus serpens, but is also required in the lighter cases when they resist the mild treatment. It consists either in the cauterization of the ulcer by means of the actual cautery or in its incision according to the method of Saemisch. Cauterization is performed in the same way as in the case of progressive ulcers of the cornea; special attention must be paid to the destruction of the progressive portion of the margin. Cauterization has the advantage over incision of not causing a
perforation of the cornea, and hence of not giving rise to inclusion of the iris. It is suitable, however, only for those ulcers that have not yet undergone perforation, and in which the hypopyon is not excessively large, for the latter is not removed from the eye by this method; it can disappear from the anterior chamber only by resorption. Incision of the ulcer serpens (puncture by Saemisch's method, see the section on Operations, § 154), beside dividing freely the corneal lamellae, which are saturated with pus, also effects the evacuation of the hypopyon; it, however, entails the disadvantage of a frequently extensive incarceration of the iris. Incision is suitable for very extensive ulcers, for those in which perforation is imminent, and for those which are associated with a large hypopyon. We should not let the matter rest with a single performance of the incision, but must every day separate anew with a blunt instrument the edges of the wound, as they speedily reunite, and we must keep this up until the ulcer begins to grow clean. At the same time that this operative procedure is being performed, the medicinal treatment above mentioned must be continued. Perforation and prolapse of the iris, when once they have occurred, must be treated according to the plan that has been laid down for perforating ulcers (page 156).

According to our present views, purulent inflammations everywhere are, with rare exceptions, to be referred to the presence of Schizonyctes. In the special case of purulent inflammation of the cornea, the presence of fungi has for a long time been a matter of demonstration, the principal organisms found being the staphylococcus, streptococcus, pneumobacillus (of Friedländer), and the pneumococcus (of Frankel and Weichselbaum). The last named is the most frequent exciting cause of the typical ulcer serpens, which possibly owes its very peculiarities to the special properties of this germ (Uthhoff and Axenfeld). In rare cases mold fungi (Aspergillus fumigatus) have been found as the cause of suppurative keratitis.

The micro-organisms, whose presence in the suppurating cornea has been demonstrated, are also without doubt the real exciting cause of the suppuration. Traumatism alone, without infection, does not give rise to suppuration. We may cut, scrape, crush, or, in short, injure in any way, or even cauterize the cornea of an animal without getting any purulent inflammation of it; in every case simply a gray cloudiness develops, which generally disappears again quickly. But when, by repeatedly touching the conjunctiva with nitrate-of-silver solution, we have artificially produced a conjunctival catarrh, and in this way have given the opportunity for the production of infection, we then see purulent infiltration follow upon these same lesions of the cornea (Thilo.) What is true of the cornea of animals is also true of that of man. Provided we avoid infection by cleanliness and antiseptic measures, we can with impunity subject the cornea to operations both light and severe; even crushing of the cornea, such as, for example, is often enough produced in the expression of a cataract, does not always by any means lead to suppuration. But if we undertake the same operation in the presence of a conjunctival catarrh or a suppuration of the lacrymal sac, we risk the loss of the eye from a purulent infection of the wound.
In what way does infection of the cornea by pus germs lead to the development of a suppurative keratitis? We owe our knowledge in regard to these processes and the true explanation of them chiefly to the investigations of Leber, who made inoculations of various kinds of germs upon the corneas of animals. The morbid processes that he observed to result from these inoculations he refers to the toxic effect which the products of the tissue metamorphosis of the cocci induce. He assumes that the chemical substances produced by the cocci exert upon the cell protoplasma an irritant action, when but slightly concentrated, and, when more concentrated, a paralyzing and ultimately fatal effect. When pus cocci are introduced into the cornea by inoculation they first increase in number within the corneal tissue. Then the cornea for a certain distance about the colony of cocci dies, because the toxic substances excreted by the cocci are present within this area in a state of strong concentration. Accordingly, the colony of cocci now lies in the center of the necrotic area (Fig. 52). In the meantime violent inflammatory symptoms have made their appearance in the eye. The toxic substances by diffusion have reached the margin of the cornea, and there cause dilatation of the vessels and increased permeability of the vessel walls, entailing as a necessary consequence increased diapedesis of the blood plasma. In addition to this diapedesis of serum an emigration of white blood corpuscles also takes place from the vessels. This is effected by active movements of the leucocytes, which, irritated by the toxic substances, emigrate toward the focus of inflammation (chemotaxis). This migration of the leucocytes may be explained in the following manner: The degree of concentration of the toxic substances diminishes gradually from the spot where the irritation originates to the periphery. Hence, that side of the body of a leucocyte that is turned toward the starting point of the irritation is in contact with a more irritating fluid than is the side which is turned in the opposite direction. Hence the protoplasmic processes push out more on the former side than on the latter, and the whole cell consequently moves toward the source of irritation. The leucocytes, however, do not make their way into the necrotic district itself, the pus cells that are found there being such as have emigrated from the conjunctival sac. In fact, the leucocytes derived from the margin of the cornea are paralyzed at the border of the necrotic area owing to the great degree of concentration of the toxic substances at this spot. Thus it happens that a constantly increasing number of cells are arrested at the margin of the necrotic spot, and die there. In this way is produced the infiltration (or migration) ring, which is apparent to the naked eye. Now leucocytes have the property of dissolving by a kind of digestive action tissues in which they are present in large quantities. They effect by this means the exfoliation of the necrotic area, and give rise to a delimiting suppuration. The inflammatory phenomena in the cornea, consequently, appear under the guise of a process
having a definite purpose to subserve, the principal end and object of which are to eliminate the necrotic area, and with it the morbidic agents that it contains. But beside this the pus corpuscles, as experiment has shown, have the additional property of directly inhibiting the growth of germs, so that they oppose the diffusion of those schizomyocytes that may have chance to grow out beyond the necrotic mass.

Since the cornea is an organ which extends mainly in one plane, the migration zone does not form a spherical shell, but a ring. Yet, according to Leber, migration is not wanting on the posterior surface of the cornea also. The way in which this occurs is, that first the endothelium of Descemet's membrane over the necrotic area becomes detached and a clot of fibrin is precipitated from the aqueous upon this portion of the posterior wall of the cornea. Then leucocytes migrate into the clot, so that soon a plug of pus can be seen on the posterior surface of the cornea at a point corresponding to the site of the inoculation. This pus, by sinking down to the bottom of the anterior chamber, forms the hypopyon.

Leber's experiments were all made upon animals, in which it is not possible to produce a morbid picture perfectly similar to the ulcer serpens in man. And, for reasons that will be readily comprehensible, anatomical researches on human eyes affected with ulcer serpens do not exhibit its early stages, whose anatomical character must be inferred from what is found to obtain in the more advanced cases. I have in my possession preparations made from nine cases of ulcer serpens (including four of Dr. Elschlag's), and from the concurrent testimony of these the course of the disease shapes itself as follows: An infiltrate forms in about the center of the cornea. This infiltrate is like that represented in Fig. 38, but is somewhat more superficially placed, and, on the other hand, is denser. The corneal lamellae placed over the infiltrate become necrotic, and then swell up and exfoliate. Thus, in place of the infiltrate there is formed a flat open ulcer, the floor of which consists of fibers of the cornea, that have been heaved up and are swollen to an almost homogeneous mass, and between which only a very few, sparsely scattered pus corpuscles are to be seen. It is only at the margins of the ulcer that the remains of the infiltrate can still be distinguished, and here it penetrates—appearing in cross section like a wedge—into that portion of the cornea that still is sound (Fig. 53 C, a). This residue of infiltrate corresponds to the yellow, advancing border of the ulcer serpens; it keeps insinuating itself farther and farther along between the lamellae of the cornea, so as to lift up and then to detach the layers that overlie it. In many cases of ulcer serpens the infiltration of the margin soon disappears at some portion of its circumference, so that the ulcer advances in one direction only. This progressive portion of the ulcer's border then looks like a yellow crescent (Fig. 53 A, a) applied to the disk-shaped ulcer, which itself is often so little clouded that one can scarcely recognize it except by the shallow depression that it produces in the surface of the cornea. In this case wherever in the living eye the yellow margin is no longer visible anatomical dissection shows the wedge-shaped infiltrate to be absent (Fig. 53 C, b). At this point the epithelium passes over the edge of the ulcer and out upon its floor, covering the latter in an irregular uneven layer, often as far as the advancing portion of the border. This fact explains why such ulcers give an almost mirrorlike reflex. It would, however, be erroneous to assume that the portions of the cornes that have once more become covered in this way with
epithelium have healed. Nature tries to cover every wound with epithelium as rapidly as possible, in order to protect it from the outside world. In such a case it often happens that the epithelium covers masses of dying tissue, and even masses of pus. So also in Fig. 53 C, we see at a how the epithelium has grown over the advancing portion of the border, which is on the very point of disintegration. Moreover, those lamellae of the cornea that lie directly beneath the epithelium and form the floor of the ulcer are no longer capable of surviving; they are swollen up, destitute of corneal corpuscles, and contain only a few pus cells. The deeper-lying lamellae are apparently normal; but upon careful examination it is found that no corneal corpuscles susceptible of staining can be distinguished in them, so that they also in large part are on the way to destruction. Hence it is that although in ulcer serpens the purulent infiltration does not go very deep, nevertheless very extensive perforation of the cornea occurs.

The changes which simultaneously take place at the posterior surface of the cornea contribute to the production of perforation. Here an accumulation of pus corpuscles takes place early, and these migrate toward the inflammatory deposit, making their way mainly along the posterior surface of Descemet’s membrane. They
DISEASES OF THE CORNEA.

are derived from the vessels of the uvea, and chiefly from the vessels surrounding the sinus of the anterior chamber; and as proof of their origin, many of them contain small granules of pigment derived from the uvea. The pus corpuscles congregate to form a mass of pus upon the posterior wall of the cornea; they then penetrate into Descemet’s membrane and ultimately into the cornea itself. In this latter, therefore, there is formed a sort of posterior abscess (Fig. 53 C, e) at a point corresponding to the site of the ulcus serpens. Directly in front of this abscess lie those corneal lamellae which, as already mentioned, are destitute of corneal corpuscles and are undergoing dissolution; and their necrosis in conjunction with the abscess gives rise to the perforation of the cornea.

If we compare these observations with the results obtained in Leber’s experiments upon rabbits, we must regard the posterior abscess and the wedge-shaped infiltration at the advancing margin as parts of the migration zone.

The pus of the posterior abscess, which lies within the cornea itself, is in direct communication with the purulent masses that are applied to the posterior surface of the cornea. These latter form coherent lumps (a, Fig. 53 C), which sink to the bottom of the anterior chamber until they unite with the hypopyon (d, Fig. 53 C) present there. In the living eye these masses of pus upon the posterior surface of the cornea often render it impossible to make out precisely the limits of the ulcus serpens, inasmuch as the latter does not contrast sufficiently with the yellow background made by the pus (Fig. 53 A).

The hypopyon has usually a border that in front view appears convex upward (Fig. 53 A, d). It is, moreover, agglutinated to the posterior surface of the cornea (Fig. 53 C, d), so that when we look into the anterior chamber from above we can see down between the hypopyon and the iris.

The older authors were well acquainted with these appearances, but gave them a different interpretation. They regarded the thread of pus extending downward into the anterior chamber as a hypopyon situated in the cornea itself, assuming that the pus settled down between the corneal lamellae. They explained the flattened shape of the hypopyon and the convex curve of its upper border as being due to the contracted space occupied by the pus inclosed between the corneal lamellae. On account of the convexity of its upper border they compared the hypopyon to the lunula of the finger nail, and hence called it unguis or onyx (nail). These expressions would therefore denote a settling of pus down between the lamellae of the cornea—a phenomenon, however, that does not actually occur.

The variety of keratitis produced by mold fungi (keratomycosis aspergillina) presents even upon external examination a clinical picture differing from that of the ordinary ulcus serpens. There forms in the central portions of the cornea an infiltrate which later undergoes superficial disintegration, and is distinguished by its peculiar, dry, crumbly surface. About this area a gray or yellow annular line of demarkation forms, which gradually deepens into a gutter and ultimately leads to the exfoliation of the inclosed portion of cornea, which in the meantime has become necrotic. The latter being thus detached from the cornea, cicatrization of the resulting loss of substance ensues. Hypopyon is present, but the irritative symptoms are slight, and the whole course is very chronic. Examination of the sequestrum shows it to be permeated by a growth of the mycelium of the Aspergillus fumigatus. It is probable that, as a general
thing, this fungus is carried into the cornea by the foreign body that caused the original injury.

A keratitis that has a certain resemblance to ulcer serpens consists in the development in the middle layers of the cornea of a gray, disk-shaped opacity, which is sharply limited by a border of deeper gray from the transparent periphery of the cornea. In the center of the disk a small, more deeply clouded speck is commonly observed. The gray border of the disk may be made up of several concentric circular lines. This disk-shaped infiltrate never becomes yellow and never leads to disintegration of the cornea; only exceptionally a small loss of substance develops over a circumscribed area. The irritative symptoms are mostly not very pronounced, and hypopyon is absent or but scanty. The course of the disease is a protracted one, as it takes one or more months for the eye to become free from congestion and for the infiltrate to be transformed into a corneal opacity. This latter is permanent. In the course of the disease it often happens that scattered, superficial, or deep-seated blood-vessels develop which extend into the infiltrate. Cases of similar nature were described by the older ophthalmologists under the name of abscessus siccus, by which term they meant an abscess in which no suppuration had occurred. In reality it is likely that in these cases, as well as in ulcer serpens, infection of the cornea from without lies at the bottom of the trouble. In argument for this view it may be said that the central gray speck represents the point of entry of the bacteria and the gray marginal line the migration zone. The distinction between this and ulcer serpens would consist in the fact that the inflammation does not advance to the point of suppuration, and the reason for this may be that we have here to do with bacteria that give rise to a milder, non-suppurative form of inflammation. The way in which the infiltrate originates is not known, since no history of injury is given by the patients, and usually, too, there are no lesions of the conjunctival or lacrimal sac present. The disease has a certain resemblance to keratitis profunda (see § 42), in which likewise a deep-seated, gray, non-ulcerating infiltrate develops in the center of the cornea. But this is composed of gray striae and maculae, and merges gradually into the transparent cornea. The infiltrate here described, on the contrary, appears uniformly gray and only under a very high magnifying power can be resolved into extremely minute, well-defined, white, closely agglomerated points; moreover, it is quite sharply separated from the healthy cornea by the gray circular line forming its border.

The annular abscess of the cornea usually occurs after perforating injuries of the latter, and also after operations (especially cataract operations). No matter where the corneal wound that gives rise to it is situated, it develops in the central portions of the cornea as a yellow ring which is concentric with the limbus and is separated from it by a slightly cloudy marginal zone, one to two millimetres broad. The ring itself has about the same width; the central portions of the cornea inclosed by it are again less cloudy and simply gray, not yellow. In the next few days, however, the yellow coloration spreads over the entire cornea; the latter disintegrates completely, and not infrequently panophthalmitis ensues. Here accordingly we have to deal with an affection of the cornea of a peculiarly fulminating course, so that it is best to enucleate at once such an eye affected thus with annular abscess.

The treatment of ulcer serpens had in general but little success to chronicle until Saemisch substituted the operation of incision for that of paracentesis, of
Diseases of the Cornea.

Iridectomy, etc., previously in vogue. In performing the operation we must take care not to injure the lens and not to let the escape of aqueous take place too suddenly. The hypopyon is either evacuated spontaneously, especially if the patient makes pressure with his lids, or it can be grasped by means of a forceps introduced into the wound, and drawn out. For, in ulcus serpens, it is not thin and liquid, but of a tenacious, viscid consistence. In consequence of the diminution of pressure after the escape of the contents of the anterior chamber hemorrhages often take place from the iris, which, already hyperemic before the operation, now becomes still more distended with blood. This is probably the cause of the violent pain which regularly follows upon the evacuation of the contents of the anterior chamber, although the incision itself is but little felt. After incising the ulcus serpens we always get an attachment of the iris to the cornea during healing, which, however, would not have failed to occur, even apart from the operation, in those cases in which incision is indicated at all.

Recently an old, partly forgotten procedure has been again brought into use. This consists in scraping the ulcus serpens with a small sharp spoon. The loss of substance thus produced may be brushed over with antiseptic substances or with iodoform.

Prophylaxis against the formation of an ulcus serpens is possible in the sense of our being able to remove in season the source of infection, as, for instance, the secretion from a lachrymal sac affected with blepharitis. If, in such a case, a small erosion of the cornea exists, this is to be treated with special care by the application of disinfectant remedies.

Even in cases of variolous ulcers of the cornea prophylaxis undertaken in season would often prevent the infliction of great injury. During an eruption of smallpox the lids are much swollen, and hence are not opened by the patient, and even the physician generally neglects to look at the eye from time to time. In that case, when the swelling of the lids goes down during the stage of desiccation and the patient opens his eyes again the morbid process in the cornea is often already in progress, and we are just so much behindhand in undertaking the treatment. Horner, therefore, is right in demanding that a physician treating a smallpox patient should prevent the agglutination of the lids by applying a pledget smeared with ointment, should examine the eyes every day, and should cleanse the conjunctival sac with antiseptic solutions. Careful watching will enable us to recognize the very commencement of the corneal disease, which in these early stages presents the most favorable conditions for treatment. At the time when smallpox was very widespread it formed one of the most frequent causes of blindness, so that about one third of all cases of blindness were produced by it. Since smallpox, owing to the introduction of vaccination, has become less prevalent, the blindness due to it has correspondingly diminished. Thus, in France, before the introduction of vaccination thirty-five per cent—and after its introduction seven per cent—of all the blind lost their eyesight by reason of smallpox (Caron du Villards). In Prussia, before the introduction of compulsory vaccination, thirty-five per cent—after its introduction two per cent—of all the blind people in the country were rendered so by smallpox.

Keratitis e lagophthalmo originates from a desiccation of the cornea in consequence of its being insufficiently covered by the lids. The conjunctiva of the eyeball, wherever it lies constantly exposed to the air in the open palpebral fissure, appears reddened, and generally somewhat swollen as well. It secretes a small amount of discharge, drying upon the conjunctiva in crusts, which not infrequently also cover the exposed portion of the cornea. After removing the crusts we find the cornea dry on the surface, dull, slightly depressed, and at the same time clouded and gray. In the subsequent course of the disease the cloudiness becomes more and more intense, until finally disintegration of the superficial layers of the cornea takes place, with the consequent formation of an ulcer. At the same time there exists iritis with hypopyon. The ulcer may heal without perforation, but leaving an opacity behind it, or it may perforate the cornea, and thus lead to prolapse of the iris, or even to panophthalmitis.

The cause of keratitis e lagophthalmo is the desiccation of the cornea in consequence of the defective closure of the lids (lagophthalmus). Owing to this desiccation the corneal epithelium becomes fissured and desquamates in spots. Then germs migrate into the corneal lamellae thus exposed, and produce suppuration.

The defective closure of the lids arises either from mechanical obstacles, such as contraction of the lids, marked protrusion of the eyeball, etc., or from paralysis of the orbicularis palpebrarum. In high degrees of lagophthalmus the cornea is uncovered all the time; in lighter cases, on the contrary, in which the closure of the lids is not impossible but only impeded, the danger of desiccation taking place is particularly present during sleep. In daytime, owing to the feeling of dryness of the cornea, the act of winking is pretty frequently excited through reflex action, and thus the cornea is repeatedly moistened. But in sleep the reflex winking of the lids is absent, and hence the cornea is unmoistened by this means and becomes dry wherever it lies exposed in the open palpebral fissure. The desiccation in this case always affects the lowermost part of the cornea, because in sleep the eyeball is turned upward, and hence the lower part of the cornea lies in the palpebral fissure. The corneal lamellae, as fast as they become desiccated, die and are cast off by a process of suppuration. An ulcer is then produced which extends below as far as the margin of the cornea, while above it reaches a greater or less distance, according to the extent to which the cornea is uncovered, and ends in a horizontal border. This desiccation of the lowermost portion of the cornea occurs when the lids remain incompletely closed because the consciousness is clouded, as is the case in persons who, in severe diseases, lie unconscious for a long time. If such patients escape with their lives, they may have opac-
ties of the cornea in both eyes in consequence of keratitis e lagophthalmo, or they may even lose their eyes altogether.

The treatment consists in taking care that the cornea shall be covered by the lids. In this way the development of a keratitis is prevented by prophylaxis, or, if a keratitis already exists, the chief condition is afforded for its cure. We must accordingly initiate the proper treatment for the cure of the lagophthalmus (see § 112), and in the meantime, until a cure has been accomplished, take pains to effect a perfect closure of the lids by means of a properly applied bandage. In order to do this, it is generally necessary to fasten the lids themselves together by strips of sticking plaster before the bandage is applied over the eye.

In slight cases of lagophthalmus it is sufficient to keep the eye bandaged through the night only. But if the lagophthalmus is considerable, or if keratitis has already set in, the eye must be kept bandaged all the time. If the treatment is initiated early, the prognosis is good, inasmuch as the process comes to a standstill as soon as the desiccation of the cornea is arrested.


38. Symptoms and Course.—Keratomalacia* occurs only in childhood. The disease begins with night blindness (hemeralopia). This consists in the patient's visual power being perfectly good in bright daylight, but so very greatly reduced when the illumination is diminished (e.g., in twilight) that he is often no longer in a state to go about alone. In very small children who do not go about alone yet, this symptom naturally can not be made out. In such children, the first thing that strikes us is the dryness of the conjunctiva, which next develops, and which appears under the form of triangular xerotic spots on both sides of the cornea (see page 120). The conjunctiva in these spots is covered with a fine white substance like foam, and, as the lachrymal fluid can not moisten it, looks as if smeared with grease. The dryness extends rapidly over the rest of the conjunctiva and also over the cornea. The latter becomes dull, insensitive, and uniformly cloudy. Soon the cloudiness in the center of the cornea increases, a gray infiltrate forming there. This spreads rapidly, takes on the yellow color of pus, and terminates in the disintegration of the cornea—a disintegration which, in bad cases, may take place within a few hours. In the beginning the affected eye is not discolored; afterward, when the cornea is already greatly involved, there appears about the latter a dusky venous injection. The lachrymal secretion is not increased, but rather diminished; moreover, other symptoms of irritation, like photophobia and blepharospasm, are slight or are wanting altogether. The striking

* Softening of the cornea, from [κέρας, horn, and] μαλάκτις, soft.
contrast between the severity of the corneal affection and the insignificance of the accompanying symptoms of irritation, together with the dryness of the eye, stamps the disease with quite a peculiar character. This affection usually attacks both eyes.

Children suffering from keratomalacia show a disturbance of the general condition, which is generally pronounced even before the outbreak of the eye trouble, and which afterward grows still greater. The children become strikingly apathetic, have diarrhea alternating with constipation, become rapidly emaciated, and often ultimately die either from exhaustion or from a complicating bronchitis or pneumonia.

The prognosis in very small children is bad, as in most cases they lose not only their eyes, but their lives as well. In somewhat older children the disease runs a less severe course, so that they escape with their lives and get off with smaller or larger cicatrices of the cornea; indeed, the cornea itself may subsequently clear up once more (Gouveia).

Etiology.—Keratomalacia is the result of an insufficient nourishment of the cornea, which evidently is only one of the symptoms of a severe general disease. The real nature of the latter is indeed at present unknown to us, although there are various facts that do not permit us to doubt its existence. Thus the hemeralopia is nothing but the expression of the depressed nutrition of the retina. The latter still performs its functions well when it is acted upon by powerful impressions, such as images made by a strong light. But as soon as the brightness of the images falls below a certain limit, the images of the object are no longer able to excite the retinal elements, the energy of which has been depressed (torpor retinae). This condition is in harmony with the general apathy exhibited by these patients. Another thing that points to a severe general disorder is the rapid decline of strength, which often develops in an altogether inexplicable fashion even in those cases in which the children at the beginning of the disease were apparently healthy.

Keratomalacia develops, as a rule, in consequence of enfeebling influences affecting the children, and acting detrimentally upon their nutrition. Among these influences belong insufficient or unsuitable nourishment (rearing of children by hand), severe diseases like scarlet fever, measles, typhus, etc., and particularly hereditary syphilis. The disease occurs in Russia much more frequently than with us, as there it attacks infants during and after the time of the great fast, because during this period the mothers lose their milk in consequence of fasting. For a similar reason it is frequently observed in Brazil among the badly nourished children of the negro slaves.

Keratomalacia does not occur in adults, although the kind of hemeralopia that occurs with xerosis of the conjunctiva (see § 104), and which likewise occurs chiefly in poorly nourished persons, may be a milder form of the same disease.
The chief task that treatment has to accomplish is to support the child’s strength by means of fitting nourishment. In addition we must try to stimulate the vitality of the tissue of the corneas, a thing best performed by means of moist and warm compresses placed upon the eyes. If the apathetic little patients do not close their lids properly, the corneas must be protected from desiccation by bandaging the eye.

5. Keratitis Neuroparalytica.

39. Symptoms.—In this affection, which occurs in consequence of paralysis of the trigeminus, the cornea becomes dull and slightly cloudy. Then the epithelium begins to be thrown off, first at the center, then more and more peripherally, until at length the entire cornea, with the exception of a marginal rim two to three millimetres broad, is bared of its epithelium. This gives the cornea quite a peculiar appearance, such as is found in no other disease of it. In the meantime the cloudiness of the cornea also has increased. This is most marked in the center, and there is uniformly gray; toward the margin it gradually decreases, and may be resolved by the magnifying glass into separate gray maculae. Subsequently the hue of the cloudiness becomes yellowish, hypopyon sets in, and ultimately the cornea in its center breaks down into pus. Thus a large ulcer forms, which cicatrizes with inclusion of the iris, and generally with flattening of the entire cornea. Not all cases, however, run so severe a course; the keratitis may get well without the occurrence of any purulent disintegration of the cornea, although there always remain an opacity of considerable dimensions, and often, besides, a flattening of the cornea.

The course of the disease is slow, and is characterized by the slightness of the associated symptoms of irritation. There is, indeed, marked ciliary injection but no lachrymation, since the secretion of the lachrymal gland, due to reflex action, is diminished or abrogated. Owing to the coincident paralysis of the trigeminus, pain obviously is altogether absent.

The prognosis is unfavorable, treatment having very little influence on the course of the disease, which, whether the formation of ulcers does or does not take place, leads, almost without exception, to the production of a dense opacity over the entire cornea, and hence to an almost complete annihilation of the visual power.

Keratitis neuroparalytica has its cause in a paralysis of the trigeminal nerve, which induces trophic disturbances in the cornea. The paralysis of the trigeminus also causes the simultaneous arrest of secretion of the lachrymal gland as well as the absence of pain. It is a matter of indifference whether the lesion which causes the paralysis of the trigeminus affects the trunk of the nerve or its nucleus of origin in the brain.
The treatment consists in the application of a bandage, warm compresses, and atropine. Besides, we may try electricity, or, following Nieden's recommendation, strychnine (three to five milligrammes by hypodermic injection beneath the skin of the temple).

The three affections of the cornea just described—keratitis e lagophthalmo, keratitis neuroparalytica, and keratomalacia—have been frequently confounded with each other. Thus the keratitis e lagophthalmo, which makes its appearance in patients during the death agony, has been regarded as a keratitis neuroparalytica, its cause being attributed to the depressed state of the nervous influence. Conversely, some have explained keratitis neuroparalytica and keratomalacia as produced by desiccation of the cornea, and in this way have placed them in the same category with keratitis e lagophthalmo. Many authors deny absolutely the existence of keratitis neuroparalytica as an independent affection. Hence this latter should be the first to receive careful consideration.

The theory of keratitis neuroparalytica was founded by Magendie, who found that after section of the trigeminus in animals a keratitis made its appearance. He referred this to trophic disturbances. Snellen and Sennfleben showed that the development of keratitis could be produced by sewing to the eye a metallic capsule (the lid of a pipe). They hence concluded that the keratitis did not depend upon trophic disturbances, but was to be referred to traumaticism; for, as the animal has become destitute of sensation on the side operated upon, he strikes his eye against everything or rubs it against objects—e. g., against the walls of the cage in which he is confined. But inasmuch as simple mechanical injuries produce only attacks of cloudiness in the cornea, which rapidly pass off and never produce attacks of purulent keratitis like keratitis neuroparalytica, the further assumption had to be made that the cornea, in consequence of the trigeminal paralysis, has a diminished power of resistance against external injuries. Then Feuer, by experiment, proved the incorrectness of this explanation. After section of the trigeminus, the cornea can be injured in any way whatever beneath the metallic capsule sewed on in front of it, without anything but transient cloudiness of the cornea being produced. Hence, after section of the trigeminus, the cornea reacts toward external injuries just as it did before, and the cause of the efficacy of the metallic capsule must be sought for in something besides the prevention of traumaticism. Feuer thought that he had found it in the fact that the metal capsule prevents the desiccation of the cornea. For in trigeminal paralysis the act of winking produced by reflex action is abolished; consequently the cornea becomes dry in its central, most exposed portion, and a delimiting suppuration develops about this dried and necrosed area. This sort of keratitis, which Feuer designated with the name of keratitis xerotica, is the alleged keratitis neuroparalytica. He was able to excite just the same sort of inflammation by producing lagophthalmus artificially in animals with an intact trigeminus. For this purpose he sewed the two lids and the nictitating membrane so far back that they could no longer cover the cornea. Hence the efficacy of the metal capsule after section of the trigeminus consists, according to him, only in the fact that it prevents the desiccation of the cornea; for, as the animals strike the capsule against the walls of the cage, they push the lids, to which it is fastened by sutures, in different directions over the cornea [and so moisten the eye]. Hence, too,
Feuer was able to obtain the same effect with an open ring of cork, which he sewed in front of the eyes. Then Feuer applied his results to man, and demonstrated that the keratitis which is seen to develop in soporose patients is clinically and anatomically identical with that which is developed in animals and men through imperfect covering of the cornea (keratitis e lagophthalmho). He went too far, however, in denying altogether the existence of a true keratitis neuroparalytica.

There is no doubt that the keratitis which is sometimes in man observed in connection with trigeminal paralysis is in solitary instances caused by desiccation of the cornea, and thus is a keratitis e lagophthalmho. The desiccation is produced by the abolition of the regular movement of the lids and by the deficiency of the secretion of tears. In this way, for instance, are those cases to be explained in which paralysis of the oculo-motor nerve, and consequently incomplete ptosis, exist at the same time with paralysis of the trigeminal, and in which the cornea, as occurs in keratitis e lagophthalmho, is affected only in its lowermost portions which are not covered and protected by the drooping upper lid. But there are cases, nevertheless, which present the characteristic picture of genuine keratitis neuroparalytica as above described—a picture which is altogether different from that of keratitis e lagophthalmho. Moreover, it is developed in those cases of trigeminal paralysis in which the movements of the lids and the moistening of the cornea are perfectly normal, or in which, in consequence of complete ptosis, the cornea is entirely covered by the lid, and is thus protected from desiccation. Furthermore, since the application of a bandage, which is a sure preventive of keratitis e lagophthalmho, is of no avail against the development of a true keratitis neuroparalytica, the latter cannot depend upon desiccation of the cornea. Again, the frequently repeated injuries to which the development of keratitis neuroparalytica in animals has been referred cannot be thought of as existing in the case of a human being who takes good care of his eyes. Hence we can only explain keratitis neuroparalytica by the assumption of a trophic disturbance. The fact that it does not occur in all cases of trigeminal paralysis is no evidence to the contrary, for the disease may have affected only the sensory and not the trophic fibers of the trigeminal. The trophic fibers, according to the views of different authors, arise from the sympathetic and attach themselves to the medial aspect of the trunk of the trigeminal. In fact, keratitis neuroparalytica has been obtained after sections of the trigeminus affecting only the innermost fibers of the nerve, although, in consequence of the sensory fibers being intact, the cornea and the lids have retained all their sensitiveness. We are therefore obliged to acknowledge the existence of a genuine keratitis neuroparalytica, and to make a sharp distinction between it and keratitis e lagophthalmho.

The confounding of the three forms of keratitis—keratitis e lagophthalmho, keratitis neuroparalytica, and keratomalacia—with each other has been favored by the fact that they display various features in common. Among these are the dryness which the eyes exhibit, and also the insignificance of the irritable symptoms in comparison with the severity of the keratitis, an insignificance shown in the absence of increased lachrymal secretion, of blepharospasm, and often also of pain. And yet the dryness of the eyes in these three forms of keratitis is to be referred to very different causes.

(a) In keratitis e lagophthalmho an actual desiccation of the cornea from evaporation exists. It affects only the exposed portion of the cornea, and may
be relieved by closure of the lids. The desiccation in this case is the one cause of all the subsequent changes.

(b) In keratomalacia the cornea is not actually dry, but only looks so, because the lacrimal fluid does not adhere to its surface. This dry appearance is present even when the eye is swimming in tears or when it is kept constantly closed; evidently, bandaging is of no effect against this sort of dryness. It is caused by a fatty metamorphosis of the epithelial cells, which consequently are not wetted by the lacrimal fluid.

(c) In keratitis neuroparalytica there is neither real desiccation of the cornea, as in keratitis e lagophthalmo, nor a peculiar fatty condition of its surface, as in keratomalacia; on the contrary, the eye looks dry simply because, in spite of the marked inflammation of the cornea, the lacrimation, which we usually see under these circumstances in other cases, is absent. The secretion of the lacrimal gland is in fact diminished or altogether abrogated; nevertheless, the moistening of the eye is quite sufficient, as indeed it is after extirpation of the lacrimal gland.

The absence of marked symptoms of irritation, which characterizes these three varieties of keratitis, is accounted for in the keratitis e lagophthalmo of very sick people and in keratomalacia by the general depression of strength, and in keratitis neuroparalytica by the insensitiveness of the eye. The irritative symptoms, which in other cases are put in action through reflex impulses originating in the sensory nerves, are absent in the case of paralysis of the trigeminal.

The three forms of keratitis are hence, in spite of their external similarity, entirely different from each other, and can be readily differentiated by the clinical picture which they present. Keratitis e lagophthalmo occupies, as a rule, the lowermost part of the cornea. Keratomalacia begins in the center of the cornea, and is found only in children who are the subjects of a rapid decline of nutrition. Finally, keratitis neuroparalytica is characterized above all by the rapid exfoliation of epithelium over the whole extent of the cornea, and does not occur except in conjunction with a trigeminal paralysis which can be diagnosed at once.

The confusion between the three varieties of keratitis just described is furthermore favored by their nomenclature. The designation keratitis xerotica, chosen by Feuer for the keratitis of desiccation (keratitis e lagophthalmo), would be quite a good one if it did not lead to confusion with simple local xerosis of the cornea on the one hand and on the other with keratomalacia, in which xerosis of the conjunctiva and cornea likewise exists. And, as a matter of fact, some authors designate keratomalacia under the name of keratitis xerotica. In order to avoid this confusion, I have dropped the expression keratitis xerotica altogether; and as I do not wish to increase the number of epithets still further by the invention of a new name, I use the old expression keratitis e lagophthalmo for the keratitis of desiccation.

B. Non-suppurative Keratitis.

(a) Superficial Forms.

40. 1. Pannus.—Pannus consists in the new formation of a tissue resembling granulations directly beneath the epithelium of the cornea. Pannus is to be looked upon as an affection of the conjunctival layer
of the cornea (conjunctiva cornea, see page 40), and in every instance is simply one of the symptoms of a conjunctival disease—that is, either of conjunctivitis trachomatosa or conjunctivitis eczematosa. We hence make a distinction between pannus trachomatosus and pannus eczematosus. For further particulars, see under these two diseases of the conjunctiva.

2. Keratitis with the Formation of Vesicles.—Vesicles on the cornea are generally small, and are filled with a limpid liquid. Their anterior wall is very frail, for it is formed simply by the epithelium of the cornea, which is lifted up from Bowman’s membrane by serum. More rarely larger-sized blebs (bullae) occur, the anterior wall of which generally consists of a new-formed connective tissue in addition to the epithelium, and is hence more resistant. The small vesicles are ordinarily present in some numbers, while the large blebs generally occur singly. Violent symptoms of irritation, such as ciliary injection, lacrimation, photophobia, and more especially great pain, are usually present during the development of the vesicle. These, doubtless, are caused by the pulling upon the corneal nerves which pass into the epithelium, and which, in the process of formation of vesicles, are first stretched and finally torn in two. The irritative symptoms ordinarily disappear with the rupture of the vesicles. This occurs so quickly in the case of small vesicles that we generally do not get a sight of these themselves at all, but only of the subsequent small epithelial defects to the margins of which the detached epithelium still adheres in loose shreds. The large blebs, on account of the greater firmness of the anterior wall, are of longer duration. They are not tightly distended, but form a lax, tremulous, somewhat dependent sac. After their rupture the lax anterior wall still lies upon the cornea, and can be readily made out by the way in which it can be displaced by movements of the lids. The sensitiveness of the cornea to touch is ordinarily diminished or entirely abrogated in cases in which there is a formation of vesicles.

There are the following varieties of keratitis with the formation of vesicles:

(a) *Herpes* *Fibrilis Cornea* (Horner).—In febrile diseases, especially of the respiratory organs (most frequently in epidemic influenza, next oftenest in bronchitis, pneumonia, ordinary influenza, etc.), less frequently in other febrile diseases, like typhus, intermittent fever, etc., small vesicles often make their appearance on the lips, the alae of the nose, the eyelids, the ears, etc.† At the same time an eruption of small transparent vesicles, which are associated with violent symptoms of irritation, may occur upon the cornea. These are scarcely the size of a pin’s head, and are often disposed in rows or in groups. The vesicles very speedily rupture, leaving small abrasions, the floor of which

* From *spreu*, to creep.  
† Hebra’s herpes facialis.
shows a faint opacity. Generally these abrasions soon heal, so that after two or three weeks the disease is over, without leaving any lasting opacity of the cornea. In severe, and especially in neglected, cases, however, large corneal ulcers, which not infrequently have a branching form (keratitis dendritica, see page 160), may develop from the small abrasions.

There is no doubt that the vesicles upon the cornea are entirely analogous to those that develop upon the skin. Just as the latter are generally present only upon one side of the face, so also the affection of the eyes is usually unilateral in its development, and is, moreover, confined to the same side as the vesicles upon the face. With careful treatment the prognosis is good, as in that case the disease generally gets well without leaving any opacity. The treatment is purely symptomatic, being that which is indicated for corneal ulcers generally—that is, in the main, the employment of a protective bandage and of atropine.

(β) Herpes Zoster Corneae.—This is one of the symptoms of herpes zoster* opthalmicus—that is, zoster which is localized in the region of distribution of the trigeminus (see the section on Diseases of the Lids, § 106). The cornea participates in the morbid process by forming small vesicles, which generally are arranged in groups and rupture speedily, as in the case of herpes febrilis. From the latter, herpes zoster is distinguished by running a considerably severer course, since the irritative symptoms persist after the rupture of the vesicles, the parenchyma of the cornea at the spots where the vesicles were situated becomes markedly opaque, and iritis occurs in conjunction with the keratitis. It takes a longer time for the opacities to disappear, nor is it always the case that they disappear completely. Naturally this is even more true of those cases in which large ulcers develop from the vesicles. The insensitiveness of the cornea to touch is especially pronounced in herpes zoster. Reduction of the intra-ocular tension not infrequently exists so long as the inflammation is still recent. The prognosis of this variety of herpes, from what has just been said, is less favorable than that of herpes febrilis; the treatment is the same.

(γ) Keratitis Vesiculosata (et Bullosa).—This variety occurs in eyes the cornea of which is more or less clouded and insensitive; in eyes with a large corneal cicatrix, or eyes which have been rendered blind by irido-cyclitis, or by increase of tension. Either vesicles which are small and of short duration form with the accompaniment of violent inflammatory symptoms upon the cornea (keratitis vesiculosata), or large tremulous bullae develop, which last for several days before they rupture (keratitis bullosa). In all cases the vesicles show a great tendency to take

*Note that the term “ophthalmicus” is now generally replaced by “ophtalmic.”
on frequent recurrences, in each of which the irritative symptoms set in anew.

The cause of the formation of vesicles appears to lie in the abnormal conditions of lymph circulation that are without doubt present in such eyes. By stasis of the lymph edema of the cornea is produced; the edematous fluid penetrates forward until it gets beneath the epithelium, and then lifts the latter up in places from Bowman’s membrane.

The prognosis is so far unfavorable in that the disease frequently recurs, on which account the affected eye, besides being useless for purposes of vision, is the source of constant discomfort to the patient. Treatment should aim at relieving the condition of irritation produced by the eruption of vesicles, and at preventing the recurrences. The former object is attained by opening the vesicles, the smaller ones being pricked, and, in the case of the larger ones, the anterior wall being removed. When the vesicles recur frequently at the same spot we must try to modify the character of the base from which they develop by removal of the vesicle wall with the galvano-cautery, by superficial cauterization of the spot with a nitrate-of-silver solution, or by ablation of the most superficial layers of the cornea. Sometimes we do not put a stop to the recurrences until we have improved the conditions for the nutrition of the eye by means of an iridectomy; we may even find ourselves compelled to perform enucleation of the diseased eye in order to give the patient ease.

Apart from the forms above described, the formation of vesicles upon the cornea is further, in rare cases, observed under special conditions—e.g., as a result of the action of various, and particularly of corrosive, substances upon the cornea, after burns, after a cataract operation beneath the bandage, etc. For the vesicles that usher in fresh recurrences of former erosions of the cornea, see § 43. Cases also occur in which, without known cause, there develop upon a perfectly sound cornea vesicles or bullae the formation of which we are inclined to attribute to nervous influences, as we do also in the case of herpes febrilis and herpes zoster. Cases of this sort are usually characterized by periodical recurrence. I know one old lady who for twelve years suffered from occasional attacks of inflammation in her eyes, which otherwise were sound. The attack occurred once or twice a year, and affected sometimes one eye, sometimes the other. It was associated with violent pain, great photophobia, and profuse lachrymation. In the first days of the attack the only things found were edema of the lids, great ciliary injection, and a cornea covered with minute elevations, as if it had been strown with sand. Then a large transparent bulla developed upon the cornea, after the rupture of which the inflammatory symptoms rapidly abated and the epithelial defect healed without leaving a trace behind.

A form of superficial keratitis which is related to herpes febrilis corneae, but is not associated with the formation of vesicles, is keratitis punctata superficialis. It begins with the symptoms of an acute conjunctivitis. Changes in the cornea are observed either at the same time or not till some days or weeks afterward. These changes consist in the presence of minute gray spots
which, as in the case of herpes febrilis, are often arranged in groups or in short rows (Fig. 54.) They are sometimes only ten to twenty in number, sometimes very abundant—upward of a hundred. They are either scattered irregularly over the cornea, or they are chiefly massed together in the central portion; in every case, however, the marginal portions of the cornea are the part least covered by the spots. The spots lie in the most superficial layers of the cornea, which latter looks dull because the epithelium over the spots bulges out in the form of a nodule. The irritative symptoms soon vanish, but the spots, as well as the punctate look of the corneal surface, generally remain for months almost unchanged, and then very gradually disappear. If the spots are not numerous, the sight remains undisturbed; if, however, many spots are present, particularly in the center, the acuity of vision is reduced considerably. Keratitis punctata superficialis is found most frequently in young people, and affects sometimes one, sometimes both eyes. It often begins at the same time with a catarrh of the air passages, just as herpes febrilis corneæ does, but is distinguished from the latter mainly by the absence of the formation of true vesicles. Hence, too, in keratitis punctata superficialis the superficial losses of substance, which develop from the vesicles in herpes, are wanting, and for the same reason the formation of ulcers in this variety of keratitis is observed only as a rare exception.

In various slight, superficial affections of the cornea, in which its epithelium is affected, we observe that fine filaments are formed, which adhere by one end pretty firmly to the surface of the cornea, while the other end, which is often swollen in a club shape, hangs down free. This phenomenon has been described as filamentary keratitis (Leber, Uhthoff, Fischer). The filaments are produced by a process of outgrowth from the epithelial cells of the cornea (Hess, Nuel).

(b) Deep Forms of Non-Suppurative Keratitis.

41. These forms have as a common characteristic the development of an infiltrate in the middle and deep layers of the cornea, an infiltrate, however, which shows no tendency toward purulent disintegration, but—generally not till after existing quite a while—disappears again by resorption. When this takes place, the cornea in favorable cases clears up again completely, while in other cases opacities of a varying degree of intensity are left, and are sometimes even accompanied by flattening of the cornea. In keeping with the deep position of the infiltrate in the cornea, the uveal tract, and especially the iris and ciliary body, are almost always implicated.

3. Parenchymatous Keratitis.*

Symptoms and Course.—This affection may run its course in two ways, according as it begins in the center or at the margins of the

* Synonyms: keratitis interstitialis, keratitis profunda, keratitis diffusa, uveitis anterior.
DISEASES OF THE CORNEA.

cornea. If the disease invades the center of the cornea first, we see small, dim, gray macule making their appearance in this situation, and lying in the middle and deep layers of the cornea; the surface of the latter is lusterless and dull. The number of macule gradually increases, so that they keep extending farther and farther toward the margin; but they are always massed most thickly in the center, where they frequently become confluent. Since even between the macule the cornea is not clear, but shows a fine diffuse cloudiness, the entire cornea may in severe cases get to look uniformly gray, like ground glass. As soon as the opacity of the cornea has advanced somewhat farther, vascularization begins by the penetration of vessels into the cornea from different spots upon the corneal circumference. We see the vascular trunks coming out from beneath the limbus, because—as opposed to the vessels in pannus—they arise from the deeply situated vessels of the adjacent sclera (Figs. 43 and 44). They branch in tufts, like a brush, in the deep layers of the cornea, and often appear quite indistinct and of a dirty-red or grayish-red color, because they are covered by the clouded superficial layers of the cornea.

In those cases in which the disease begins at the margin of the cornea, the first thing that strikes us is that the latter has grown lusterless and clouded at some spot upon its margin. The cloudiness is deeply situated, and when regarded with the naked eye looks uniformly gray, but with the magnifying glass can generally be resolved into separate macule or dim parallel streaks. Soon similar areas of cloudiness appear at other spots of the corneal margin, and then push their way forward concentrically from all sides toward the center of the cornea. Simultaneously with the appearance of the marginal opacities the corresponding portions of the limbus become injected and the vessels of the corneal margin begin to grow out. The formation of vessels, as far as it originates in the network of marginal loops in the limbus, soon comes to an end, so that the limbus advances only a little way out upon the cornea, where it looks red and swollen ("epanuletlike" swelling of the limbus). On the other hand, the deep vessels, which come out from beneath the limbus, grow farther and farther into the cornea, and follow closely upon the opacity which advances in front of them; it looks as if they were pushing the opacity before them. These vessels have, as in the case of those of the first form, the characters of deeply situated vessels, shown by their penicillate branching and by their dull, dead, grayish-red hue.

When parenchymatous keratitis has attained its acme, the cornea is often so opaque that we scarcely recognize the iris through it. At the same time it loses its luster completely, so that it looks as though smeared with grease (with the magnifying glass we recognize numerous minute elevations of the epithelium, which make the surface of the cornea rough, as if made of fine shagreen). Sight is so reduced
that the patient can only count fingers held very close to him, or, still worse, can only recognize the movement of the hand before his eye. Now gradually the process of recovery begins, starting from the margin, where the cornea first becomes transparent again, while at the same time the vessels grow constantly fewer and fewer. The center of the cornea remains opaque the longest, but finally clears up, too, until only a fine diffuse cloudiness remains, which causes but little impairment of sight. This cloudiness, together with a few very minute blood-vessels which are only visible with the magnifying glass, can still be made out years afterward, and are certain signs of the previous existence of a parenchymatous keratitis.

Parenchymatous keratitis always runs a chronic course. The inflammatory symptoms keep on increasing for one or two months, until the disease has reached its acme. Then the irritative symptoms very soon abate, and the process of clearing up of the cornea makes at first rapid progress. Afterward, however, it goes on more slowly again, and the center of the cornea in particular remains for a long time opaque, so that sight is not restored until late in the disease. It takes from half a year to a year, or even more, for the cornea to acquire the full degree of transparency which it is possible for it to assume with an inflammation of the given intensity.

All the cases do not run their course in the way described. There are, for example, many lighter cases in which the changes do not go far, and which hence, too, are completed in a shorter time. Thus the process may go no further than the formation of a few maculae, which gradually disappear again without the associated inflammatory symptoms being at any time marked. If the opacity begins at the margin of the cornea, it often remains confined to that section of it from which it originally started. In that case, if it pushes its way farther from the margin toward the center, only a sector, and not the entire cornea, is rendered opaque. Conversely there are also—luckily not often—very severe cases in which dense opacities remain as a permanency. Again, owing to the inflammatory infiltration, softening of the cornea may be produced, so that the latter gives way before the intra-ocular pressure and keratectasia develops; in this case also the cornea remains permanently opaque, and to quite a marked degree. The worst cases are those in which, by subsequent shrinking of the exudate, the cornea becomes flattened, densely opaque, and of a tendinous appearance, in which case the sight is nearly or quite lost.

Just as great variations exist in regard to the density and extent of the infiltration, so they do also in regard to the vascularization. In many cases the cornea is so abundantly vascularized that it looks like a red cloth; in others, on the contrary, it is almost devoid of vessels, and is like white ground glass. Lying between these extremes are numerous cases in which vessels develop from only single spots upon the cor-
neal margin, so that simply a sector of the cornea looks red, or so that only single tufts of vessels are discoverable. Hence we may distinguish between a vascular and a non-vascular form, according to the relations of the vessels. It must be remarked, however, that even in the non-vascular form one or two vessels can generally be made out with the aid of the magnifying glass.

When we consider how the cases vary both in respect to the opacity and to vascularization, we comprehend why parenchymatous keratitis should present a very varying clinical picture, and hence often offer difficulties in the way of diagnosis for the beginner. But we shall generally be able to make the diagnosis with certainty if we hold fast to those symptoms which are common to all the cases—namely, the deep situation of the opacity and of the vessels, the typical increase in the infiltration up to a certain, usually considerable, degree, and finally the absence of purulent disintegration, so that the formation of ulcers never takes place.

Parenchymatous keratitis is accompanied by irritative symptoms, such as pain, photophobia, and lachrymation. These are sometimes very slight, sometimes violent; in general we may say that they are more pronounced, the greater the amount of vascularization with which the keratitis is associated. Furthermore, parenchymatous keratitis is almost always complicated with inflammation of the uveal tract. In the lightest cases there is merely hyperaemia of the iris, which makes itself apparent by the failure, complete or nearly so, of the pupil to dilate under atropine. In severe cases there is iritis, which may lead to the formation of posterior synechiae, the formation of deposits upon the posterior surface of the cornea, and occlusion and atrophy of the pupil. In particularly bad cases a plastic irido-cyclitis develops, which terminates in flattening of the cornea, or even in atrophy of the eyeball.

Parenchymatous keratitis generally attacks both eyes, and more frequently both in succession than both at once. Sometimes there is even an interval of several years between the involvement of the two eyes. Recurrences of the disease take place, but are not common.

The prognosis of the disease, from what has been said, is unfavorable as regards its duration, inasmuch as it drags on for months and years, especially if the two eyes are successively attacked. On the other hand, the prognosis in regard to the ultimate outcome must be put down as good, because in by far the greater number of the cases a good, or at least serviceable, degree of sight comes back. By holding up this prospect of recovery the physician must keep up the courage of his patient, who, because of the slow progress of the disease, is very apt to lose all hope of a restoration of his sight.

Etiology.—Parenchymatous keratitis is a disease of youth, appearing, as a rule, between the sixth and the twentieth year of life. It is only the exception that persons before or after this age (sometimes
even after the thirtieth year) are attacked. The female sex suffers from it more frequently than the male. The ordinary cause of the disease is syphilis, and especially hereditary syphilis. To prove the existence of hereditary syphilis from the history of the case directly—i.e., by getting the father or mother to confess to syphilis—is often a difficult thing to do. Besides, in most cases it is not at all necessary, since hereditary syphilis can generally be recognized with sufficient certainty from a series of symptoms. In that case, we abstain from questioning the parents in regard to this matter, the more so since it would be a severe reproach to them to have to recognize in their own persons the cause of their children’s illness. On the other hand, it is a good thing to determine by questioning whether many children have died in the family (the mortality of the children of syphilitic parents amounts, on an average, to fifty per cent), whether premature labors, and especially those in which the foetus was dead or putrefied, have not occurred, etc.

The symptoms of hereditary syphilis which patients with parenchymatous keratitis frequently exhibit are as follows:

1. A peculiar formation of the face and cranium. The upper jaws are markedly flat, and the bridge of the nose low and often sunken in. Not infrequently there exists ozaena or blennorrhoea of the lachrymal sac, the latter in consequence of the changes in the nose. The frontal eminences are very prominent. The intelligence of these patients is often abnormal, they being either precocious, or, on the other hand, backward in the mental development.

2. The incisor teeth are abnormally shaped (Hutchinson), so that, instead of a straight edge, they show a semilunar indentation. This change exists only in the teeth of the second dentition, and then most frequently in the upper central incisor teeth. The incisor teeth are often also stunted in their growth as a whole, so that they are either too small or are altogether wanting.

3. At the angles of the mouth we may find fine linear cicatrices as relics of former rhagades; so also cicatrices in the buccal and pharyngeal cavities (especially on the hard and soft palate) point to the existence of antecedent syphilitic ulcerations.

4. Numerous enlarged lymphatic glands can be made out, especially upon the neck. These are small, hard, painless, and with no tendency toward ulceration, by which characters they are distinguished from the lymph glands of scrofulous subjects, which are large and soft, and readily undergo caseation.

5. Swellings of the periosteam (tophi), which are hard and are but little or not at all painful, occur on the long bones. They are most frequently and most easily found upon the anterior border of the tibia. Sometimes a serous inflammation of the knee joint (hydrops genu) is present; caries is rare.
6. We frequently find hardness of hearing, which, with the outbreak of the keratitis, sometimes increases to absolute deafness.

It is important to look for all of these symptoms, for any one of them by itself is not to be looked upon as conclusive evidence of the existence of hereditary syphilis; and, on the other hand, we ought not to except to find all the changes above given distinctly marked in the same individual at once. The more carefully we make our investigation, the greater is the number of these symptoms that we are able to establish; so that we arrive at the conviction that by far the greatest number of cases of parenchymatous keratitis are to be referred to hereditary syphilis. In very rare cases this form of keratitis is also observed in acquired syphilis. A few cases may depend upon scrofula, while in many no cause at all that we can be sure of is discoverable to account for the eye disease.

Treatment.—Local treatment during the period of progression consists in combating the inflammation by protecting the eyes from light and by instilling atropine, which latter counteracts the complications arising from the iris. Moist warm compresses often ameliorate the symptoms of irritation, and accelerate somewhat the progress of the disease. In the regressive period, the thing to do is to secure as thoroughly a clearing up of the cornea as possible. For this purpose the well-known irritant remedies—like calomel, tincture of opium, yellow-precipitate ointment, hot steam, etc.—are indicated (see page 157). These, however, should only be brought into application when, on making cautious tests, the eye is found to bear them well—i.e., does not through their use fall into a state of renewed irritation. It is advisable to keep on with these remedies, interchanging them frequently, for a very long time—for months or years. If ectasia of the cornea threatens, it is to be combated by a pressure bandage, which, if necessary, can be combined with repeated paracentesis of the cornea.

General treatment in those cases in which hereditary syphilis is the cause must be directed against the latter. Mercurial treatment, which is of such marked service in acquired syphilis, is here ordinarily less efficient. Since it is at the same time a very drastic method of treatment, it is advisable to apply it in the severe cases only. In adults we had best select the treatment by inunction. If from the circumstances of the case this can not be done, we may give mercury internally or still better in the form of hypodermic injection. A hypodermic syringeful of a one-per-cent sublimate solution (to which from one to five per cent of sodium chloride is added) may be injected once a day or once every other day into the glutei. In children the internal administration of corrosive sublimate is preferable. We give pills of one milligramme, beginning with one a day, and increasing the dose to from six to ten pills a day, according to the age. In doing this we must be mindful to pay careful attention to the condition of the mouth,
in order to avoid salivation. In the lighter cases of parenchymatous keratitis we prefer, in place of mercury, a simple corroborative treatment with the simultaneous employment of remedies containing iodine (cod-liver oil with iodine, iodide of iron, and mineral waters containing iodine, the latter especially as a form of after treatment). Unfortunately, we must say that, in general, treatment is pretty nearly powerless against this disease. Parenchymatous keratitis in many cases, even under the most careful treatment, runs a course that is not essentially different from what would have been the case without any treatment; not infrequently we see the disease while under treatment break out in the other eye, without our being able to prevent the opacity from spreading gradually over the entire cornea in this eye also. The chief use of treatment consists in its combating the complications arising from the uvea, and also in securing a more rapid and more perfect clearing up of the corneal opacities during the period of regression.

Up to the present time it has been possible to make an anatomical examination of an eye affected with parenchymatous keratitis in a few cases only. The examination shows dense infiltration of the most posterior layers of the cornea, so that they sometimes appear as if transformed into granulating tissue (i, Fig. 53); moreover, in the posterior and middle layers of the section we see numerous newly formed blood-vessels (Fig. 55, g). The infiltration at the margin of the cornea is continued into the ligamentum pectinatum, the iris, and the ciliary body. In one case (in a fourteen-year-old boy) I found this region infiltrated with numerous nodules which were composed of small cells and which had a certain resemblance to tubercles, although it was not possible for me to demonstrate the presence of tubercle bacilli or of other micro-organisms. Instances of similar nodule formation have since then been observed by others, and it has hence been conjectured that parenchymatous keratitis may be caused by tuberculosis more often than has hitherto been supposed.

According to the results of anatomical as well as clinical examination, therefore, parenchymatous keratitis is situated in the most posterior layers of the cornea, which, according to the teachings of embryology, are to be classed with the uvea (see page 183). It should not, therefore, excite our astonishment if the uvea proper is also always implicated. To be sure, the participation of the uvea in the inflammation is not by any means equally pronounced in all cases. Minute deposits, which are discovered in making a careful examination of the cornea with the magnifying glass at the time when the opacity is resolving, are scarcely ever wanting. Besides these, the most frequently occurring complications are posterior synechiae and also choroiditic foci; hypopyon, on the other hand, is extremely rare. In many cases the part of the uvea takes is so slight as not to be clinically demonstrable; in other cases, on the contrary, it is so very prominent, as compared with the process in the cornea, that what we have before us is really an irido-cyclitis—the implication of the cornea being evidenced only by the presence of a few spots of opacity in its deep layers. Thus there is a continuous series of intermediate forms between typical parenchymatous keratitis and irido-cyclitis sicue herediteraria.

Among the more frequently occurring variations in the clinical picture of parenchymatous keratitis the following may be mentioned: In that form which
begins with macules in the central portions of the cornea it not infrequently happens that the macule at a certain distance from the cornea are placed particularly close together, and thus form a very opaque ring, which still remains visible as a gray circle even when the separate macule have coalesced into a continuous mass of cloudiness (hence described by Vossius in brief as keratitis centralis annularis). Allied to these cases are those in which the central part of the cornea becomes particularly opaque through the confluence of

![Diagram](image)

**Fig. 55.—** Cross section through a cornea with parenchymatous keratitis. Magnified 100 x 1. (After a preparation of Dr. Nordenson.)

The stroma, $S$, of the cornea shows an infiltration, which begins in the middle layers, and keeps on increasing more and more posteriorly, so that the deepest layers, $i$, have assumed the aspect of a granulating tissue. On account of the inequality in the degree of thickening of these layers, Descemet's membrane, $D$, is undulated; upon its endothelium there are deposited in places small accumulations of round cells, $r$. In the middle and deep layers of the cornea we see the transverse and longitudinal sections of newly formed blood-vessels, $g$, $g$, while the most anterior layers, and also Bowman's membrane, $B$, and the epithelium, $E$, are normal.

the macula, and forms a white disk pretty sharply separated from the less opaque, marginal portions of the cornea. I have seen several cases in which this central opacity remained permanently after the marginal portions had cleared up, and formed a dense, white, sharply circumscribed spot in the center of each cornea, just as if there had been a deeply penetrating central ulcer.

Sometimes the distribution of the infiltration in the cornea is such that the densest opacity occupies the lowest part of the cornea, as if the products of inflammation had arranged themselves there in obedience to the law of gravitation. In that case the opacity is bounded above by a convex line, or it forms
a triangle, the base of which corresponds to the lower margin of the cornea, while its apex looks upward. The permanent opacity that results from this has the greatest similarity to those triangular opacities in the lower part of the cornea which are left by an irido-cyclitis, when an exudate at the bottom of the anterior chamber has remained for a pretty long time deposited upon the posterior surface of the cornea.

In irido-cyclitis resulting from acquired syphilis it not infrequently happens that isolated gray specks appear in the middle and deep layers of the cornea. These have been described by Mauthner, Hock, Putscher, and others as keratitis punctata syphilitica. This is distinguished from keratitis punctata superficialis (page 183) not only by the etiology, but also by the situation of the specks in the deep layers of the cornea, and might therefore be appropriately characterized as keratitis punctata profunda.

The vessels in parenchymatous keratitis generally lie in the deep layers. Yet it often enough happens that we find, especially with the aid of the magnifying glass, a few vessels also which evidently arise from the network of marginal loops or from larger conjunctival blood-vessels, and which therefore lie superficially in the cornea. All vessels tend toward the center of the cornea, but do not generally reach it, so that here a roundish spot of the size of a millet seed or more remain unvascularized. The vascular portions of the cornea look red, and, if the vessels are abundant, rise above the level of the non-vascular center; the latter, accordingly—which, in consequence of the marked infiltration, is gray or even yellowish gray—is depressed. We must not on this account allow ourselves to be misled and consider the depressed gray spot as an ulcer, for parenchymatous keratitis does not, as a general thing, lead to ulceration. Exceptions to this rule, though rare, do, however, occur. I have seen, in fact, two cases in which perforation had taken place in the center of the cornea.

The anterior chamber in parenchymatous keratitis is often found to be deeper than usual, a circumstance which should not, however, be referred without further consideration to an ectasis of the cornea, a thing which occurs quite rarely. On the contrary, the cause of it ordinarily is a recession of the iris due to the increased secretion of aqueous humor that results from the irritation of the iris. This irritation is in part responsible for the fact that during the existence of the inflammation frequently no dilatation of the pupil can be obtained by atropine. But here there is evidently another factor that must be considered, and that is that the atropine does not diffuse through the inflamed cornea to the same extent as it does through a sound one, so that it does not in fact get into the aqueous humor in sufficient quantity to dilate the pupil.

The intra-ocular pressure not infrequently shows an alteration in parenchymatous keratitis. Generally, it is diminished so that the eye appears softer, although we need not therefore imagine that an atrophy of the eyeball is beginning. An increase of tension is but rarely observed, and, when it is, sometimes occurs years after the inflammation has run its course. I have seen this even in those cases in which no ectasis of the cornea has been left. Perhaps in such a case the increase in tension was to be attributed to the chorioiditis which accompanies many—in fact, most—cases of keratitis parenchymatosa. This chorioiditis is localized in the most anterior segment of the chorioid (chorioiditis anterior), which is covered with numerous—in most cases black—spots. This variety of chorioiditis would probably be set down among the most frequent symptoms accompanying parenchymatous keratitis if the examination
DISEASES OF THE CORNEA.

with the ophthalmoscope, and hence the determination of the presence of choriotiditis, were not rendered impossible while the inflammation lasted by the cloudiness of the cornea. The making of this examination and diagnosis can only be done when the cornea has cleared up once more after the inflammation has run its course. It is also often possible to make out the existence of peripheral choriotiditis in the other, as yet uninflamed, eye.

Another and rarer complication of parenchymatous keratitis is a diffuse scleritis in the region surrounding the cornea. This may subsequently give rise to ectasias of the sclera.

The typical course of parenchymatous keratitis, and the participation of both eyes in it, early suggested the idea of its being due to a constitutional cause. Thus Mackenzie gave an excellent description of this disease under the name of corneitis scrophulosa, and at the same time gave a number of the accompanying symptoms which he looked upon as signs of scrofula. Hutchinson has the credit of having completed this series of symptoms, and of having at the same time furnished the proof that they belong not to scrofula, but to hereditary syphilis. This novel view was slow in making its way. Many at first would only allow that it was true for a limited number of cases, and hence divided parenchymatous keratitis into two forms, which they called keratitis scrophulosa and keratitis syphilitica. But the more precise our knowledge becomes in regard to the symptoms of hereditary syphilis, the more surely we arrive at the conviction that this disease lies at the root of parenchymatous keratitis, whatever form the latter may exhibit. Parenchymatous keratitis belongs among the latest forms under which hereditary syphilis appears, and is hence, and rightly, regarded as one of the most important and most frequent symptoms of the late hereditary form of the disease.

The following history may serve to show how from different symptoms we get at the diagnosis of hereditary syphilis. A twelve-year-old girl with parenchymatous keratitis of both eyes was brought into the clinic by her mother. The latter declared that she had no knowledge of syphilis as affecting either herself or her deceased husband. She only admitted that the latter had led an irregular life. The woman went on to say that she had been pregnant by this man ten times in all. From the first four pregnancies came four children (the eldest at present about twenty-two years old), who are all healthy. The fifth child died at the end of one year, the sixth pregnancy ended in an abortion, the seventh child is the little patient who is brought into the clinic, the eighth child died at the age of nineteen months, the ninth child is living but is always sickly, and the tenth died at the age of six weeks. Then the husband died in consequence of an accident; the woman married a second time, and has had by her second husband two perfectly healthy children. The woman’s daughter who was brought into the clinic was deaf; she presented, in addition to the parenchymatous keratitis of both eyes, the characteristic formation of the cranium belonging to syphilitic children. The teeth showed the form described by Hutchinson; numerous small, hard lymphatic glands were found upon the neck. I made the younger sister (the woman’s ninth child) come too. She, who was a feeble girl, was not, to be sure, absolutely deaf, but heard very badly, had the characteristic formation of the face and swollen lymphatic glands upon the neck, and the teeth—they were the milk teeth—were markedly small and separated by wide interspaces. Externally the eyes looked healthy, but in both the periphery of the fundus was found by the ophthalmoscope to be covered with
spots, black as ink, lying in the chorioid. The correct interpretation of this history, without doubt, is that the woman's first husband had acquired syphilis after the fourth pregnancy. While, therefore, the woman's first four children enjoy very good health, only two of the children of the six following births are living, and both are sickly, both marked with evident symptoms of hereditary syphilis. When the woman had become pregnant by her second, healthy husband, she had healthy children once more.

From the history just submitted, it can be deduced that the examination of the little patient's brothers and sisters may often contribute to the clearing up of the case, inasmuch as we may find in them, too, symptoms of hereditary syphilis, and thus may still further confirm the diagnosis. Moreover, it is not at all rare for two or even three of a set of brothers and sisters to be affected with parenchymatous keratitis.

4. Keratitis Profunda.*

42. In this a gray opacity develops very gradually in the cornea—ordinarily in its center—an opacity which is situated in the middle and deep layers of the cornea, and over which the corneal surface is gray and punctate, but not depressed. Seen with the naked eye, the opacity looks uniformly gray, while with the magnifying glass it may be resolved into separate dots and maculae, or into gray interlacing striae. After the opacity has remained for some time (several weeks) at its acme it begins to slowly abate, without ulceration having taken place. The development of new vessels is either entirely absent or is very inconsiderable. The accompanying symptoms of inflammatory irritation are sometimes slight, sometimes pretty violent. The participation of the iris is mostly limited to hyperæmia.

The disease attacks adults only. It lasts from four to eight weeks or more. In the lighter cases it terminates in a complete restoration of the transparency of the cornea, while in other cases diffuse opacities remain permanently in the center of the cornea.

The causes of keratitis profunda are in the great majority of cases unknown. For individual cases the following causes have been given: 1. The effect of cold. Arlt has characterized such cases as keratitis rheumatica. These ordinarily run their course with marked inflammatory symptoms, especially with violent pain and photophobia. 2. Intermittent fever in its chronic form of malarial cachexia sometimes results in a keratitis profunda, which is characterized by the absence of marked symptoms of irritation, and also by an unusually chronic course (Arlt). 3. After injuries, especially contusions, a keratitis profunda not infrequently develops, the peculiarity of which is its comparatively rapid course and the speedy restoration of the transparency of the cornea.

Treatment consists, locally, in the application of a bandage or of protective glasses, and the use of atropine and moist warm compresses.

*Synonyms: central parenchymatous infiltration of the cornea, keratitis parenchymatosa circumscripta.
provided these are well borne. After the inflammatory symptoms have run their course, irritant remedies for clearing up the opacity are indicated. The general treatment depends upon the cause that we are able to discover for the keratitis.

5. Sclerosing Keratitis.

This is an accompanying symptom of scleritis (see § 52). If a scleritic nodule is situated near the margin of the cornea, there develops in the adjacent portion of the latter an opacity which is situated in its deeper layers (Fig. 64). It has approximately the shape of a triangle, the base of which is situated at the corneal margin, while the rounded apex looks toward the center of the cornea and becomes gradually lost in the transparent cornea. The opacity thus occupies a sector of the cornea, the base of which corresponds to the scleritic nodule. In many cases other opacities of rounded or irregular shape also develop at a distance from the corneal border, and even in the center of the cornea. The opacities are gray or grayish yellow, and gradually increase in intensity until the cornea at the affected spot has become completely opaque. The surface of the cornea over the opacity is punctate but not depressed; vascularization is either altogether absent or is very slight, and, when it is present, is in the deep layers of the cornea. After the opacity has reached its maximum density, a gradual retrogressive process sets in, without ulceration having taken place at any time. The process of clearing affects the thin edge of the opacity and its apex, which looks toward the center of the cornea; the greatest portion of the opacity remains permanently and becomes ultimately bluish white like the adjacent sclera, into which it passes without any sharp line of demarcation. At the spot where the opacity is found, therefore, it looks as if the sclera had pushed its way into the space occupied by the cornea—whence the name sclerosing keratitis (Von Graefe).

Like scleritis itself, this keratitis that accompanies it shows repeated recurrences, and it may happen that in severe cases the entire cornea is sclerosed with the exception of a small area in the center.

The symptoms of irritation which accompany this form of keratitis are excited less by it than by the scleritis and the inflammation of the uvea depending upon the latter.

The treatment is essentially that of the scleritis.


When the posterior surface of the cornea is not washed by the aqueous humor, as it is in the normal eye, but an exudate or tissue is brought into apposition with it, the substance of the cornea becomes cloudy. To produce this effect, however, it is necessary that the appo-
sition should be kept up for a pretty long time. Hence this sort of opacity is not generally found in ordinary hypopyon, because the latter disappears too quickly, but is found in those more solid gray exudates which appear in the anterior chamber, particularly in scrofulous and syphilitic irido-cyclitis. Large deposits also, if they remain for a long time, usually leave behind them gray spots upon the cornea. Another thing besides exudates, that gives rise to the same form of keratitis, is the apposition of tissue to the back of the cornea, as occurs with protrusion of the iris, with cysts or other tumors of the iris, that reach to the cornea, and with lenses that have prolapsed into the anterior chamber. The opacity of the cornea develops at a point corresponding to that spot at which apposition takes place, occurring, therefore, in the case of exudates, most frequently below. The surface of the cornea at this spot is dull, sometimes slightly uneven, and apparently gelatinous. The opacity is gray, and, after lasting a long time, becomes pretty dense, and is permeated by vessels which lie in the deep layers of the cornea. It never completely disappears, even after the causal lesion has been remedied.

The mode of origin of this form of keratitis is probably to be conceived of thus: Contact of the cornea with foreign tissue alters the endothelium of Descemet's membrane. This alone, according to Leber's researches, protects the cornea from the aqueous humor. Now, if the endothelium becomes deficient, aqueous humor can penetrate into the tissue of the cornea, which consequently becomes cloudy.

The clinical pictures under which non-suppurative keratitis makes its appearance are exceedingly manifold. Only a certain number of them can be marshaled under fixed types, as has been done in the foregoing pages. Many, sometimes very peculiar, forms come under observation too rarely for us to be able to build up from them a typical disease picture; they can not at present be utilized except for purposes of record as individual cases. A few rather more frequently occurring forms may be enumerated here as an appendix to those before described.

7. Deep Keratitis in Irido-cyclitis.—In every case of marked irido-cyclitis the cornea is not perfectly clear, but slightly dull. But in many cases of severe irido-cyclitis the participation of the cornea is still more pronounced, an infiltration of gray, or later often of yellowish, color making its appearance in its deep layers. This infiltration, under a process of vascularization, subsequently disappears, although it always leaves a permanent opacity behind it, associated in severe cases with flattening of the entire cornea. Vision in these cases is almost or quite annihilated, not merely on account of the change in the cornea, but also, and chiefly, on account of the products of the irido-cyclitis. These cases, which, to be sure, are very rare, must not be confounded with those cases of parenchymatous keratitis that are associated with marked implication of the uvea.

8. Deep Scrofulous Infiltrates occur under the form of extensive gray, subsequently yellow, opacities in the middle and deep layers of the cornea in conjunctivitis eczematosa. They may either proceed to suppurate, or they may
go on to resorption, in which case the cornea clears up—sometimes in a surprising manner. For a more detailed account, see Conjunctivitis Eczematosa (page 94).

9. **Keratitis Marginalis Profunda.**—This rare disease generally affects old people, and occurs for the most part in one eye only, rarely in both. There forms upon the margin of the cornea, with moderate symptoms of irritation, a gray, later grayish-yellow, or even purulent-yellow opacity, which directly adjoins the sclera and hence extends under the limbus, while on the other hand it reaches for a distance of about two millimetres into the transparent cornea (Fig. 56 A). This marginal zone of opacity generally embraces from one third to one half of the circumference of the cornea (most frequently the upper part), or in rare instances surrounds the entire cornea. The surface of the cornea over the opacity is somewhat dull, but shows no loss of substance, and never any exfoliation of epithelium. The limbus soon pushes forward, and with its vessels covers the opacity. The irritative symptoms disappear in from one to two weeks, while the marginal infiltrate is transformed into a permanent gray opacity of the cornea. This opacity bears a great resemblance to the arcus senilis,

![Fig. 56 A.—Keratitis Marginalis Profunda. The finely striate marginal zone represents the limbus, adjoining which above and on the outer and inner sides is the arc-formed infiltrate drawn in darker shading.](image)

![Fig. 56 B.—Striate Opacity of the Cornea after a Cataract Extraction. The cior-trix, a b, left by the section, lies at the upper margin of the cornea.](image)

from which it is chiefly distinguished by its not being separated by a transparent zone from the scleral margin, but passing into the latter without any clear line of demarcation. Iris does not occur in connection with this affection of the cornea, nor does ulceration of the cornea, as a rule; only twice have I seen small superficial ulcers develop upon the cornea. On account of the marginal situation of the residual opacity, this form of keratitis is without danger to the sight.

10. **Striate Opacity of the Cornea.**—When we examine carefully an inflamed cornea with a magnifying glass, we often discover gray striae in it. These may be short and irregular and run in the most diverse directions. This is commonly the case in keratitis profunda. At other times we see a system of parallel striae—e. g., in the dense opacities that occur in parenchymatous keratitis jutting out from the margin of the cornea and extending toward its center. Again, striae may occur that take a radiating direction, all emanating from a single point—e. g., from a corneal ulcer. The anatomical changes that give origin to the striae are not always the same. It may be that cells or fluid thrust the fibers of the cornea apart and so pass on between them, taking a linear course. Such a thing can be effected artificially by injecting liquid through a puncture made in the cornea. In doing this we fill a system of parallel chinks (Bowman’s tubes) which cross the successive corneal lamellae at right angles.

Isolated, long, very delicate gray lines appear to be produced by turbid
fluid filling one of the channels that lie in the substance of the cornea and lodge the nerves passing from the margin of the cornea to its center.

Very frequently, however, striae are produced not by exudation, but by wrinkling. This is pre-eminently the case with traumatic striae opacity.

This is observed after incised wounds of the cornea, and most beautifully after the cataract operation. Within the first twenty-four hours after the operation gray striae make their appearance in the cornea, which, starting from the wound, extend sometimes as far as the opposite margin of the cornea, and are always disposed perpendicularly to the length of the wound (Fig. 56 B). These striae are particularly observable in those cases in which the lips of the wound have been somewhat contused, as, for example, those in which the delivery of the lens has been difficult. They generally pass off within the first eight days, and it is only when specially pronounced that they take several weeks to disappear. Such an opacity causes no symptoms of irritation, and does not cause the least disturbance of the healing of the wound. This proves that we do not have to do with a real inflammation. Anatomical investigation has, in fact, shown that in these cases cellular infiltration is altogether wanting, and that there is simply a dilatation of the lymph spaces of the cornea, which are distended with fluid (Becker, Laqueur, Recklinghausen). The striae opacities themselves are referable to wrinkling of Descemet's membrane, which as a result of the incision near the corneal margin has its tension relaxed in one direction, but not in others (cf. Fig. 66).

A wrinkling of this sort may be the cause of many of the striae opacities that are observed in conjunction with a true keratitis—e. g., the radiating streaks which are often seen in ulcer serpens extending out into the transparent cornea (Hess, Schirmer).

A similar striae opacity of the cornea is sometimes observed in cases of detachment of the retina, which have been treated with the pressure bandage. The eye becomes suddenly very soft and the anterior chamber remarkably deep, and in the cornea fine gray striae show themselves, which cross in different directions, so that the opacity looks like creased tissue paper. Here also, without doubt, folds in the cornea take part in producing this effect (Deutschmann, Nucl).

II. Injuries of the Cornea.

43. 1. Foreign Bodies in the Cornea.—The penetration of foreign bodies into the superficial layers of the cornea is among the most common of accidents. Obviously the interpalpebral area of the cornea is the part that suffers most from injuries due to foreign bodies as from injuries in general. What is most frequently observed are small particles of iron in the cornea, particularly among mechanics of a certain sort, like locksmiths, blacksmiths, iron founders, etc. These particles do not look like metallic iron, but vary from dark brown to black; for the particles of iron, which, for example, fly off when iron is being hammered, are heated by the force of the blow so that they are thrown out as sparks. Thus they become oxidized into ferroso-ferrie oxide (so-called iron scale), and under this form are found in the cornea. If the fragment of iron remains sticking in the cornea, it becomes surrounded
very soon by a brown ring, because it impregnates the portions of the cornea in its immediate vicinity with iron (ferric hydrate) and so turns them brown. Fragments of coal are also frequently found in the cornea—for instance, in firemen or in people after a railroad journey—and fragments of stone in stonecutters, stone breakers, etc.

Foreign bodies penetrating into the cornea should be removed as soon as possible. If they are superficially situated, it is an easy matter to pry them up with a suitable instrument. For this purpose we use a special needle, which is made broad at its upper end, or an instrument upon the plan of a small gouge. In default of such instruments we may also make use of a sharp sewing needle which has been previously sterilized by heating in a flame. It is advantageous first to render the cornea insensitive by the repeated instillation of a five-per-cent solution of cocaine. In the case of fragments of iron, besides the foreign body the ring of brown-colored corneal tissue next it should be scraped off.

If the foreign body is not removed in season, its expulsion by suppuration follows. An inflammatory infiltration forms about it, surrounding it in the form of a gray ring. Then the tissue of the cornea in this place breaks down, so that the foreign body becomes loose and ultimately falls out. The resulting ulcer generally becomes rapidly cleansed and heals, leaving a small opacity after it. This process of elimination takes place with marked symptoms of irritation, and especially with hyperemia of the iris, or even with iritis, which latter makes itself evident by the formation of a hypopyon and of synechiae. It is only grains of powder or of lime that are known to have the property of remaining in the cornea without exciting suppuration and of becoming permanently incorporated in it.

Much more infrequent, but also much more serious, are those cases in which a small foreign body has penetrated into the deep layers of the cornea. In this case, in order to remove the foreign body, it is often necessary to incise the lamellae of the cornea that lie above it, so as to be able to draw it out with the forceps. If the point of the foreign body projects into the anterior chamber there is the danger that, in attempting to grasp the foreign body, the latter may be pushed in still farther, and may injure with its point the capsule of the lens. In such a case, therefore, the indication sometimes is to make a preliminary opening in the cornea near its margin and to introduce the instrument from this point into the anterior chamber, by which means we press the foreign body from behind forward, so that we can grasp it by its anterior extremity and extract it.

2. Solutions of Continuity of the Cornea.—Superficial excoriations of the cornea, which simply produce a loss of substance in the epithelial covering, are known as erosions. These are among the most frequent of injuries, such as one gives himself by scratching the eye with the finger nail, with a rough cloth, a stiff leaf or twig, etc.
Such an injury is commonly accompanied by pretty marked symptoms of irritation, such as photophobia, lacrymation, and especially by violent pain. Examination of the eye shows, besides the ciliary injection, a defect in the epithelium, forming an ulcer, the floor of which is perfectly transparent, so that it is only by taking the corneal reflex that the loss of substance can be discovered. Healing generally takes place within a few days by a complete regeneration of the epithelium, starting from the edges of the epithelial defect; a permanent opacity does not remain. Quite a good deal of significance attaches to these traumatic erosions, from the fact that not infrequently they are the starting-point of an ordinary ulcer of the cornea, or an ulcus serpens, especially if an opportunity is given for the production of infection. This latter is particularly apt to be the case when a conjunctival trouble associated with abnormal conjunctival secretion, or when a blennorrhoea of the lachrymal sac, is present.

It is worth remarking that sometimes recurrences of corneal erosion take place without any new injury having preceded them (Arlt). After the lesion has been to all appearances fully healed, marked symptoms of irritation set in suddenly several weeks or months afterward without known cause; and a loss of substance is again found upon the cornea in the epithelium at the site of the former injury. Such relapses may occur repeatedly. They have their cause probably in the fact that the epithelium at the original site of injury has never become regenerated in a perfectly normal fashion, so that under the action of any insignificant cause it is again separated and cast off. It appears that this separation of the epithelium generally takes place in the form of a vesicle, which, however, ruptures so quickly that we do not get a sight of it, but only of the consequent loss of substance in the epithelium.

Erosions are best treated by the application of a simple protective bandage, the use of which should be kept up until the epithelium is completely regenerated. In this measure also is found the best protection against relapses; and if the latter do occur, they require the wearing of the bandage a second time, and that, too, for a sufficiently long period. If marked symptoms of an accompanying inflammation exist, and these are not relieved by the bandage alone, we may instill atropine.

The deeper wounds of the cornea are usually either incised or lacerated wounds. Their margins soon after the infliction of the injury become cloudy and swollen through imbibition of fluid (tears or aqueous). In irregular, lacerated wounds, this may occur to a very great extent. As the wounds heal the cloudiness of their edges in large part disappears, although a dense opacity always remains along the line corresponding to the solution of continuity, and this opacity is very frequently associated with an irregular bulging of the cornea (giving rise to irregular astigmatisim). Corneal wounds are particularly dangerous
under two circumstances—i.e., when they are infected and when they perforate the cornea. In the former case a purulent keratitis develops which may give rise to extensive destruction of the cornea. In the latter case prolapse of the iris occurs, provided the wound is large enough. Moreover, the iris or the lens may be injured at the same time, and lastly there exists, as in all perforating lesions of the eyeball, the danger of an inflammation of the deep parts of the eye, produced by infection, and very frequently ending in the destruction of the organ.

The treatment of recent wounds of the cornea demands as its prime requisite that we should strive to prevent infection. We cleanse the eye with antiseptic solutions, strewn the wound with finely powdered iodoform, and, after we have dropped in atropine to combat any iritis that may exist, we apply a protective bandage. If we are dealing with a perforating wound of the cornea, the greatest possible quiet on the part of the patient (rest in bed) is requisite in order to bring about a speedy and solid closure of the wound. If the iris is prolapsed, it should be so excised, after carefully separating it from the lips of the wound, that no iris remains any longer incarcerated in the wound; according to just the same principle that holds good for prolapses of the iris of spontaneous origin. (For more precise particulars in regard to perforating wounds of the cornea, see §§ 53 and 54.)

3. Injuries of the Cornea by Caustic Agents and by Burns.—These occur simultaneously with the analogous injuries of the conjunctiva, and are produced by the same causes that these are (see page 110). In fact, in the case of such injuries of the eyeball, it is precisely the part which the cornea takes in the process that is a criterion for the prognosis—for the most harmful consequences of these injuries are the opacities which are left in the cornea. The corroded or burned cornea looks dull and opaque. The extent of the opacity depends upon the extent of the burn, but the intensity of the opacity depends upon the depth to which the corneal tissue has been destroyed. In light cases the color of the opaque cornea is gray, but in severe cases whitish. In the worst cases the cornea is all as white as porcelain, dry upon its surface, and quite insensitive; such a cornea is completely necrotic. In general it is not always easy to estimate from the character of the injury alone how deeply the destructive process has penetrated into the cornea, and hence caution is advisable in giving the prognosis.

The injury is generally followed by sharp pain. It heals by the extrusion of the dead tissue. In the lightest cases, in which the injury has affected the epithelium only, the processes of extrusion and of healing occur very rapidly (as in the frequent cases of burns of the cornea produced by a curling iron). If the destructive process has made its way into the parenchyma of the cornea, a delimiting suppuration sets in, which leads to the separation of the eschar; the loss of substance
thus produced heals, leaving a permanent opacity. If the destructive process has at any point gone through the entire thickness of the cornea, perforation of the latter develops after the separation of the eschar. The iris then prolapses, and the resulting cicatrization unites the iris to the cornea (cicatrix of the cornea with anterior synechia). In a similar way adhesions often develop between the cornea and the conjunctiva of the lids (symblepharon), provided that a loss of substance is present in the latter also. The treatment of injuries produced by burns and caustics has already received mention under the head of the analogous injuries of the conjunctiva.

Contusions of the cornea, produced by force applied to the latter either directly or through the lids, often result in an extensive opacity which occupies the central portions of the cornea, and under the magnifying glass can be resolved into delicate gray stria interlacing in different directions. As this opacity is situated in the intermediate and the deep layers of the cornea, it has been considered under the head of keratitis profunda (page 194). The stria may in part be referable to wrinkling of Descemet's membrane, and be dependent upon the reduction in the intra-ocular pressure that often occurs after contusions of the cornea (see § 86).

Severe contusions of the cornea may cause its rupture (ruptura corneae). Such ruptures are much less commonly observed than are those of the sclera. Moreover, while ruptures of the sclera are generally pretty much alike in respect to position and direction (see § 53), ruptures of the cornea follow no rule with regard to the way they run. In most cases the wounds are nearly rectilinear, but sometimes they look jagged, and are flap-shaped. Most of the cases of rupture of the cornea that I have seen were the result of blows from a whip-lash, and these generally in young people. If the edges of the wounds gape widely, as is especially the case in flap wounds, we may make the attempt to unite them by fine, superficially disposed sutures. Sometimes it is possible in this way to save the eye, although such marked flattening and opacity of the cornea always remain that the visual power is reduced to a minimum.

The healing of incised wounds of the cornea takes place quickly, when, as is pre-eminently the case in operation wounds, the edges are smooth and are closely applied to each other. The edges of the wound then soon become agglutinated by a mass which consists of fibrin and round cells, and which later organizes into a delicate cicatrix binding the corneal lamellae together. Bowman's and Descemet's membranes do not reunite. During the first few days the epithelium of the anterior surface of the cornea grows rapidly over the lips of the wound and down between them; this involution of the epithelium sometimes extending as far as the posterior layers of the cornea. By reason of the permanent adhesion of the lips of the wound that takes place later, the intruding epithelium is gradually squeezed back from below up toward the surface, and the epithelial involution disappears. Sometimes, however, it is persistent. In that case the wound externally looks as though it had healed smoothly, while really only the posterior layers of the cornea are united by a firm cicatrix. Such scars may be ruptured by moderate pressure upon them; and this explains why it is that the scar left by a cataract operation sometimes—it may be years afterward—split asunder on very slight provocation.
III. Opacities of the Cornea.

44. Opacity of the cornea is a constant accompaniment of every inflammation of the latter. This recent inflammatory opacity is of a changeable nature, increasing or diminishing according to the course of the inflammation. From this variety we must distinguish those opacities which are stationary, whether they represent the residua of an inflammation that has already run its course, or have developed gradually without any antecedent inflammation. These stationary opacities, of which alone we shall treat here, we call opacities of the cornea in the narrower sense of the word. They are by far the most frequent cause of poor sight, and hence have a particular claim upon the interest of the physician.

We distinguish stationary opacities of the cornea into those of inflammatory origin and those which have developed without any antecedent inflammation.

Opacities of the cornea of inflammatory origin are the consequence of a keratitis, either suppurative or non-suppurative. In the first case the tissue of the cornea, which has been destroyed by suppuration, is replaced by cicatricial tissue, and the opacities thereby produced are corneal cicatrices in the proper sense of the word. In this category also are to be counted most opacities which remain after injuries. The cornea may also have opacities remaining after a non-suppurative keratitis, either because its tissue has been so altered by the deposition of exudate which has taken place that it does not even afterward regain its physiological transparency, or because the exudate itself in part becomes organized and thus remains as new tissue in the cornea (an example is a pannus which has been transformed into connective tissue). Opacities that are situated in the epithelium only are comparatively rare, occurring, for instance, in those cases in which the epithelium as a result of constant mechanical irritation—in trichiasis—becomes thickened and hence opaque.

The appearance of opacities of the cornea varies according to their degree of intensity and their age. Slight opacities appear as translucent bluish-white spots with outlines altogether hazy—maculae or nubeculae cornea. Well-marked opacities are grayish-white or pure white, and are usually pretty sharply outlined; moreover, in the beginning they are apt to be traversed by vessels which afterward become fewer or disappear altogether. The surface of the opacity generally lies on a level with the adjacent healthy cornea, especially if the opacities are small, although elevation or depression of the surface of the cornea at the site of the cicatrix is also observed. Elevation of the surface is commonly the result of an ectasis of the cicatrix. More rarely it is caused by excessive development of cicatricial tissue, or by thickening of the epithelium upon the surface of the cicatrix. De-
pression of the surface of the cornea at the site of the cicatrix occurs most frequently in the case of small cicatrices from the incomplete filling up of the ulcer with cicatricial tissue \((\text{facet of the cornea})\). In the case of larger cicatrices that have developed in consequence of extensive perforation of the cornea, or more rarely as a result of a severe non-purulent keratitis, a flattening of the entire cornea may follow from the retraction of the cicatricial tissue \((\text{applanation cornea})\). This is especially apt to occur if a plastic irido-cyclitis had existed simultaneously with the inflammation of the cornea; for, on account of this irido-cyclitis, extensive membranous exudates are deposited in the interior of the eye, which by their contraction diminish the intra-ocular pressure, and so favor the flattening of the cornea.

With many cicatrices \textit{incarceration of the iris} occurs. This is a proof that there has been an antecedent perforation of the cornea; hence such cicatrices are always very thick. It is important to determine in any special case whether a cicatrix of the cornea is or is not connected with the iris, since an incarceration of the iris may entail serious consequences. We recognize the presence of such an anterior synechia by the displacement of the pupil toward the site of the incarceration, and furthermore by the unequal depth of the anterior chamber, which is always shallower near the place where the iris is adherent. In many cases, also, the dark color of the cicatrix gives evidence of the incarcerated iris, the pigment of which shows through the cicatricial tissue. The union between iris and cicatrix is often confined to quite a small spot, so small, sometimes, that only a very fine filament rises from the iris and passes over to the cicatrix in the cornea. At other times broad adhesions exist, and there may even be an incarceration of the entire pupillary margin of the iris in the cicatrix. In this case occlusio and seclusio pupillae are produced, with their baneful consequences (see § 68).

\textbf{45. Disturbance of Vision produced by Opacities of the Cornea.}—Every opacity which falls wholly or in part within the pupillary region of the cornea results in disturbance of vision; for the sum of the incident rays at the site of the opacity, instead of being all permitted to pass through the cornea, is divided into two parts: one part is absorbed by the cicatrix or is reflected off from it; the other part penetrates through it into the eye. The relation between these two parts depends upon the density of the opacity; the denser it is, the more numerous are the reflected, the less numerous the transmitted, rays. Hence the cicatrix does harm by cutting off light. To be sure, this factor becomes a matter of serious consideration only in very dense opacities, since we are able to see with very much less light than we usually get. Thus we see through a stenopeic slit scarcely less clearly—and if affected with an error of refraction even more clearly (§ 139)—than with the naked eye, although the slit allows but little light to pass.
DISEASES OF THE CORNEA.

So, also, people with abnormally contracted pupils are still able to see with perfect distinctness. The real cause of the disturbance of vision produced by corneal opacities is not, therefore, the cutting off of light, but rather the scattering (diffusion) of light. For, rays passing through a turbid medium, such as a cloudy cornea, are not regularly refracted, but are scattered in all directions, just as if they emanated from the turbid stratum itself. Thus, when a physicist requires a uniform illumination, he makes the light from a luminous body pass through a ground-glass plate or through oiled paper, substances which may then be considered to act as self-luminous bodies themselves. The diffusion of the rays is the more complete the denser the opacity.

With respect to the density and the extent of the opacity, the following cases are possible: 1. A dense opacity occupies the whole pupillary region of the cornea. Then all the light that issues through the scar is diffused; no image at all of external objects is formed upon the retina, and therefore there can not be qualitative but only quantitative vision. 2. A slight opacity covers the whole pupillary area. In this case the diffusion of light is not complete. A part of the rays is refracted, although not quite regularly; another part is diffused. Hence there are retinal images formed, which are, however, indistinct; and, besides, there is much diffused light. 3. Only a part of the pupillary region is taken up by the opacity, while the remaining part is normally transparent. Then distinct retinal images are produced by means of the latter clear portion, but at the same time much diffused light is thrown into the interior of the eye by means of the clouded portion. Hence in this case also vision is disturbed, and that by the dazzling which the diffused light causes.

To the disturbance of vision produced by diffusion there is often added that caused by the irregular curvature of the corneal surface, which is so often present at the site of opacity. There is thus produced that refractive condition which is designated by the name of irregular astigmatism (see § 148). If the opacity of the cornea corresponds to a flattening of the surface, as in facets of the cornea, this spot refracts less strongly and is hypermetropic; if the cornea is bulged forward at the site of the opacity, as in the case of ectasia, excessive refraction, and with it myopia, are produced. In ectatic cicatrices of the cornea the abnormality of curvature is not confined to the cicatrix, but extends to the neighboring transparent portion of the cornea also, so that, as a rule, no portion of the cornea retains its normal curvature. In consequence of the irregular astigmatism, objects appear indistinct, distorted, and often also double or multiple.

The disturbance of vision produced by an opacity of the cornea often entails still other indirect results. Among these are strabismus, nystagmus, and myopia. The last named is in many cases only apparent. The patient with corneal opacities brings minute objects unusu-
ally close to his eye, in order to make their retinal images as large as possible, and so in a measure compensate for their indistinctness. Nevertheless, elongation of the axis of the eye—i.e., true myopia—may ultimately develop in consequence of the great accommodation and convergence necessitated through such an excessive approximation of objects.

**Treatment.**—The chief task that this has to attend to is to improve the sight. The means employed for this purpose are as follows:

(a) **Clearing up of the Opacity.**—In the case of every opacity of recent date we must first try to clear it up as much as possible by the application of irritants (see page 157).

In older opacities, which can not be cleared up any further by medicinal means, the next step apparently would be to render the cornea transparent once more by excising the opaque layers with the knife. Such attempts, however, have resulted unsuccessfully, for the loss of substance resulting from the excision of the opacity heals again with the formation of cicatricial tissue—that is, with the formation of an opacity, just as before. Removal of opacities by operation is only indicated when they are situated in the epithelium, since losses of epithelium are made good by normal transparent epithelium. Cases in which removal of the epithelium—*abrasio cornea*—is indicated, are those in which the epithelium has been thickened by mechanical irritation, as in trichiasis; also in those in which lead, lime, or grains of powder are imbedded in the epithelium.

In cases in which the cornea is cicatricial throughout, the attempt has been made to restore the sight by *transplantation of the cornea.* A circular piece is excised by means of a small trephine from the opaque cornea, and an equally large piece of a normally transparent cornea (from the eye of a human being or of an animal) is inserted in the opening. The transplanted piece of cornea unites, as a rule, but afterward becomes opaque, and completely so for the most part, so that the patient gains nothing.

(b) **The optical aids** that may be employed for improving the sight are glasses and the stenopeic aperture. The object of the latter is to bring nothing but the transparent part of the cornea into use for vision, and to exclude the portion bearing the opacity, by which means the dazzling due to diffusion is prevented. Glasses may sometimes be of advantage when the opacity is complicated with changes in the curvature of the cornea.

(c) **Displacement of the pupil** by means of iridectomy (after the method of Beer) is generally the only means of restoring sight in the case of dense opacities which entirely conceal the pupil. (For the indications and the method of performing this operation, see the section on operations, § 155.)

In large and very white cicatrices of the cornea it is often desirable
to do away with the disfigurement that they produce. For accomplishing this purpose, *tattooing of the cornea* (De Wecker) is of service. This procedure depends upon the observation that many bodies, as, for example, grains of powder, may become imbedded in the cornea and remain there permanently. Tattooing consists in giving the white cicatrix a black tint by means of India ink, which is introduced into the cicatricial tissue by being repeatedly pricked in with a needle. The tattooing needles used for this purpose consist either of a bundle of ordinary sharp-pointed needles (Taylor), or of a single broad needle which is channeled for the reception of the ink (grooved needle of De Wecker).

From the form and position of corneal opacities we may often gather an impression as to the variety of keratitis to which they owe their origin. Thus:

(a) Maculae of the cornea originate from small corneal ulcers. They most frequently develop in childhood as a consequence of conjunctivitis eczematosa, and in that case are often distinguished by being situated on the margin of the cornea. Quite characteristic opacities are the elongated ones that are left by a vascular fasciculus.

(b) Opacities which are thin and diffused, but which are nevertheless spread over the greater part of the cornea, are mostly the result of pannus or of parenchymatous keratitis. Opacities resulting from pannus are situated superficially, while those due to parenchymatous keratitis are situated in the depth of the cornea, and when examined with the magnifying glass disclose, even years after the inflammation has ceased, the presence of deep-seated vessels.

(c) Extensive, tendinous-looking opacities, without incarceration of the iris, in which chalky-white dots are often visible, are observed after particularly severe cases of parenchymatous keratitis. Similar white dots also occur sometimes in the opacities due to pannus (see page 82); also in those resulting from corrosion by lime, in this case depending upon imbedded calcareous particles. Finally, cicatrices with incrustation of lead are also distinguished by a sharply circumscribed, extremely white opacity.

(d) Marginal, crescentic, or arcuate opacities are the consequence of catarrhal ulcers or of keratitis marginalis; they should not be confounded with an arcus senilis.

(e) Marginal sears with incarceration of the iris form after perforating ulcers in conjunctivitis eczematosa. They are round, often consisting of a thinner, dark center (the incarcerated iris) surrounded by a white cicatricial ring. They lie so far peripherally as often to extend into the limbus, and on account of this peripheral situation are associated with a particularly marked displacement of the pupil.

(f) Large, dense cicatrices with inclusion of the iris, which often occupy the whole cornea except a narrow rim about the margin, are most frequently produced by an ulcer serpens or by acute blennorrhoea. The same sort of extensive cicatrices also occur after keratomalacia, diphtheria, and burgs; in the last two cases cicatrices upon the conjunctiva are never wanting, and conduce to the correct diagnosis.

(g) Sharply defined punctate or striae cicatrices are the result of traumatism, whether effected by accident or by design (operation).
(b) Dense, white cicatrices, which occupy the lowermost part of the cornea and terminate above in an almost horizontal border, are caused by keratitis lagophthalmica. Sometimes we see men in whom such cicatrices are present in both eyes. In this case the cicatrices are usually the consequence of some severe disease, in which a condition of somnolence and a resulting imperfect closure of the lids were present and lasted for some time.

(i) Opacities in the lowermost part of the cornea having the shape of a triangle with its apex directed upward are the result of a parenchymatous keratitis which, contrary to rule, has become localized in the lower half of the cornea, or are due to the deposition of an exudate upon the posterior corneal surface.

(j) Small, bluish-white opacities which are situated at the margin of the cornea and project into the transparent part of it under the form of obtuse-angled triangles, are the residua of a sclerosing keratitis.

A peculiar sort of opacity is that which develops when the anterior chamber remains for some time filled with blood. Then the cornea takes on an intense reddish, brownish, or brownish-green color, and at the same time becomes so opaque that the parts beneath can no longer be distinguished through it. It gradually clears again, beginning at the edge, but only in rare cases becomes once more perfectly transparent, and then only after months or years have elapsed. In that stage in which the central brown portion is surrounded by a narrow marginal zone which has regained its transparency, it looks as if a brown-colored crystalline lens had prolapsed into the anterior chamber and was lying behind the cornea. The coloration of the cornea in this case is due to the fact that the blood coloring matter being dissolved by diffusion penetrates into the cornea and is deposited there under the form of crystals of haematoxidin (Vossius, Treacher Collins, etc.).

Opacities that are produced by the deposition of an exudate sometimes exhibit an adhesion of the iris to the cornea, and hence belong to those rare cases in which an anterior synechias exists without a preliminary perforation of the cornea. The iris is drawn up to the posterior surface of the cornea by the exudate, while it is contracting and undergoing organization, and becomes fixed there. In a similar way anterior synechias without preliminary perforation of the cornea is observed in those cases in which the iris has been pushed forward as far as the posterior surface of the cornea and kept there for some time. The iris in such cases becomes agglutinated to the cornea in spots, and if it afterward, either spontaneously or as the result of an iridectomy, returns to its normal position, these agglutinated parts of it remain attached to the cornea. We then either find the iris extensively adherent to the cornea, or one or two tags arise from it, whose apices are inserted into the posterior corneal surface. The same thing may take place if the anterior chamber has been effaced for some length of time, so that iris and cornea have been directly in contact with each other.

Cicatrices of the cornea often undergo subsequent metamorphoses. It often happens that delicate cicatrices dating from childhood no longer appear in adult life under the guise of a continuous opacity, but are traversed by clear striæ, interlacing in all directions and thus dividing the opacity into small separate areas. This peculiar aspect of an opacity always indicates that the latter has lasted a very long time. The explanation of it probably is that in the interstitial growth of the cornea new-formed transparent fibers develop between the old opaque ones. It may also happen that cicatrices, originally
DISEASES OF THE CORNEA.

flat, later become ectatic. Markedly ectatic cicatrices, the most prominent point of which is but incompletely covered by the lids, not infrequently display at this point a xerotic condition of the epithelium, which looks dry and epidermoid. In old, dense cicatrices, yellow spots sometimes develop, caused by the deposition of concretions of a hyaline or amyloid substance. Small, chalky-white specks imbedded in the cicatrix are to be referred to a deposition of lime. In fact, small calcareous plates are frequently thus formed, which, when they become loose, can be picked off with a forceps. In these cases we have to do with different varieties of retrograde metamorphosis, which are referable to an insufficiency of nutrition of the dense cicatricial tissue. Such processes may give rise to the softening and ulcerative disintegration of old cicatrices—so-called atheromatous ulcers, which not infrequently induce perforation.

Corneal Opacities of Non-inflammatory Origin.—These are mostly referable to a lowering of the nutrition of the cornea. The typical example of a physiological non-inflammatory opacity, which appears in the cornea of sound eyes in advanced life, is the arcus senilis (gerontoxon corneae), which has been described in speaking of the anatomy of the cornea. The arcus senilis is formed by the deposition of hyaline masses and minute particles of lime in the more superficial layers of the cornea, close to the limbus; its cause is assumed to be senile atrophy of the limbus, with involution of a portion of the vascular loops contained in it.

Opacities resembling the arcus senilis are also found in conjunction with other affections of the limbus—e.g., with the growths of vernal catarrh, with small neoplasms, and sometimes even with a large pinguecula.

Among pathological opacities of non-inflammatory origin the principal ones requiring mention is the zonular opacity of the cornea.* This forms a gray stripe from three to five millimetres broad, which passes straight across the cornea, a little below its center. It develops with extreme slowness, occupying years in its progress; the first parts to appear being the two terminal points of the opaque stripe—that is, the portions of the opacity lying nearest the outer and inner margins of the cornea. These points are always separated from the margin of the cornea by a narrow, transparent zone. Starting from them the opacity gradually pushes its way toward the middle line, where the two parts of it unite, and thus close in the opaque zone which covers the lower half of the cornea. This zone is, accordingly, broadest and most opaque at its two extremities, these being its oldest parts (Fig. 57). On examining it pretty closely, especially with a magnifying glass, we ascertain that the opacity, which has a sharply defined outline on all sides, is composed of minute white or gray dots which lie quite superficially in the epithelium or directly beneath it; hence we usually find the surface of the cornea over the opacity roughened like shagreen or covered with minute prominences.

Zonular opacity of the cornea generally develops in eyes which have nearly or quite lost their sight in consequence of some intra-ocular affection (iridocyclitis, glaucoma), and in this case it is practically of little significance. It is only very rarely (and then only in elderly people) that we encounter it in eyes which are otherwise perfectly sound, so that here the corneal opacity itself is the sole cause of the disturbance of vision (senile zonular opacity).

The anatomical changes that are the fundamental factors in producing zonu-

---

* Synonym: Ribbon-shaped opacity of the cornea.
lar opacity of the cornea consist in the deposition of hyaline masses and of lime in the epithelium and in the uppermost lamellæ of the cornea.

Zonular opacity of the cornea depends upon a disturbance of nutrition, caused by a lessened ability on the part of the cornea to withstand external injurious influences. The position and extent of the opacity correspond to the palpebral zone of the cornea—i. e., that part of it which lies exposed in the palpebral fissure even when the latter is but slightly opened. Since this form of opacity affects corneas which have generally been made insensitive already and often opaque, too, by some antecedent disease, it must be assumed that it occurs because these corneas are unable any longer to withstand properly the external injurious influences to which they are subjected in the region of the palpebral fissure. If such influences exert their effect for a very long time, even healthy corneas may react to them by the production of a zonular opacity. Thus Topalanski has seen this opacity in three hat makers, into whose eyes particles of hair were constantly flying from the hare’s skins that they were engaged in cutting. I myself found zonular opacities of both eyes in a physician who had blown calomel into them every day for twelve years. According to Leber, one of the injurious influences that affect the palpebral region of the cornea is evaporation: the nutrient fluid of the cornea being supposed to be richer in lime salts in cases of zonular opacity, and these salts being precipitated under the influence of evaporation.

The zonular opacity being superficially placed, it can readily be removed by scraping off the epithelium and the cloudy corneal layers immediately subjacent (abrasio cornea). There is, of course, no object in doing this except in the cases where, as in the senile form, we have to do with an eye that but for the opacity would be serviceable for vision.

Among the varieties of opacity which do not depend upon inflammation, belong also the pressure opacity of the cornea—i. e., that form of opacity which develops in connection with an elevation of the intra-ocular tension. It is a diffuse, smoky opacity, which is most marked in the center of the cornea and gradually diminishes toward its margin. That it is not of inflammatory nature is proved by the fact that, after the disappearance of the rise in tension, it very soon, often in less than an hour, vanishes completely, which would not be possible if it depended upon an inflammatory infiltration of the cornea. In fact, in the case of the pressure opacity we are dealing simply with an edema of the cornea, which is situated mainly in the epithelium, and which is capable of rapid subsidence (see Fig. 37).

Likewise of non-inflammatory origin is the traumatic striate opacity of the cornea (page 198).

Congenital opacities of the cornea, although rare, do occur, some being of inflammatory, some of non-inflammatory, origin. The former are caused by a foetal keratitis. The latter are relatively more frequent, and are found in conjunction with other congenital anomalies of the eye. Embryotoxon is the name given to a congenital opacity which in shape and appearance is similar to a gerontoxon.

The disturbance of vision by dazzling, which occurs when an opacity is present in the pupillary region of the cornea, is explained as follows: In the
normal eye the images of the objects in the visual field lie upon the retina, side by side and sharply separated from each other, the bright and dark parts in contrast. Now, if by means of a spot of opacity upon the cornea light is diffused uniformly over the whole retina, the distinction between the light and dark portions of the retinal images becomes less striking. The following comparison may illustrate these conditions: In a well-taken photograph all details are seen sharply and distinctly. But if it is rather highly glazed, and we look at it obliquely, the glazing shines so that the details of the photograph can no longer be distinguished. As the glazing is perfectly transparent, the rays emanating from the photograph still arrive at our retina and produce there sharp images of the details of the photograph. But in addition there come numerous rays reflected from the surface of the glazing, which so flood the whole retina with light that the sharp retinal images are, so to speak, drowned out.

A man with sound eyes can get an idea of the sensation of dazzling produced by corneal opacities, if, when in a picture gallery, he looks at a picture which is hung upon a narrow strip of wall lying between two windows. He can scarcely see what the picture represents, and has a very unpleasant sense of dazzling. How is the diffusion of light effected in this case? The normal cornea is not, as is ordinarily assumed, absolutely transparent. We can see this from the fact that a portion of the cornea, which has light concentrated upon it by focal illumination, looks gray, insomuch that the tyro might suppose that there was a pathological opacity of the cornea. The cornea, therefore, always reflects a certain quantity of light. The like is true of the lens, and, generally, of all the refracting media of the eye. In consequence of this imperfect transparency of the refracting media, diffusion of light takes place even in the normal eye, although, to be sure, under ordinary circumstances, it is too inconsiderable to excite notice. But, in the example given, diffusion exerts such a disturbing effect, because, in proportion to the light reflected from the picture, an uncommonly large amount enters the eye from the two windows, and thus a comparatively large quantity of light undergoes diffusion over the retina.

For clearing up old opacities, especially those produced by parenchymatous keratitis, electricity has done me good service in some cases. The positive pole of a constant-current battery is placed on the temple or the neck, while the negative pole is applied to the previously cocainized cornea. The negative pole consists of a solid cylinder of silver, 7 mm. in diameter. This is surrounded by an insulating envelope of caoutchouc, the only portion exposed being the surface at its end, which is concave so as to fit the surface of the cornea. Contact between the electrode and the cornea is effected by a drop of mercury, which readily adheres to the concave surface of the silver. The current intensity employed is 0.2 to 0.5 milliamperes (Alleman).

Tattooing should be applied only in the older cicatrices, which are solid and flat. For in thin or ectatic cicatrices, the latter may be weakened by the inflammatory reaction, which always follows tattooing, and thus an increase of the ectasis or even an elevation of tension may be set up. Nor is tattooing a proper procedure for eyes that have been through a severe attack of irido-cyclitis, since this disease might be lighted up again by the operation. If we have a pretty large scar to tattoo, it is advisable to divide the operation among several sittings, so as not to allow the inflammatory reaction to get too great. In the
course of years the black color fades somewhat and requires to be renewed by a repetition of the operation.

In cases in which only a part of the pupillary area of the cornea is opaque, and the rest is transparent, tattooing the opaque portion may actually improve the sight, since the cicatrix, being made less transparent, does not produce as much diffusion of light as before.

IV. Ectasie of the Cornea.

Just as in the case of opacities, so also in the case of ectasie of the cornea, we must first of all distinguish whether they have been produced by inflammation or not. On the basis of this distinction we make the following subdivision of ectasie of the cornea:

Ectasie of inflammatory origin . . . | Staphyloma,
                                   | Keratectasia.
Ectasie of non-inflammatory origin | Keratoconus,
                                  | Keratoglobus.

1. Staphyloma of the Cornea.

46. Symptoms.—A staphyloma is a protuberant cicatrix originating in a prolapse of the iris, and wholly or in part replacing the cornea. We distinguish accordingly between total and partial staphylomata. In total staphyloma there is found in place of the cornea an opaque, protuberant cicatrix, the base of which is encircled by the margin of the sclera or by the very outermost rim of the cornea, which may still be preserved. In one series of cases the protuberant cornea has the form of a cone (staphyloma totale conicum). In conical staphyloma the protuberance starting from the margin of the sclera slopes gradually up to its apex (Fig. 62). In other cases, however, the protuberance is hemispherical (staphyloma totale sphaericum), and its walls, rising abruptly from the sclera or even overhanging it, are sharply demarcated from the latter (Fig. 58). The spherical is more frequent than the conical form in total staphyloma. Many spherical staphylomata, above all those of recent date, have such a very thin wall that the layer of black pigment (Fig. 59, 1) on its posterior surface is seen through it, shining with a bluish luster. Such staphylomata accordingly form a slate-colored or bluish-black hemisphere, which in form and color has a certain resemblance to a blue grape, whence the name staphyloma (σταφυλί, a bunch of grapes). Afterward thickening of the wall of the staphyloma occurs. If this takes place first under the form of separate, stout bands, by which the surface of the staphyloma is constricted in spots somewhat after the fashion of a blackberry, what is called staphyloma racemosum is produced. Old staphylomata have for the most part a thick white wall, in which usually one or two dark spots may be observed, resulting either from a deposition of pigment
or from localized thinning (Fig. 59, a). Staphyloomata are generally traversed by one or two pretty large vessels originating from the conjunctiva. On account of the opaqueness of the staphyloom, nothing is to be seen of the deeper parts of the eye. The iris is all taken up into the staphyloom—that is, all of it except its extreme periphery, which is so closely applied to the posterior surface of what remains of the marginal portion of the cornea that there is no longer any anterior chamber.

A partial staphyloom occupies only a portion of the cornea. It rises as a white prominence, usually in the form of a cone (staphyloom partiale conicum); spherical protuberances (staphyloom partiale sphaericum) are pretty rare in the case of partial staphyloomata. The relation here, therefore, is the reverse of what it is in the case of total staphyloomata. Partial staphyloom usually extends in one direction as far as the margin of the cornea, while in the other direction there is a portion of the cornea of varying extent which is still left, and which, moreover, is generally transparent, so that the iris can be recognized behind it. The iris is drawn forward to the staphyloom, so that the pupil is displaced toward the latter and often partly concealed by it. Indeed, the pupil may be closed up altogether if the whole pupillary margin of the iris is incorporated in the staphyloom (as is the rule in the case of total staphyloomata).

**Etiology.**—Staphyloomata constitutes the final outcome of the corneal ulcer with perforation, and is nothing but the prolapsed iris which has become protruded and transformed into cicatricial tissue. The protrusion may be primary or secondary in its development.
(a) A primary protrusion is produced in the following way: After perforation of the cornea has occurred, the iris becomes prolapsed and bulges forward. The cicatrization which follows, and which in favorable cases produces flattening of the prolapse, can not in unfavorable cases do away with the protrusion. On the contrary, the prolapsed iris remains protruded at the same time that it is gradually converted into cicatricial tissue; it becomes consolidated while still in a position of protrusion (thus from the prolapse of iris in Fig. 58 is formed the staphyloma represented in Fig. 59). A total or partial staphyloma develops according as a total or partial prolapse of the iris has existed. The causes which oppose the conversion of a prolapse of the iris into a flat cicatrix and favor the formation of a staphyloma are chiefly two: The first is large size of the perforation. In very small perforations there is no development whatever of staphyloma; and the larger the perforation, the more likely is it that a staphyloma will develop. The second cause is improper behavior on the part of the patient. In this regard the chief factors to be considered are, in adults, great physical exertion; in children, crying, and also squeezing together of the lids; and, in both, great straining at stool. The temporary increase of tension induced by this means distends the newly formed and yielding cicatricial tissue; but as the latter has no elasticity, it does not return to its former dimensions after the elevation of tension has disappeared, but remains permanently protruded.

(b) We speak of a secondary protrusion when a prolapse of the iris at first heals with the formation of a flat cicatrix, which latter afterward bulges out again. The cause of this is frequently supplied by the same injurious influences that have been enumerated above—e. g., by the too early resumption of work by a patient with a recently cicatrized corneal ulcer. The recent cicatrix is still too yielding to offer a proper resistance to the repeated though transitory elevations of intraocular pressure, and so becomes gradually distended. But in any case a protrusion is sure to occur whenever the entire pupillary border of the iris is incorporated in the fresh cicatrix. Then, in consequence of the shutting off of the anterior from the posterior chamber (seclusio pupillae), increase of tension sets in which produces bulging of the yielding scar tissue (Figs. 60–62).

A staphyloma, accordingly, in its origin is not a bulging of the corneal tissue, but of the iris. It develops from a prolapse of the iris, which is converted into cicatricial tissue—that is, it develops just at the spot where the cornea no longer exists. It would therefore be more correct to speak of staphyloma iridis. In fact, the transition from prolapse of iris to staphyloma is altogether gradual, so that at a certain stage of its development the protrusion in the eye may be equally well denoted as an old prolapse of the iris or as a recent staphyloma.
Consequences of Staphyloma of the Cornea.—The sight is always diminished. In total staphyloma it is reduced to the mere ability to distinguish between light and darkness. In partial staphyloma the degree of sight depends upon the character of the part of the cornea that is still preserved, and also upon the position of the pupil. Even in the most favorable case, in which a part of the pupil happens still to lie behind perfectly transparent cornea, the sight is considerably reduced by the irregular curvature which is present not only at the site of the staphyloma itself, but to a less degree over the whole cornea. Large staphylomata produce a very conspicuous disfigurement. They also cause trouble by giving rise through mechanical irritation to catarrhal conditions of the conjunctiva, with increased secretion, lachrymation, etc. The closure of the lids is rendered difficult in the case of large staphylomata by the great size of the protrusion; the apex of the latter, being but incompletely covered by the lids, becomes dry (xerotic), or becomes the site of ulcers (atheromatous ulcers). Sometimes the lids are forced so much apart by the staphyloma that ectropion develops.

Staphyloma of the cornea is almost invariably accompanied by elevation of tension. With regard to the relation between this and the staphyloma, two sets of cases exist—i.e., the increase of tension may be the cause or the result of the staphyloma. The former is the case when the cicatrization of the prolapsed iris has produced seclusion of the pupil, a condition which first causes increase of tension, and then, as a consequence of this, ectasis of the cicatrix. (See above the remarks on secondary protrusion.) The second class of cases comprises all those staphylomata which have originated under normal conditions of tension and are hence due simply to the yielding character of the scar. In these the increase of tension does occur as an additional symptom, but not till later.

In addition to the increase of intra-ocular pressure that is perceptible to the touch, elevation of tension finds its chief expression in a diminution of sight, which finally ends in complete blindness. Pain, too, is sometimes associated with the elevation of tension. Moreover, as soon as the increase of tension has set in, it gives rise to further changes both in the staphyloma and also in the whole eyeball. Thin-walled staphylomata are made to protrude farther and farther by the heightened pressure, and thus suffer an increasing attenuation of their wall, until the latter, from almost any trifling cause, ruptures at some particularly yielding spot. Then the aqueous humor is discharged in great abundance; and the staphyloma collapses, becomes smaller, and remains so for some time. But then the eyeball slowly fills again up to its former volume, and rupture takes place a second time. Thus the process may be repeated a number of times at pretty long intervals, until at length a time comes when perforation of the staphyloma is followed by profuse
intra-ocular haemorrhage, or by severe irido-cyclitis or panophthalmitis. Then the eyeball undergoes atrophy, and by this means a sort of spontaneous cure of the staphyloma takes place.

The scleral portion of the eyeball, too, when the elevation of tension has lasted a pretty long time, gives way and becomes distended, especially in young people in whom the sclera is more extensible. In this case we observe both total and partial ectasia of the sclera. In the former, the sclera becomes uniformly distended, the entire eyeball grows larger, and the sclera becomes so thin as to look bluish owing to the way in which the chorioidal pigment shines through it. In the second case, the sclera in the vicinity of the cornea bulges forward under the form of a circumscribed swelling, which appears dark from the pigment shining through it; intercalary and ciliary staphylomata (see § 55) are developed. Very frequently general and partial ectasia of the sclera are found simultaneously in the same eye, which may thus grow to an enormous size.

47. Treatment.—Stress is chiefly to be laid upon prophylaxis. The physician who has to treat an eye with prolapse of the iris must make every endeavor to secure the production of a flat cicatrix. He should not suffer a staphyloma to develop before his very eyes. In this connection, what has been said in regard to prolapse of the iris (page 156) may be consulted. When we have succeeded in effecting the formation of a flat cicatrix we must, while the latter is still recent, take measures to keep it from bulging out again. With this end in view we should refrain from discharging the patient too soon from treatment, and particularly we must advise him to abstain for a long time from all severe physical exertion. It is often advisable before discharging the patient to perform an iridectomy, whenever this can be done, as by this means the subsequent development of an ectasia is most effectually counteracted.

If we have to do with a staphyloma which has already developed, our treatment must have a different object in view, according as the case in hand is a total or a partial staphyloma. With the former the sight is irreparably lost, since there is no transparent cornea left; we must hence confine ourselves to the relief of the symptoms and of the disfigurement produced by the staphyloma. With partial staphylomata, our first aim is to improve whatever sight may be left, or at least to preserve it from further injury (as would be produced by increase of tension). The methods which are employed for the cure of staphyloma are all of an operative character.

(a) Total Staphyloma.—The simplest procedure is incision of the staphyloma. This is done with the expectation that as a consequence of it the staphyloma will collapse, and, because of the retraction of the cicatricial tissue of which it consists, will remain permanently flat. This procedure is evidently crowned with success only when the staphy-
DISEASES OF THE CORNEA.

Ioma is thin-walled enough to collapse after the incision has been made; it is, therefore, indicated only in those recent staphylomata which are still akin to prolapse of the iris. The incision is made by means of a cataract knife. The section is made in various ways: either in a rectilinear direction and transversely across the middle of the staphyloma (Küchler), or in a curved direction and concentrically with the lower corneal margin, so that a flap is formed of the wall of the staphyloma. The latter way of making the section has the advantage of causing a marked gaping of the wound, since the flap contracts owing to the drawing up of the cicatricial tissue. Consequently, the lips of the wound are prevented from rapidly reuniting, in which case the ectasis would soon be reproduced and the incision would have to be repeated. If the wound in the flap should not gape sufficiently, the flap must be re-trenched by the removal of a part of it. After the completion of the section, the lens, in case it is still in the eye, must be removed by lacerating the anterior capsule.

Simple ablation of the staphyloma by Beer's method is performed by first separating the lower half of the staphyloma from its base by a curved incision made with the cataract knife. The flap thus formed is grasped with the forceps, and then the upper half of the staphyloma is cut off from its base by means of the scissors. The lens, which now presents, is removed by opening the capsule. The gap which has been substituted for the staphyloma by the operation may now be left to be closed by the unaided action of cicatization. It is better, however, to close the gap by sutures passed through the upper and lower margins of the staphyloma, which have been left for the purpose. These sutures on being drawn tight bring the lips of the wound together horizontally.

A still more secure union is effected if we follow up the ablation with a conjunctival suture (De Wecker), and it is in this way that the operation is usually performed at present. We begin the operation by dividing the conjunctiva all round the limbus and separating it for some little distance from the subjacent sclera, so that it can be drawn forward to the proper extent. Then we pass the threads through the free edge of the conjunctiva. We do this by running through the upper and lower edges a number of vertical threads, which subsequently are tied so as to form interrupted sutures. Before the sutures are drawn tight, we ablate the staphyloma as in Beer's method, and expel the lens from the eye. Then we close the conjunctival wound by knotting the sutures. We may also apply the suture by passing a single thread in and out all round the margin of the detached conjunctiva, in such a way that the two ends of the thread come out close by each other, and, when they are knotted together, constrict the conjunctiva after the manner of a tobacco bag (tobacco-bag suture). In this case, too, the ablation of the staphyloma and the delivery of the lens are not done until after the thread has been passed through the conjunctiva. For,
after the removal of the lens, there is imminent danger of the expulsion of the vitreous, and hence we ought not to be losing time in applying sutures, but, on the contrary, should have it in our power to close the wound promptly by tying a thread that has been already passed.

Ablation with the application of a suture is suitable for all cases of old staphylomata with thick walls, for which incision alone would not be sufficient.

Those cases of staphyloma of the cornea in which a considerable ectasis of the sclera has developed as the result of an increase of tension are in general not adapted for ablation. We should then run the risk of getting a violent haemorrhage in consequence of the sudden diminution of the previously increased tension. For such cases, in which the eyeball is increased sometimes to quite an enormous size, the only thing feasible is enucleation, which relieves the troublesome symptoms and at the same time also the disfigurement, inasmuch as an artificial eye can then be worn in place of the hideous, enlarged eyeball. For the method of performing enucleation, see the section on Operations (§ 165).

(b) Partial Staphyloma.—In this, treatment seeks a threefold object: to improve the sight, to cause flattening of the ectasis, and to prevent the development of an increase of tension, or to do away with it in case it has already set in.

Simple incision, which must be followed up by the application of a pressure bandage for a pretty long time, accomplishes its end only in recent staphylomata, the walls of which are still thin. In older and thicker cicatrices, excision, with or without the operation of uniting the edges of the wound by sutures, is to be preferred. But the most approved remedy that we possess against ectatic cicatrices is iridectomy. This should be performed in such a way that the incision lies in the sclera and a broad coloboma is produced, reaching to the margin of the iris. We do not select for iridectomy that part of the iris which is drawn into the cicatrix, as we might do with the idea of relieving in this way the incarceration of the iris; an iridectomy at this spot would on technical grounds be very difficult of performance, and often would turn out to be imperfect. We try rather to find for our iridectomy that spot which represents the greatest improvement that can be made in the vision, the pupil being shifted to a point behind the most transparent part of the cornea. Furthermore, by means of the iridectomy, an increase in tension is prevented from developing, or, if it has already developed, it is done away with. Moreover, in cases of staphylomata with thin walls, a flattening of the ectasis is obtained by the iridectomy, if the eye is kept beneath a pressure bandage for a long time after the operation. In thick-walled and unyielding staphylomata, it is advisable to combine excision with iridectomy. We begin by doing the former, and put off the iridectomy to some weeks later, when the
DISEASES OF THE CORNEA.

formation of a flat cicatrix has taken place—doing this in order to prevent the renewed bulging of the freshly formed cicatrix.

If we have to do with a partial staphyloma in which, owing to the increase in tension, the sight has been already either in great part or altogether annihilated, no gain in this regard can be expected. Nevertheless, it will be advisable to perform an iridectomy in most cases in order to prevent the further consequences of the increased tension, such as partial ectasis of the sclera, enlargement of the entire eyeball, etc. Of course, iridectomy can be performed in such cases only so long as the anterior chamber is still existent. As soon as the iris, in consequence of the increased tension, has been squeezed against the posterior surface of the cornea and has become cemented to it, the performance of iridectomy has become technically impossible.

It can not be denied that, in spite of the therapeutic means at our command, the cicatrix in many cases keeps constantly bulging anew, the increase in tension returns every time, and thus the eye slowly but inevitably goes blind.

Anatomy of Staphyloma of the Cornea.—The wall of the staphyloma consists of a dense, tough cicatrical tissue, which is traversed by a few vessels, and often contains pigment imbedded in it. The thickness of the wall differs greatly; it varies from the thickness of a sheet of paper to a thickness three times as great as that of the normal cornea, and more. Very thick staphylomata are often as hard as cartilage, and when ablation is performed can scarcely be cut through. Thick and thin spots frequently occur in the wall of the same staphyloma (Figs. 59 and 62). The anterior surface of the staphyloma is covered by a thick, irregular layer of epithelium, sometimes containing epithelial pearls. The posterior surface is frequently uneven, on account of the inequality in thickness of the wall. It is covered by a coating of black pigment (Fig. 59, i, and Fig. 62), which is nothing but the retinal pigment layer of the iris. As, however, this has to be distributed over such a large surface, it is rarefied, so that the epithelial coating shows numerous gaps, and in the center of the staphyloma, corresponding to what was once the pupil, it is often entirely wanting. Through staphylomata with thin walls light can be passed by means of focal illumination, and in this way the pigment layer may be demonstrated in the living eye. It is easy to see why Bowman’s membrane should be wanting on the anterior surface of the staphyloma, and Descemet’s membrane on its posterior surface, since the staphyloma is not cicatrized cornea, but is iris, and represents a spot at which the cornea has been destroyed. It is only on the sloping sides and the edges of the staphyloma, which are formed of the remains of the cornea, that both these membranes can still be demonstrated. This is more the case in a conical than in a spherical staphyloma. A spherical staphyloma, in fact, is produced in cases where the sides of the perforation shelf off abruptly, so that the cornea even in the immediate vicinity of the opening has its normal thickness. In this case, when the prolapsed iris is driven out into this opening, the adjoining corneal tissue takes little or no part in it. The sides of the prolapse rise at right angles to the adjoining corneal surface, and thus a spherical staphyloma is formed (Fig. 59). A conical staphyloma, on the other hand, is the result of a less extensive perforation (Fig. 60), in which the portions of cor-
nea forming the walls of the aperture taper down toward the latter, and on account of their thinness are driven forward at the same time with the prolapsed iris. The fully developed ectasis, therefore, consists only in its central part of old prolapsed iris, its lateral slopes being in large part formed of the tapering, protruded cornea (Fig. 62). For this reason the ectasis does not rise abruptly from the cornea, but presents a gradual slope from its margin up, so that a conical shape is thus given to it.

In staphyloma the iris persists as an independent structure only in cases in which at least a part of the pupil has remained free, so that the anterior and posterior chambers can communicate through it. If, on the other hand, the entire pupillary border has been incorporated in the cicatrix (seclusio pupillae), increase of tension sets in, and as the iris is consequently pushed forward right up to the cornea (Fig. 61), the shallow anterior chamber, which was present at the outset (Figs. 58 and 60, c), disappears. Then the iris becomes more and more intimately adherent to the cornea, and becomes constantly thinner and thinner as a result of atrophy, so that at last scarcely anything of it but the pigment layer remains to cover the posterior surface of the staphyloma (Fig. 62). In such cases, even when the marginal portions of the cornea are still somewhat transparent, the performance of an iridectomy has become technically impossible.

As the anterior chamber becomes shallower the posterior becomes deeper; in total staphylomata, the whole large space between the posterior surface of the staphyloma and the lens is to be looked upon as the posterior chamber (Figs. 59 and 62).

The ciliary body suffers mainly on account of the increase in tension, which causes it to atrophy, especially if an ectasis of the sclera develops in the ciliary region (staphyloma ciliare). Furthermore, the ciliary processes are sometimes very strongly pulled upon by the fibers of the zonula, and are thus elongated (c, Fig. 59).

The lens very frequently suffers changes in the case of staphylomata. In total staphylomata it is often entirely wanting, because it has been discharged from the eye through the pupil at the time when a large perforation existed. If the lens is still present it frequently shows alterations of position, being tilted in consequence of the unequal bulging of the staphyloma. Sometimes we find it partially adherent to the staphyloma, or it vibrates with the movements of the eye, because of the atrophy of the stretched zonula of Zinn. These alterations in the lens favor the development of an increase in tension; for this reason, after performing incision or ablation of the staphyloma, we remove the lens from the eye. Very frequently the lens is rendered opaque either in toto or only at its anterior pole (anterior polar cataract, p, Fig. 59). In some few cases we may find the lens greatly diminished in size, or even shrunken into a mere membrane (Fig. 62).

The deeper parts of the eye also suffer from the increase in tension. Excavation of the optic nerve, atrophy of the retina and choroid, and fluidity of the vitreous may develop.

As a rule, the increase of tension resulting from staphyloma develops quite gradually. But sometimes protrusion of the cicatrix and increase of tension take place simultaneously and in a sudden fashion, as the following example may illustrate: A person has had an ulcus serpens which has destroyed the cornea in its central part. Under suitable treatment the prolapsed iris is in
process of transformation into a flat cicatrix. Then, one morning the patient
complains of violent pain which has suddenly developed in the eye. After
removing the bandage we find the eye, which the day before was almost free

FIG. 60.

from irritation, now the seat of a dusky ciliary injection. The cicatrix is bulged
forward in the form of a cone, and the anterior chamber is very shallow, or is
altogether abolished, because the iris is pressed against the cornea. The latter
looks dull, and small hemorrhages are visible in the cicatrix or in the anterior
chamber. The eye is hard, and very sensitive to the touch. An external cause
for this sudden change in the course of healing is generally not discoverable.

The operation for total staphyloma is performed most frequently by making
an ablation with consecutive suture of the conjunctiva. In this case it very
often happens that some days after the operation the conjunctival suture gives
way, and the gap left by the removal of the staphyloma comes to view with
vitreous hanging out from it. Since this gap closes but very slowly by cicari-
trization, the process of healing is very much protracted, and, furthermore, par-
ophthalmitis may result from purulent infection of the projecting vitreous. To prevent this, and to obtain the securest possible closure of the wound, we may proceed as follows: After making the circular incision in the conjunctiva, but before removing the staphyloma, we carefully scrape away the limbus and also the epithelium at the edge of the staphyloma, since, otherwise, if these surfaces are left covered with epithelium, the conjunctiva that is sewed over them will not adhere to them. Then we remove the staphyloma, leaving above and below a narrow rim of margin through which are passed the sutures that close in the gap in the eyeball; and last of all the conjunctiva is drawn over the wound and united.

In small, partial staphylomata, which so often defy all attempts at cure, I have got favorable results by transplantation of the cornea. I remove the ectatic cicatrix with the trephine, and then carefully excise the iris at the edges of the opening, so that it no longer remains connected with the cornea. Then I place in the gap an equally large piece of cornea taken from a just enucleated human eye. Generally this piece becomes well incorporated, and even if after incorporation it subsequently becomes opaque, the object that it was intended to subserve is nevertheless obtained, in that the staphyloma is replaced by a flat cicatrix not adherent to the iris.

2. Keratctasia.

48. By keratctasia we understand a protrusion of the cornea, which makes its appearance after inflammation of the latter, without, however, any perforation having taken place. The protrusion, therefore, in this case consists of corneal tissue, in contradistinction to staphylocoma, in which it is formed of the tissue of the iris. From ectasiae of the cornea of non-inflammatory origin—i.e., keratoconus and keratoglobus—the inflammatory ectasia of the cornea is distinguished by the fact that the bulging portion of the cornea, in consequence of the inflammation, is opaque.

Inflammation produces protrusion of the cornea by thinning it or by softening it. It produces protrusion by thinning in those cases in which an ulcer of the cornea has destroyed the superficial lamellæ of the latter to such an extent that the posterior lamellæ are no longer able by themselves to offer resistance to the intra-ocular pressure (keratctasia ex ulcere, Fig. 63). If all the layers as far as the membrane of Descemet have been destroyed, a hernia of this membrane (keratocele) is produced, which may cicatrise in this ectatic form. In this case this hernia persists as a perfectly transparent vesicle which projects above the surface of the cornea, and which is surrounded by an opaque cicatrical ring.

Ectasis of the cornea may also take place because of a softening that results from inflammation. Under this head belong the keratctasia e panno, which develops when a thick pannus penetrates pretty deeply into the cornea proper, and the keratctasia following parenchymatous keratitis. In these cases the cornea protrudes as a whole
and uniformly, while in keratectasia ex ulcere it is generally only a local protrusion that exists.

A consequence common to all inflammatory ectasiae of the cornea is that the protruding portions have very little power of regaining their transparency. Accordingly, the prognosis for vision in pannus, keratitis parenchymatosa, etc., must be regarded as essentially more un-

![Figure 63 - Keratectasia ex Ulcere. Magnified 25 x 1.](image)

The thinned and bulging cicatrix, N, is distinguished from the surrounding normal cornea by its denser structure. The epithelium, c, over it is thickened, while Bowman’s membrane, b, is wanting in this spot. On the other hand, Descemet’s membrane, d, along with its epithelium, is everywhere present—a proof that the ulcer has not perforated.

favorable as soon as protrusion of the cornea shows itself. And in considering the prognosis we must take into account, besides the opacity of the bulging cornea, its alteration in curvature and the resulting alteration of refraction of the eye. Sometimes keratectasia is followed by increase of tension.

Treatment is powerless against a fully developed keratectasia; it is attended with success only when there is a question of combating a protrusion that is in process of development. The means suited for this latter purpose are repeated punctures of the cornea with the subsequent application of a pressure bandage, and iridectomy. Very small ectasiae, as, for example, small keratoceles, we may perforate with a cautery point and then induce the formation of a flat cicatrix by the long-continued application of a pressure bandage.


49. Symptoms and Course.—In keratoconus, the central part of the cornea very gradually and without inflammatory symptoms begins to bulge forward in the form of a cone. At first the cornea is perfectly transparent, and its peripheral portions keep their normal curvature. Accordingly, the bulging forward of the center of the cornea, as long as it has not advanced too far, is recognized only by the diminution in size which the corneal reflex presents in the central part of the cornea. In the subsequent course of the disease the bulging of the center constantly increases, and the peripheral parts of the cornea are also in-
volved in the conical projection, so that we can perceive the conical shape of the cornea at a glance, especially when we look at the eye from the side. Finally, the apex of the cone becomes opaque and its surface uneven.

To the patient the disease makes itself apparent only by the disturbance of vision. The eye becomes apparently myopic, so that all objects have to be brought up very close. Nevertheless, perfectly sharp vision is not attainable by means of spherical concave glasses, because the bulging of the cornea is not spherical, but conical (hyperbolic). By the development of the opacity at the apex of the cone the visual power is, of course, still further reduced.

Keratoconus is a rare disease, which, as a rule, affects both eyes. It begins for the most part between the twelfth and the twentieth year, develops very gradually in the course of years to the height above described, and ultimately, sooner or later, comes to a standstill. A subsidence of the ectasia is not observed; but ulceration or rupture of the cornea is not observed either. Nor does increase in tension, which so frequently develops in inflammatory ectasie of the cornea, occur.

The cause of the protrusion lies in a progressive thinning of the central portion of the cornea, which consequently gives way before the intra-ocular pressure. By what means this thinning is produced is unknown.

Treatment can point to but slight results in this disease. In recent cases that have not yet gone too far, we may try to put a stop to the process by thorough protection of the eye, by general corroborative measures, and by the long-continued instillation of a miotic (eserine or pilocarpine). The marked contraction of the pupil thus produced lowers the tension in the anterior chamber, and thus lessens the strain imposed upon the attenuated cornea. A few cases have been thus put a stop to (Arlt). Finally, a series of methods aims at the substitution of a resistant cicatrix for the attenuated apex of the cone. For this purpose the latter is destroyed by excision or by cauterization. Since the corneal cicatrix thus obtained lies directly in front of the pupil, a displacement of the pupil to one side by means of an iridectomy is afterward usually required.

4. Keratoglobus.

50. In keratoglobus, the cornea as a whole is larger than normal. Keratoglobus is but one of the symptoms of the general enlargement of the eyeball that constitutes hydrophthalmus (buphthalmus), and for this reason reference must be made to the latter disease (§ 83) for its description.

By many authors the expression staphyloma corneae is employed in a broader sense, and all ectasie of the cornea are designated under this name. In that
DISEASES OF THE CORNEA.

case a further division of the term is made by distinguishing the transparent ectasiae of the cornea, keratoconus and keratoglobus, under the name of staphyloma pellucidum, from cicatricial staphylomata and from keratectasiae.

In keratoconus, the thinning of the cornea within the area of the conical protrusion can be demonstrated by the ease with which the apex of the cone can be dimpled by means of a sound. Anatomical examinations also have demonstrated that the cornea may be reduced in its center to a third of its normal thickness (Wagner, Hulke). A keratoconus of slight degree may be readily overlooked, since the cornea is perfectly transparent. The diagnosis, however, can be made even in the earlier stages by examining the corneal reflex, particularly if we use Placido's keratoscope (§ 148) for the purpose. Again, if we illuminate the pupil with the ophthalmoscope, we see in the red field of the former an annular shadow which is particularly dark at one spot; this spot shifts with the movements of the mirror.

In high degrees of keratoconus, in which the apex is already opaque, the distinction from a keratectasia following a central ulcer of the cornea is often very difficult. We must then take into consideration the condition of the other eye. In keratoconus we almost always find the second eye diseased as well, although not ordinarily to the same extent; while a central keratectasia could only by a rare accident be present at the same time in both eyes.

Keratoconus affects the female more frequently than the male sex. Those attacked by it not only see worse in the line of direct vision, but their indirect vision is also impaired, since the rays which enter the eye through the sides of the cone are very irregularly refracted. The consequence of this is faulty orientation in going about, such as is not present in simple myopia even of very high degree (Arlt). A moderate improvement of vision can generally be obtained by the use of strong concave spherical glasses, either alone or combined with concave cylinders. In many cases the hyperbolic glasses proposed by Raehlmann do good service. With these, the patient, to see clearly, must look just in line with the optical axis of the glass; they can not, therefore, be used for sidelong vision, and consequently not for going about. The same is true of the stenopic aperture, which, held in the patient's hand close before his eye, facilitates the recognition of small objects, such as fine print.

TUMORS OF THE CORNEA.—Tumors that develop primarily in the cornea are among the greatest of rarities. Isolated instances of primary papilloma, fibroma, myxoma, and sarcoma of the cornea have been published. The carcinomata and sarcomata which not infrequently are observed upon the cornea do not originate there, but in the adjacent conjunctiva, and in fact generally in the limbus. These tumors have been already considered under the head of diseases of the conjunctiva; so also has been the dermoid, a congenital form of tumor, situated partly upon the cornea, partly in the conjunctiva.
CHAPTER III.

DISEASES OF THE SCLERA.

ANATOMY.

51. The sclera,* together with the cornea, forms the fibrous envelope of the eye, the shape of which is nearly that of a sphere having a constriction corresponding to the base of the cornea. The mean diameter of this sphere (length of the axis of the eye) amounts to twenty-four millimetres. The sclera is thickest in the posterior segment of the eyeball, where it has a thickness of about one millimetre. It gradually diminishes in thickness anteriorly, becoming, however, somewhat thicker in the most anterior segment, because here the tendons of the recti muscles become fused with and reinforce it.

The histological structure of the sclera is very similar to that of the cornea. The sclera consists of fine fibrille of connective tissue, which are united into bundles. These run, generally speaking, in two directions—from before backward (meridional fibers), and in a direction concentric with the margin of the cornea (circular or equatorial fibers). Between the bundles are found lymph spaces which are in part lined with flat cells, thus forming an analogy with the system of lymph spaces and the corneal corpuscles of the cornea. The tissue of the sclera and of the cornea are hence very similar to each other, and, moreover, at the corneal margin pass into each other without any sharp line of demarcation. They are chiefly distinguished by the arrangement of the bundles of fibers, which is much more regular in the cornea than in the sclera.

The sclera also contains branched pigment cells, which for the most part are met with only in its deep layers and also along the vessels and nerves that traverse it. In the living eye we often perceive the pigment in the spots where the anterior ciliary veins emerge from the sclera, these spots appearing as small brown dots upon the white membrane. Sometimes we find in the human eye larger, slate-colored or light violet spots upon the sclera due to an abnormal pigmentation. Such pigmentation as this is the rule in many animals. If the sclera is thin, the pigment of the subjacent choroid is seen as a dark substance shining through it. In this case, which occurs especially in children, the white of the eye has a bluish tint, like thin white porcelain.

* From σκληρός, hard.
The sclera is traversed by vessels and nerves which penetrate into the interior of the eye, but has itself very few vessels. On the other hand, there are numerous vessels contained in the so-called episcleral tissue, that loose connective tissue which envelops the sclera and in the anterior segment of the eye attaches the conjunctiva to it. In the posterior segment of the eye the optic nerve passes through the sclera, which here apparently has an aperture for the passage of the nerve (foramen sclerae). In reality, however, the inner layers of the sclera are continued as the lamina cribrosa through the foramen scleræ (Fig. 9; for more precise particulars, see § 100).

I. Inflammation of the Sclera.

52. Inflammation of the sclera (scleritis), which belongs among the rarer affections of the eye, is always limited to the anterior segment of the sclera, lying between the equator of the eyeball and the margin of the cornea. It sometimes affects only the superficial layers of the sclera, sometimes the deep layers also. In the first case the disease runs its course without entailing any injury upon the eye; but in the second case it is dangerous to the sight, inasmuch as the inflammation passes from the sclera to the other membranes of the eye. It is hence of practical importance to distinguish between a superficial and a deep form of the disease (episcleritis and scleritis of authors).

(a) Superficial Form of Scleritis (Episcleritis).

This form makes its appearance as a focal inflammation, a circumscribed inflammatory nodule forming in the sclera. At the affected spot the sclera, owing to the deposition of exudate, bulges out in the form of a boss, so that a prominence which is sometimes flat, sometimes more acute, and which may reach or surpass the size of a lentil, is found here. This is traversed by vessels which, because deeply situated (episcleral), are violet in color; and it is immovably attached to the sclera, while the conjunctiva, though to be sure injected, can be moved about freely. The nodule feels hard, and is sometimes very sensitive to the touch. Except at the site of the nodule the eye may be perfectly free from injection. The subjective disturbances vary greatly; frequently the disease is associated with but slight discomfort for the patient, while in other cases very violent pain is present, which for a long time deprives the patient of sleep.

In the subsequent course of the disease disintegration and ulceration of the nodules never occur; on the contrary, they always disappear by resorption. After the inflammation has remained at its acme for some weeks, the nodule gradually flattens, becomes paler, and at length disappears completely, after lasting altogether from four to eight
weeks. Sometimes it leaves no trace behind it; more frequently, however, at the spot where it was situated a slate-colored patch is left, and in the same place the sclera appears somewhat depressed and the conjunctiva is closely adherent to it (cicatrix in the sclera). In other respects the eye suffers no after-injury from the inflammation.

Scleritis is peculiarly prone to recur. The disease may, to be sure, stop with one or two attacks, or years may intervene between the attacks; but in other cases, scarcely has the first nodule disappeared—nay, even the first one may not have disappeared—when a second one appears upon another portion of the sclera. Sometimes the disease does not cease until nodules have developed, one after another, in the entire circumcorneal space, and at length a zone of gray discoloration is visible entirely surrounding the cornea. By this time the disease has exhausted itself, since a new nodule does not generally develop in the spot where another was situated before. But, before it has gone as far as this, several years may have elapsed, during which the patient with but brief interruptions is annoyed by attacks of inflammation. In addition to this the disease very frequently attacks both eyes. The prognosis of the superficial form of scleritis is hence unfavorable in respect to the duration of the disease; while with regard to the final outcome it must be stated as favorable, because the usefulness of the eye for vision suffers no impairment, even if the process lasts a long time.

Superficial scleritis occurs, as a rule, only in adults, and especially in elderly people. In some cases it appears to be connected with rheumatic or gouty affections; in others its origin is obscure. Treatment avails but little against it. We are able to ameliorate the symptoms and accelerate somewhat the subsidence of the nodules, without having it in our power to prevent the recurrences. Sodium salicylate is given internally, if there are any grounds for the assumption of a rheumatic origin for the disease; otherwise, diaphoretic methods of treatment, derivative remedies in the shape of mildly purgative mineral waters, iodide of potassium, etc., may be recommended. As regards local remedies, we may try to produce more rapid subsidence by means of massage (Pagenstecher). Fat, either without addition or under the form of the yellow-precipitate ointment, is introduced into the conjunctival sac, and the nodule, which can be felt through the lid, is then rubbed and squeezed through the lid by means of the fingers. If the disease is associated with violent pain, we may employ moist and warm compresses, atropine, and local blood-letting (six to ten leeches upon the temple) in addition to the massage: the latter procedure, indeed, in these cases frequently can not be performed because the nodule is too painful. In this event the application of the constant current to the nodule by means of a small electrode (Reuss) or the scarification of the nodule (Adamück) has been recommended.
(b) Deep Forms of Scleritis.

In this form, too, a swelling of the sclera exists, which may make its appearance under the form of isolated prominences, but which more frequently is not so sharply circumscribed. In the latter case the sclera shows an extensive bluish-red injection, sometimes covering the whole circumcorneal region, and a more uniform swelling not composed of isolated prominences. Later the sclera in this situation often takes on a peculiar pale-violet color and a transparent look, that make it resemble fine porcelain. But the deep is distinguished from the superficial form most of all by the course of the inflammation and by its being communicated to other parts of the eye.

The inflammation in the sclera in this case as in the superficial form leads not to disintegration of the inflammatory products, but to their disappearance by resorption with the formation of a residual dark-colored cicatrix. In the meantime, however, the sclera has been undergoing considerable attenuation at the site of the cicatrix, so that it is no longer able to offer resistance to the intra-ocular pressure, even though this does not exceed its normal amount. Hence ectasis of the diseased spot occurs. This makes its appearance under two forms—either as simple enlargement of the surface, or as a gibbous protrusion of the thinned-out portions of the sclera. In the former case the entire circumcorneal zone of the sclera, which has been colored gray by the scleritis, becomes constantly more and more dilated. Consequently, the cornea, together with the adjacent portions of the sclera, is projected forward, so that the eyeball is elongated in a sagittal direction and becomes pear-shaped. In the second case, on the contrary, a circumscribed protrusion of the thinned-out spots, raising them above the level of the healthy sclera, is produced, so that there are seen rising about the cornea a number of humps, which, because of their thin walls, show the dark pigment shining through. As these are comprised in the region of the ciliary body, they are called ciliary staphylomata (see page 248).

Complications affecting other portions of the eye are likewise a peculiarity of the deep form of scleritis. They affect both cornea and uvea. In the cornea, infiltrates, deeply situated, develop, which do not break down into pus but become absorbed again, leaving a permanent opacity (sclerosing keratitis, see page 195). In the iris we find the signs of iritis, mainly under the guise of posterior synechiae and even of occlusion pupillae, but never of hypopyon. In the choroid, the inflammation affects chiefly its most anterior portion, and causes injury to vision chiefly through the accompanying opacities in the vitreous. So in this form of scleritis almost all parts of the eye suffer; and for this reason it must be looked upon as much more dangerous than the superficial form.
DISEASES OF THE EYE.

Deep scleritis almost always affects both eyes, and, as treatment is unable to arrest it, is prolonged over a course of years. It leads to the formation of dense corneal opacities, to seclusio pupillae with its baneful consequences, to opacities of the lens and vitreous, to myopia of high degree due to the elongation of the axis of the eye, and finally to elevation of tension due to the ectasie in the sclera. Hence the disease always ends by producing great impairment or even complete loss of sight.

The deep form, in opposition to the superficial variety, mainly affects young people (but not children). It is often found in conjunction with the signs of scrofula, tuberculosis, or hereditary syphilis. In the female sex, which is more frequently attacked than the male by this disease, disturbances of menstruation appear to furnish the exciting cause.

_Treatment_ has very little power over deep scleritis. It has first of all to combat by dietetic and medicinal remedies any constitutional affection that may lie at the root of the disease, and for this purpose the preparations of iodine (iodide of potassium, iodide of iron, iodureted mineral waters), or, in case of the disturbances of menstruation, the preparations of iron are employed. As concerns the eye itself, the inflammation of the cornea and iris must be treated in the appropriate way. In the subsequent course of the disease iridectomy is frequently required, either for optical reasons, to place the pupil behind that part of the cornea that is still transparent, or to prevent the elevation of tension which may be excited by the seclusio pupillae or by the ectasie of the sclera. Iridectomy, however, should, if possible, not be performed until after the subsidence of all inflammatory symptoms.

The superficial and the deep variety of scleritis are not at all sharply distinguished from each other, but show many transition forms. We can not, in fact, see in the living eye how far the inflammation penetrates into the sclera. When we make the assumption that in the deep form the inflammation does extend more deeply, we have no direct proof of it; we can only infer this indirectly from the subsequent thinning of the sclera and from the spread of the inflammation to the subjacent uvea. In fact, many authors assume that the real starting point of the inflammation in this form lies in the uvea, and they call it, therefore, sclero-chorioiditis or uveo-scleritis.

In one case of deep scleritis that Dr. Kostenitsch examined in my clinic, the nodule externally visible corresponded to a very dense infiltration with round cells which mainly occupied the middle layers of the sclera (Fig. 64). From these foci the infiltration extended both forward into the cornea (sclerosing keratitis) and backward into the ciliary body and the iris.

Scleritis in the well-marked cases is a very characteristic and easily recognizable disease. In light and abortive cases the diagnosis is sometimes difficult. For instance, a scleritic nodule which is small and situated particularly close to the margin of the cornea, might be taken for an efflorescence of conjunctivitis ecematosa. The following characters may be regarded as distinc-
DISEASES OF THE SCLERA.

The scleritic nodule never actually lies in the limbus, and besides is not situated in the conjunctiva, but beneath it, so that the latter can be moved about over it. Lastly, the subsequent course will soon clear up the diagnosis, as the eczematous nodule is converted by superficial disintegration into a conjunctival ulcer—a thing which never occurs with a scleritic nodule.

In parenchymatous keratitis we sometimes find a coincident, slight but widely diffused, circumcorneal scleritis. Isolated nodules are sometimes also observed in the sclera as a result of syphilis, but a typical recurrent scleritis does not ordinarily arise from this cause.

In many cases of diffuse deep scleritis there develop in the inflamed zone hard whitish nodules of the size of a pin's head, which lie beneath the con-
junctiva, and all at pretty much the same distance from the margin of the cornea. They might be taken for tuberculous nodules, which, however, they are not. In fact, they disappear again without undergoing disintegration.

Under the name of episcleritis periodica fugax (subconjunctivitis of Von Graefe) is denoted an inflammation of the vascular episcleral tissue, distinguished by its transient character and by its tendency to recur. The recurrences often take place with a considerable regularity at intervals of some weeks or months, and may keep on being repeated for years. The separate attacks affect sometimes one, sometimes both eyes. The eye attacked shows marked redness and oedematous swelling of the episcleral tissue and of the underlying conjunctiva. Often the inflammation is partial, in the sense that it is confined to one portion of the anterior segment of the eyeball, or begins in one quadrant of it and travels from this to another. In severe cases contraction of the pupil and spasm of the ciliary muscle (temporary myopia) are present. Ordinarily the inflammation runs its course and the eye becomes normal again in a few days. The disease is, therefore, free from danger, but owing to its frequent recurrences is very troublesome. On the whole, it is a rare affection, and commonly attacks persons in middle life, sometimes without known cause, sometimes as the result of a rheumatic or gouty tendency. Quinine, sodium salicylate, and treatment directed against a uratic diathesis have proved advantageous; but many cases defy all treatment.

II. INJURIES OF THE SCLERA.

53. Perforating Wounds of the Eyeball.—The same varieties of traumatism that we have observed to occur in the cornea and conjunctiva are also met with in the sclera. The first question that we have to ask in considering any such injury is, whether a perforation of the tunica of the eyeball has or has not been produced by it. Every perforating injury is to be regarded as intrinsically serious, because, given a perforation, there is a possibility of a coincident infection of the interior of the eye; but this almost always leads to a severe form of inflammation that is very destructive to the eye. This is true for perforating wounds of the cornea as well as of the sclera, for which reason the statements made in the following pages may be applied to both.

The most important symptoms of the presence of a perforation are:

(a) Reduction of the intra-ocular tension. This symptom is particularly valuable in the case of small wounds in the sclera, which are concealed by the ecchymosed conjunctiva, and are hence not directly accessible to inspection. The diminution of tension, of course, lasts only as long as the wound is open.

(b) If the perforation has occurred in the region of the anterior chamber, the latter is shallower or altogether obliterated, until the wound closes.

(c) In the case of somewhat larger wounds the prolapse of the subjacent structures gives evidence of the presence of a perforation. Most frequently it is the uvea which protrudes from the wound under the form of a darkly pigmented mass. According to the situation of
the wound, the prolapsed portion belongs to the iris, to the ciliary body, or to the choroid. If the uvea is ruptured, some vitreous is often found hanging out of the wound. Very frequently, too, there are extravasations of blood in the interior of the eye, which, to be sure, often likewise occur in the case of non-perforating contusions of the eye. Blood extravasated into the anterior chamber generally sinks to the bottom of it soon after the occurrence of the injury, so that, like a hypopyon, it fills up the lowermost part of the chamber and is bounded above by a horizontal line (\textit{hyphæma*}). Blood in the vitreous often makes itself evident by a reddish reflex from the pupil (\textit{hemophthal-}

* From ἢπα, beneath, and αἷμα, blood.  † From ἰμα, blood, and ὁφθαλμός, eye.
tissue, like uvea or vitreous, is introduced into the wound. But even if this latter should be the case, healing without inflammation is still possible, although the edges of the wound cannot unite with each other directly, because they are not in contact. The tissue consisting of uvea or vitreous introduced between them is gradually converted into cicatricial tissue, and thus takes part in the definitive closure of the wound. It then, to be sure, always remains attached to the cicatrix, a thing which later on often entails evil consequences. In this way—i.e., by the interposition of a cicatricial tissue taking place between the edges of the wound without inflammation—even lacerated wounds, such as develop, for example, after rupture of the sclera, may, if the case runs a fortunate course, heal, so that the eye remains serviceable for vision.

We often observe that the scleral wounds, which lie near the corneal margin and in which the iris or lens capsule has become lodged, close imperfectly, owing to the fact that, while the conjunctiva does unite over the scleral wound, the latter remains open to a certain extent because the interposed tissues prevent its lips from coming into direct contact. Through the gap aqueous humor constantly exudes beneath the conjunctiva, which either becomes oedematous in the region of the cicatrix or is bulged out in the form of a circumscribed vesicle resembling a cyst (Fig. 65, h). Following Von Graefe, we designate this condition as *cystoid cicatrization* (see page 124). It is chiefly observed after operations (cataract extraction and iridectomy).

(b) Perforating wounds of the sclera are followed by violent inflam-
mation whenever infection of the wound or of the interior of the eye has occurred. Infection takes place either by means of the very body which causes the injury, it being covered with dirt and thus conveying infectious germs, or secondarily from the fact that the opening in the envelope of the eyeball affords a point of entrance for germs, especially from the conjunctival sac. The interior of the eye is uncommonly susceptible of infection, since it affords a good medium for the cultivation of different kinds of schizomyocytes. The inflammatory process mainly affects the uvea. In the acutest cases there is a purulent inflammation of the latter, which leads to suppuration of the whole eye (panophthalmitis). In the less violent cases there is a plastic irido-cyclitis,—i.e., the inflammation of the iris and ciliary body produces an exudate which subsequently becomes organized into a false membrane. In this case, too, the eye is generally lost, although it is not destroyed in such a violent fashion as in panophthalmitis, but by a process of protracted inflammation. The exudates which undergo organization shrink and thus gradually diminish the size of the eyeball (atrophy of the eyeball). This outcome of an injury is even more dangerous for the patient than panophthalmitis, since in the former case sympathetic inflammation of the other eye very frequently sets in, which is not the case in panophthalmitis.

Foreign Bodies in the Eye.—The presence of a foreign body in the interior of the eye converts every injury, be it ever so insignificant otherwise, into a serious lesion, which, in most cases, entails the destruction of the eye. Hence in every injury attended with perforation we must at once propound the query whether or not there is a foreign body left in the eye. In most cases the history of the case itself supplies points important for the determination of this fact. If, for instance, a person has run a pair of scissors into his eye, we would naturally suppose that there was no foreign body there; conversely, in the case of a man who has had a perforating injury of the eye produced by the explosion of a percussion cap, or while he was hammering iron, the presence of a foreign body in the eye is extremely probable. The character of the foreign bodies in question varies exceedingly. Most commonly we have to do with fine splinters, the points and sharp edges of which enable them to penetrate the sclera. In this category belong chiefly splinters of metal, splinters of glass, and fragments of stone—less commonly splinters of wood, etc. The foreign body may be situated in any part of the eye; indeed, if it has sufficient projectile force, it may even, after traversing the entire eyeball, perforate the sclera a second time on the opposite side, and penetrate into the tissues of the orbit. The precise determination of the place in which a foreign body is located within the eye is generally attended with great difficulties. As a rule, it is only during the time immediately succeeding the injury that it is possible to see the foreign body directly, although even then
inspection of the interior of the eye is often rendered impossible by
the presence of haemorrhages. Subsequently, the difficulty of this in-
spection is still further heightened by the cloudiness which soon de-
velops in the media and by the exudates which envelop the foreign
body and render it indistinguishable. If we are dealing with metallic
fragments of not too small dimensions, we may be able to make them
out and localize them by means of the Röntgen rays; and for chips
of iron we may also employ a sensitive magnetic needle (siderscope).
If these means are unavailable, we are often driven to conjectures with
regard to the location of the foreign body—conjectures based upon the
direction pursued by the body in its flight, the situation of the aperture
by which it entered, the sensitiveness of certain portions of the eye to
touch, the presence of a circumscribed obscuration (scotoma) in the
field of vision, etc.

The consequences entailed by the presence of a foreign body in its
interior almost always induce the destruction of the eye. It is only in
rare instances that a foreign body is tolerated for any length of time in
the eye without setting up inflammation, the body itself either remain-
ing free or becoming encapsulated in an organized exudate. But even
such eyes as these are by no means secure from a sudden outbreak
of inflammation—occurring sometimes years afterward—which causes
their destruction. In the great majority of cases the inflammation
follows close upon the heels of the injury. Such an inflammation is
either a panophthalmitis or a plastic irido-cyclitis, just as in the case
of simple perforating injuries; but when a foreign body remains in
the eye it is of much more frequent—indeed, of almost constant—
occurrence, and, besides, induces much oftener sympathetic disease of
the other eye.

The prognosis of perforating wounds of the eyeball is deducible
from the exposition given above. In every case it is grave, for even
the minutest prick made with a fine needle may induce suppuration of
the eyeball, if the needle was contaminated with septic substances. As
we do not for the most part know whether the body causing the injury
was aseptic or not, and as the consequences of an infection of the wound
do not set in until several days have elapsed, we must be very cautious
in stating the prognosis during the first few days after the injury. In
general, the nature of the wound, and the facts as to the presence of a
foreign body in the eye, serve to determine the prognosis. With re-


and it can not be removed at once, the eye is almost always lost. Again, in stating the prognosis, the danger which threatens the other eye, because of sympathetic inflammation, must not be forgotten.

54. Treatment.—When we get a recent perforating wound to treat, we must first try to determine whether a foreign body is probably present in the eye or not.

(a) Suppose that there is no foreign body in the eye. Then the next inquiry that we make is whether there is or is not any prospect of preserving a serviceable eye. In the former case we put the patient immediately in bed, cleanse the wound from any dirt that may adhere to it, and disinfect it by irrigating with an antiseptic solution. If the iris has prolapsed into the wound, which can be the case only in wounds situated in the cornea or in the most anterior portions of the sclera, it must be carefully excised. But if the ciliary body or chorioid projects into the wound, they should not be removed, because, if they were, the vitreous would prolapse. Small wounds soon close of themselves by cicatrization; large, gaping wounds should be united by sutures passed either through the edges of the sclera itself (only, however, through its superficial layers) or through the conjunctiva overlying it.

In those cases in which, on account of the excessive extent of the injury, there is no prospect of retaining the eyeball in a serviceable condition, we advise the patient to have enucleation done at once. By this means he will be saved from a protracted illness as well as from sympathetic involvement of the other eye.

In many cases it is impossible, even for one who has had great experience, to determine beforehand whether an eye is going to be preserved or not. It is then best to wait for some weeks, proceeding, however, to enucleation as soon as the course takes an unfavorable turn. In the latter case, in any event, enucleation must not be put off too long, as otherwise we might be caught unawares by an outbreak of sympathetic inflammation in the other eye.

(b) If there is a foreign body in the eye, the latter is pretty surely lost unless the foreign body can be removed. Every endeavor must be made to accomplish this. For this object it is indispensably requisite to know, at least approximately, the situation of the foreign body. If the wound is still gaping and is large enough, we can pass a well-disinfected instrument in through it, and endeavor to grasp the foreign body. If the wound is not adapted for this procedure, either because it has already closed up or because it presents unfavorable conditions on account of its size or position, it is better to make a new wound, located in the cornea or the sclera, according to the situation of the foreign body. In placing it in the sclera, the region of the ciliary body must be avoided; the section must lie behind the latter, and is best made in a meridional direction (proceeding from before backward), since such wounds gape the least. Through the wound the instru-
ments are introduced in search of the foreign body; but the operation of grasping and extracting it is often attended with great difficulty, and very frequently miscarries. The best prospect of success is afforded by foreign bodies in the anterior chamber, since we can be guided by sight in taking them out; also by fragments of iron, for whose extraction we employ an electro-magnet.

If there is no prospect of our being able to remove the foreign body, we may, as a matter of experiment, wait a while to see if possibly it will be tolerated by the eye without exciting inflammation. This is especially apt to be the case when a foreign body is imbedded in the lens; the latter becomes cloudy, and subsequently, when all the inflammatory symptoms have passed off, can be removed along with the foreign body contained in it by a cataract operation. As soon as plastic irido-cyclitis has set in, it is advisable not to make any more attempts at removing the foreign body; absolutely the only indication in this case is enucleation.

Injuries of the eye are very frequently followed by extravasation of blood into the interior of the organ—into the anterior chamber and the space occupied by the vitreous. Such extravasations are also observed apart from injury, as the result of inflammation or even without any known cause. In the anterior chamber, blood sinks to the bottom and is reabsorbed. In otherwise healthy eyes small quantities of blood may often disappear completely within twenty-four hours. The process of resorption lasts longer when there is much blood in the anterior chamber, and especially when the eye is diseased in other ways as well and its processes of tissue metamorphosis are not normal. The longer the blood remains in the anterior chamber, the darker does its color become. So, in cases in which a hemorrhage into the anterior chamber has been repeated after the lapse of some time, we see a hyphaema which is composed of two strata of different color; the lower dark stratum represents the first hemorrhage, the upper bright one belongs to the recently extravasated blood. Very old extravasations of blood sometimes acquire a brown or dirty-green color, and the cornea, too, may take on a similar coloration (see page 208). In the iris likewise a greenish or brownish discoloration has been observed as a result of hemorrhage into the aqueous or vitreous chamber.

If the blood remains a long time in the anterior chamber, it may—especially if there is a coexistent inflammation—serve as the substratum for the formation of new tissue. In this way the good result of operations, such as iridectomy and iridotomy, designed for the restoration of an unobstructed pupil, is often rendered of no effect, as the blood extravasated during the operation covers up the opening that has been made, and subsequently causes its reocclusion by means of a membrane.

Blood extravasated into the vitreous is found there under the form of flocculi or larger masses. When observed with the ophthalmoscope, these either look simply black or show a faint reddish gleam. If they occupy the anterior section of the vitreous, they may even be recognized with lateral illumination (provided the pupil is widely enough dilated) through the dark-red reflex emitted from the depths of the eye. Blood occurring in the vitreous always requires a long time for its complete resorption; and, if much blood has been
DISEASES OF THE SCLERA.

239

estravasated, opacities of the vitreous of considerable size always remain and cause great impairment of vision. In some cases of traumatic hæmorrhages into the vitreous I have observed that, some time after the injury, the coloring matter of the blood all at once became dissolved in the ocular fluids and then was immediately diffused all through the eye. The aqueous humor, too, in such cases was colored red, so that the iris looked as though seen through ruby glass.

Perforating injuries of the cornea are in general less dangerous than those of the sclera. It appears as if they were less readily infected, perhaps because the outflowing aqueous humor washes away again the germs that have been introduced into the wound. (For this reason ulcus serpens is observed mainly in consequence of superficial injuries of the cornea and not after deep perforating wounds.) The greater danger of perforating wounds of the sclera may also be based upon the fact that by means of such wounds the ciliary body and the chorioid, which are very prone to become inflamed, are laid bare. Finally, the prolapse of the vitreous is also a factor very favorable to the production of infection, since this may be considered as representing a sort of natural cultivation gelatin, in which micro-organisms thrive most luxuriantly.

Vitreous that has been prolapsed through a wound gradually becomes clouded wherever it lies outside of the eye, so that it gets to look like a shred of mucus adhering to the region of the wound. It often takes several weeks before such a shred is finally cast off.

Rupture of the sclera results from a blow striking the eye either directly or indirectly, a blunt body—e. g., the tip of a cow's horn—entering between the eyeball and one wall of the orbit and squeezing the eye against the opposite wall. The contents of the compressed eye are put suddenly in a condition of increased tension and thus cause rupture of the capsule of the eyeball. The rupture, therefore, takes place from within outward, and begins in the region of Schlemm's canal, because here the tough inner layers of the sclera pass over into the delicate lamellae of the ligamentum pectinatum, and thus the resistance of the sclera is diminished at this point. Starting from Schlemm's canal the laceration traverses the thickness of the sclera, running sometimes more or less perpendicularly, sometimes obliquely backward. In the latter case the exterior aperture of the laceration lies some millimeters behind the margin of the cornea. The fact that most scleral ruptures start from a point situated upward and inward, is due to the trochlea, which forms a bony prominence at the upper and inner angle of the orbit (Figs. 165 and 166, T). When the eyeball is forced against either the inner or the upper wall of the orbit by a blow coming from below or from without, the trochlea presses into the sclera and thus causes the rupture to begin in this meridian (Müller).

Ruptures of the sclera are such serious injuries, because a force that is strong enough to break an eye open always causes lesions elsewhere in the interior of the eye. The iris (Fig. 66, b) is almost always torn away from its insertion at a point corresponding to the extent of the scleral rupture (iritodiasis), and is either incarcerated in the wound or is extruded through the latter beneath the conjunctiva, to which it becomes adherent. The eye then presents a coloboma over an area corresponding to the rip in the sclera. The portion of the iris remaining in the eye is commonly found to be considerably retracted (Fig. 66, lower part). The anterior chamber is consequently unusually deep, and this is particularly the case if, in addition, the lens and a part of the vitreous
DISEASES OF THE EYE.

have been expelled. In many cases a piece of
the iris, or even the entire iris, is torn
altogether out of the eye. In only a very
few cases does the lens remain in the eye
and in situ. Usually it is either expelled
entirely from the eye, or it remains lying
beneath the conjunctiva, provided the lat-
er is unruptured (Fig. 66). The vitreous
is often densely permeated with blood;
and laceration or hemorrhagic detach-
ment of the retina or choroid may be
present. Since to the severity of such
lesions there is added the danger of sub-
sequent infection of the wound, it can be
readily understood that most eyes which
have suffered a rupture of the sclera un-
dergo destruction. It is an exception, in
fact, for such an injury to recover with
the retention of serviceable vision. A
farmer once presented himself at my clinic
who had been gored first in one eye and
then, some years afterward, in the other
also, by a cow’s horn. In both eyes there
was a healed-up rupture of the sclera to
the inner side, with an apparent regular
coloboma of the iris. Both lenses were
absent, but the fundus was healthy and
with cataract glasses the sight was very
good. This man, therefore, may be said
to have had a double extraction performed
by the cow, and that, too, with more suc-
cess than many operators are accustomed
to have with their operations.

For rupture of the cornea, see page
202.

The unfavorable prognosis which per-
forating wounds of the sclera generally
offer holds good, at least in part, even for
those cases in which, to begin with, there
is a smooth healing of the wound. Such
eyes, which often recover from the injury
with the restoration of good sight, never-
theless not rarely become blind afterward
because of secondary changes, which are
the consequences of the cicatrix in the
sclera. If the uvea is incorporated in the
scar, it may be subjected to traction, and
hence give rise to permanent symptoms
of irritation; repeated attacks of inflam-
mation may start from the point where
the uvea is attached, and thus even sympathetic irido-cyclitis of the other eye may be set up. In sceral wounds which lie farther back, in the region of the retina, the latter may become attached to the cicatrix. By subsequent contraction of the cicatricial tissue the retina is drawn more and more into the cicatrix, and thus is loosened from its bed; the eye grows blind from detachment of the retina (Von Graefe). In this way, too, many eyes are destroyed which have been operated upon with apparently brilliant success by section of the sclera, as for the extraction of a foreign body or of a cysticercus. A further danger accrues to the eyes from the fact that the scleral cicatrices later on readily become ectatic, and lead to the formation of scleral staphylomata and also to increase of tension.

The prognosis must be stated as almost absolutely unfavorable when a foreign body has been left in the eye. A series of cases, to be sure, is known in which a foreign body has been carried about in the eye for years without causing injury. But, in comparison with the extreme frequency of such injuries, the number of these cases is infinitesimally small; and even in these cases the safety of the eye is by no means to be considered as permanently assured. As an example, the following case that I observed may be adduced: A young lady of twenty-five years of age was injured by the percussion cap of a child's gun exploding near her eye. A piece of the copper case of the cap penetrated into the left eye through the cornea; it could be seen lying upon the lowermost part of the iris. The immediate consequence of the injury was an iritis, which, however, after some weeks got well, leaving several synechiae. From that time on the eye remained free from inflammation and had good visual power. The piece of metal, which had a length of about one millimetre, could always be seen lying upon the iris, only it gradually assumed a black color. It was not until ten years after the injury that the sight began to diminish, and the patient was tormented by photopsia; she also complained that objects directly looked at seemed to move and looked bent, so that straight lines, for example, appeared wavy to her. The eye was still free from inflammation, but, after rather prolonged examination, showed a slight ciliary injection. Examination with the ophthalmoscope could not demonstrate any changes except that the fundus in its lower half was not as beautifully red as it was above, but was of a light grayish color. It was hence taken for granted that here was a detachment of the retina in its very earliest stage. The traction thus produced upon the retina accounted for the photopsia, and the undulatory movement of the retina accounted for the apparent movement of objects, while the curved appearance of straight lines was referable to the differences of level existing in the detached retina. Conjecturally the retinal detachment was produced by an old exudate which lay upon the ciliary body and the most anterior portion of the retina, and which by its gradual shrinking drew the retina farther and farther forward. Since then I have not had an opportunity of seeing the patient again, but the subsequent course of the case may be predicted with great probability. The retinal detachment will have become total; afterward an irido-cyclitis will have probably developed out of the condition of ciliary irritation of the eye, so that after some time the eye would become completely blind, would grow softer, and would be the site of frequently recurring attacks of pain and inflammation. Perhaps, too, the other eye would be attacked by sympathetic inflammation.

Leber has determined, by a series of experiments upon animals, the reason why the presence of a foreign body in the eye regularly results in a severe in-
flammation. This inflammation is either excited by the presence of micro-organisms which make their way into the interior of the eye from the conjunctival sac, either along with the foreign body or subsequently, or it is the consequence of a chemical irritation of the tissues produced by those foreign bodies which are not chemically indifferent. For example, purulent inflammation could be produced by bits of copper, and still more by particles of mercury, which were introduced aseptically into the anterior chamber. Hence, such inflammation does not necessarily presuppose the penetration of schizomyecetes into the eye. Observations upon man agree in general with the facts obtained by experiment. Whether a body which penetrates into the eye is well borne by it or not depends upon the following circumstances: 1. First of all, upon the fact of its being aseptic or not. 2. Upon its chemical character. Chemically indifferent bodies (such as, for instance, fragments of glass), if they get into the eye aseptically, are the ones most likely to remain there without producing any further ill effect. The contrary is true of the foreign bodies that are of most frequent occurrence—i.e., chips of metal. These almost always set up a severe inflammation, which can not, however, in most cases be referred to their septic character. In fact, metallic chips (for instance, such as fly off while the metal is being hammered) are often raised to a red heat immediately before they penetrate into the eye, and are thus disinfected. They owe their property of exciting inflammation to the fact that they become oxidized in the tissues of the eye, and thus act as chemical irritants. This is the case with iron, and still more with copper; metals which, like lead and the noble metals, are innocent in this regard, are of comparatively rare occurrence in the eye. 3. The volume of the foreign body is of influence, inasmuch as the larger the foreign bodies are, the less readily are they tolerated; for, while small foreign bodies speedily become fixed in the eye, larger ones readily undergo changes of place during movements of the eye, especially if they are of high specific gravity, as in the case with pieces of metal. By such displacements of the foreign body the surrounding tissues are mechanically irritated. 4. The individual tissues vary in respect to their tolerance of foreign bodies. The uvea, and especially the iris and ciliary body, exhibit the greatest reaction to injury of any kind. The lens, on the contrary, possibly on account of the sluggishness of its tissue metamorphosis, is the part of the eye in which foreign bodies are relatively the best borne. If, for example, a small chip of iron has become imbedded in the lens, the latter, to be sure, becomes clouded, but inflammation ordinarily fails to take place. In such a case sometimes the lens is afterward colored brown by the oxide which is formed. A deep brown coloration is produced, mainly under the guise of rust-colored dots which lie beneath the anterior capsule of the lens, and form a crown, corresponding nearly in situation to the margin of the pupil when dilated (Samelsolun). Later the coloration may extend to the iris, which, if previously gray or blue, assumes a rusty brown hue. This impregnation with iron also occurs in the other tissues of the eye, particularly in the retina, which may in consequence become atrophic, so that blindness may ultimately ensue even when the fragment is tolerated without inflammation (Hippel, Jr.). The impregnation of the tissues with iron is called siderosis bulbi (from σίδηρος, iron).

Small fragments of iron may in time be entirely dissolved by oxidation. Perforating injuries of the eye are very frequent in the working class, and furnish a large contingent of the blind. This is particularly the case in regions
where many industries are carried on. The following report of Cohn gives a
good idea of the frequency of the injuries to which the eyes of many workmen
are exposed: Among twelve hundred and eighty-three workers in metals em-
ployed in six factories, each man received on an average from two to three eye
injuries in a year. Of course, the great majority of these injuries were of a
slight character; most, indeed, consisted merely in the penetration of small
metallic particles into the surface of the cornea, which were, for the most part,
removed at the factory itself. About half of the workmen were compelled to
seek medical aid; and out of every thousand 28 suffered a partial impairment
of sight, and 16 had lost one eye altogether.

Is there, then, no protection against these frightfully frequent injuries of
the eyes? Certainly, and moreover a very simple one—namely, the wearing of
protective spectacles. These are made of glass, or, that they may not be easily
broken, of mica or of fine wire net. Unfortunately, the use of these protective
spectacles has, up to the present time, always encountered great opposition on
the part of the workmen who require them.

The attempt to remove the foreign body which has penetrated into the eye
is often beset with great difficulties, and very frequently is unsuccessful. No
fixed rules can be laid down for the procedures to be employed for this purpose,
as almost every individual case has its peculiarities and calls for an operation
devised specially for itself.

In injuries produced by chips of iron, the magnet is employed. Forms of
apparatus have been constructed to determine in doubtful cases whether a piece
of iron is present in the eye at all. In these the injured eye is brought as close
as possible to a very sensitive magnetic needle (astatic needle of Léon Gérard,
siderscope of Asmus) which undergoes deflection if there is a chip of iron
present in the eye. By ascertaining at what point of the surface of the eyeball
this deflection is the greatest, we can determine approximately the situation of
the iron.

Much more frequently the magnet is employed for removing the foreign
body. The extraction of a chip of iron from the vitreous by means of a bar
magnet introduced through an incision on the sclera was first performed by
MacKown (1874). Hirschberg constructed the first available electro-magnet,
which is the form now commonly employed. About a rod of soft iron is wound
a spiral coil of copper wire, not too thin, the two ends of which are connected
with a powerful galvanic element. The ends of the iron rod, which project
somewhat beyond the spiral, are a little bent and end in a blunt point, adapted
for introduction into the interior of the eye. For this latter purpose we enter
either through the wound itself, in case this is large enough and is still open,
or we make an incision in a suitable situation in the cornea or sclera, according
to the location of the foreign body. Recently very powerful electro-magnets
have been used (Haab, Schloesser). These are not introduced into the eye, but
are merely applied to it exteriorly, as they are able to attract even small frag-
ments of iron when at some distance from them. It is not often that the point
of entry of the iron chip is a proper place to apply the magnet to, in order to
extract the fragment from the eye. Generally, it is better to place the tip of
the magnet against the center of the cornea, so as to bring the fragment through
the pupil and into the anterior chamber, from which it may then be removed
by an incision made at the margin of the cornea. The large have the following
advantages over the small magnets: (1) It is not necessary to make a
wound in the sclera; (2) the situation of the fragment need not be known precisely; (3) even very small fragments can be removed in this way.

III. ECTASIA OF THE SCLERA.

(a) Partial Ectasia.

55. Partial ectasia of the sclera is represented by a circumscribed protrusion taking the form of a dark prominence or swelling. The sclera at this spot is thinned, so as to be readily dimpled with the point of a sound; in consequence of the thinning, the choroidal pigment appears through it, and imparts to the ectasia a dark, slate-gray, or bluish-black color. By means of focal illumination, light can often be made to pass through the sclera at the ectatic spot, and the coating of pigment on its inner surface can be seen through it. According to the situation of the ectasia, various forms of it are distinguished—namely:

1. Anterior Ectasia (anterior scleral staphylomata).—These occupy the portion of the sclera adjoining the cornea (Figs. 67 and 68). They appear in the beginning under the form of small, dark spots, which afterward become larger and bulge out. When several lie close together they become confluent, forming a large swelling which surrounds the cornea like an arch or ring. This swelling at various points is constricted in a radial direction by the stronger, less distended fibers of the sclera, so that in a small way it resembles the large intestine with its sacculations. The limbus, under the form of a somewhat depressed gray line, marks the boundary between the ectasia and the cornea. When the latter is also opaque and ectatic, the sharp line of demarcation between scleral and corneal ectasia is often lost, and both ectasie unite to form a single protuberance occupying the anterior segment of the eyeball. It often happens that an anterior scleral staphyloma exists, or, at all events, has its chief development, on one side only. Then the base of the cornea at this side is pushed forward, so that the entire cornea gets to lie obliquely. If, for instance, the scleral staphyloma occurs on the inner side, the cornea looks outward instead of straight forward (Fig. 68, h).

2. Equatorial Ectasia (equatorial staphylomata).—These are dark prominences in the region of the equator of the eyeball. They can be seen only when the eyeball is turned strongly toward the side opposite the staphyloma. They occur at either one or more spots upon the equator, but never surround the entire eyeball like a ring, as is frequently the case with anterior scleral staphylomata.

3. Posterior Ectasia.—These occupy the posterior segment of the eyeball, and can not, therefore, be seen in the living eye. In respect to origin and significance, they are essentially distinct from anterior and equatorial staphylomata of the sclera. There are two kinds of posterior
DISEASES OF THE SCLERA.

scleral ectasias: a. The staphyloma posticum Scarpe. This consists in a thinning and protrusion of the sclera at the posterior pole of the eye to the outer side of the optic-nerve entrance. If the ectasia takes on greater dimensions, the optic nerve is also involved in it (Fig. 221). This form of ectasia, as Arlt was the first to discover, is the most frequent cause of short-sightedness, because owing to the recession of the sclera the eyeball undergoes an elongation of its sagittal axis (axial myopia). The diagnosis of a posterior staphyloma can be made in the living eye only by demonstrating the existence of a high degree of myopia and of the accompanying changes in the ophthalmoscopic picture (§ 77).

b. Posterior scleral protrusion of Ammon. This does not, like posterior staphyloma, lie just at the posterior pole, but below it. Contrary to the case of the other ectasias of the sclera, it is not acquired but congenital, being formed in consequence of an incomplete closure of the fetal ophthalmic cleft. It is found simultaneously with the formation of a fissure (coloboma) in the choroid and frequently, also, with coloboma of the iris (see §§ 76 and 80).

Acquired ectasias of the sclera are designated under the name of staphvomata of the sclera, as has been done in the preceding lines, but the expression staphyloma is not applied to the congenital scleral protrusion of Ammon.

(b) Total Ectasia of the Sclera.

This consists in a uniform dilatation of the entire sclera, so that the eyeball is enlarged in toto. The sclera is everywhere thinned and the chorioidal pigment shows through it, so that it has a bluish-white appearance. Total ectasia can develop only in youth when the sclera is still everywhere yielding; the sclera of adults is so rigid that it can protrude only at certain weaker spots, and hence it admits of only partial ectasias. Total ectasia occurs most frequently at the same time with staphyloma of the cornea or with anterior scleral staphyloma. By the combination of these two kinds of ectasia a very extraordinary enlargement of the eyeball sometimes develops. Much more rarely a second, pure form of scleral ectasia is observed, in which the eye shows simply a uniform enlargement in all its dimensions—an enlargement in which the cornea also participates (megalocornea). This condition is characterized as hydrophthalmus or buphthalmus (βoðoς, ox, on account of the resemblance to the large eyes of oxen). Hydrophthalmus is either congenital or is acquired in early childhood, and is probably analogous to the glaucoma of adults, under which disease, therefore, hydrophthalmus will be treated of in detail (see § 83).

Etiology.—Every ectasia of the sclera is the result of a disproportion between the intra-ocular pressure and the resistance of the sclera. Either the tension of the eye is pathologically heightened or the tenacity of the sclera is diminished. The former is much the more fre-
quent cause of scleral ectasiae (if the posterior ectasiae are excepted). Scleral ectasiae develop slowly, and the disproportion between the tension of the eye and the resistance of the sclera must persist for a pretty long time before it can make the sclera become ectatic.

(a) The result of elevation of the intra-ocular tension is that every square millimetre of the interior surface of the sclera has to bear the same increase of pressure. If the sclera possessed the same constitution throughout it would, in case it yielded to the pressure at all, expand in a perfectly uniform fashion. But some portions of the sclera are constructed less solidly than others, and these give way first to the increased pressure. These less tenacious spots are those in which the sclera has nerves or vessels passing through it into the interior of the eye, and in which, therefore, it is perforated and thinned. Chief among these places is the lamina cribrosa, and next those portions of the sclera where the vena vorticose and the anterior ciliary vessels perforate it. At the site of the lamina cribrosa the sclera is reduced to a thin membrane, which is riddled with holes like a sieve, and which, under increased pressure, bulges out backward. This bulging, however, is not counted among the staphylomata of the sclera, but is designated as an excavation of the optic nerve, because the head of the optic nerve recedes simultaneously with the lamina cribrosa (§ 81). Equatorial staphylomata develop at those spots where the vena vorticose perforate the sclera and anterior scleral staphylomata at the spots where the anterior ciliary vessels are transmitted. The other, more resistant sections of the sclera remain unchanged, even under increased intra-ocular pressure; it is only in children, in whom the sclera is capable of expanding as a whole, that total ectasia develops.

The most frequent causes of the elevation of intra-ocular pressure are glaucoma, seclusio pupillae, and ectatic cicatrices of the cornea. In glaucoma, in which the vena vorigose are the main seat of congestion and inflammation, equatorial staphylomata generally develop; seclusio pupillae and staphylomata of the cornea, on the contrary, in which the inflammation expends itself upon the most anterior sections of the eyeball, mostly induce anterior ectasiae of the sclera.

(b) The result of diminished resistance of the sclera may be that the latter is unable any longer to withstand even the normal intra-ocular pressure. Diminished resistance develops in consequence of inflammations of the sclera, and hence occurs in the deep form of scleritis, which leads to anterior scleral ectasia (page 229); it also occurs when tumors (malignant new growths, gummy or tuberculous nodules) develop in or beneath the sclera. Injuries of the sclera also diminish its tenacity, and hence the cicatrices after penetrating wounds (and especially after ruptures) of the sclera very frequently become ectatic. Scleral ectasiae arising in this way lead subsequent-
DISEASES OF THE SCLERA.

ly to elevation of the intra-ocular pressure, which then, however, must be regarded not as the cause, but as the result of ectasis, even though it does contribute to make the latter still larger. Here, then, the same process that occurs in ectasiae of the cornea (page 315) is repeated.

Posterior scleral ectasiae are likewise referred to a diminution in the resistance of the sclera. With regard to the development of staphyloma posticum, the cause of it is assumed to be a congenital weakness of the sclera in its posterior portion. With respect to Ammon’s scleral protrusion, the idea is held that the foetal ophthalmic cleft is filled up with a sort of intermediary tissue which does not possess the firm texture of the normal sclera, and hence gives way before the ocular pressure.

Consequences of Scleral Ectasiae.—In anterior and equatorial staphylomata of the sclera the sight is at length completely destroyed through rise of tension. If the ectasia does not come to a stop, the enlargement of the eyeball keeps growing greater and greater. The eyeball projects far beyond the palpebral fissure, can be covered but incompletely by the lids, and is extremely disfiguring. Conjunctival catarrh, lacrymation, and blepharospasm develop as a result of the mechanical irritation, and not infrequently the lower lid is pushed so far out by the enlarged eyeball as to be everted (ectropion). Finally, some light injury suffices to cause the rupture of the staphyloma at a particularly thinned-out spot. The greater part of the liquefied vitreous is evacuated, and in consequence a violent haemorrhage may take place, and the eye may undergo destruction with the symptoms of panophthalmitis.

Staphyloma posticum, if it enlarges, causes a considerable increase in the short-sightedness, without, however, inducing elevation of tension and the other deleterious consequences of anterior and equatorial staphylomata. The scleral protrusion of Ammon remains stationary and entails no injurious consequences.

Treatment.—It is only anterior and equatorial, not posterior, ectasiae of the sclera that are amenable to treatment. In the former, which, in the great majority of cases, have developed in consequence of an increase of tension, the main indication is iridectomy, provided that it is still technically practicable. Inasmuch as this operation diminishes the intra-ocular pressure, it puts a stop to the further enlargement of the scleral ectasiae (and in especially favorable cases even causes diminution in the size of an ectasia already existing), and likewise preserves the sight, so far as it still exists, from total destruction. If, as indeed is generally the case, iridectomy is on technical grounds no longer practicable, there is nothing else left to do but enucleation, in case the eye distresses the patient by its size, its painfulness, or the disfigurement it causes.
The anatomical structure of scleral staphyloma is essentially different from that of staphyloma of the cornea. While the latter consists of cicatricial tissue which replaces the cornea that has been destroyed, a scleral staphyloma is formed of the sclera itself, which has not ceased to exist at the site of the ectasis, but is simply thinned, so that often it is no thicker than a sheet of paper. In posterior staphyloma the thinning is uniform; in anterior and equatorial staphylomata we often find that the thinning is not uniform, and commences suddenly, owing to the abrupt disappearance of the inner layers of the sclera at the margin of the ectasis. The sclera then in the spot where it bulges looks as if it had been gnawed into from the inner side, and thus deprived of its innermost layers. Probably this is owing to the fact that the innermost layers of fibers of the sclera, in consequence of the great stretching to which they are exposed, first rupture at some spot and then gradually separate from each other (Czerny and Birnbacher). The uvea is always solidly adherent to the inner surface of the ectasis, and is here so atrophic that scarcely anything is left of it but its pigment layer, which forms the dark coating of this inner surface.

Dissection of ectatic eyeballs shows that anterior scleral staphyloma may be of two kinds—ciliary or interciliary staphyloma. The former (Fig. 67) belongs

![Fig. 67. Staphyloma Ciliare. (After Pagantester.)](image)

The eye is bisected horizontally. Surrounding the cornea there is an ectasis, c, of the sclera, which attains its greatest breadth at the temporal side, t; and on the nasal side, n, is narrower and less prominent, for which reason the cornea appears displaced toward the nasal side. The inner surface of the ectasis is coated with the elongated ciliary processes; the iris is invisible because it is pressed against the posterior surface of the cornea, which hence looks pigmented in black. The retina and choroid have been to some extent separated from their bed by the dissection; in the retina, groups of punctate hemorrhages, h, are observable. The head of the optic nerve, o, shows a deep excavation due to pressure.

![Fig. 68. Staphyloma Interciliare.](image)

The eyeball is horizontally bisected and is drawn of somewhat more than the natural size. The ectasis, s, of the sclera is interposed on the nasal side, n, between the ciliary body, c, and the cornea, h, so that the latter is displaced toward the temporal side. The inner surface of the ectasis is covered with pigment, representing the remains of the root of the iris which has become adherent to the thinned sclera; this pigment, in consequence of being spread over so large a surface, shows numerous gaps. Toward the outer side the ectasis constantly diminishes in breadth, so that, at the spot where the temporal wall of the eyeball, f, has been cut through, nothing but a very narrow interspace is observable between the ciliary body and the iris, a condition due to that agglutination of the root of the iris to the sclera which characterizes an increase of tension. In the bisected optic nerve, the normal conical contraction of the intra-scleral section, i, can be recognized; and, in the retina, can be seen the fovea centralis, f, and the expansion of the retinal vessels.

to that part of the sclera, the inner surface of which is coated by the ciliary body; the latter (Figs. 68, 69), on the other hand, develops in that narrow portion of the sclera which is situated in front of the ciliary body, between it and the margin of the cornea; for the anterior border of the ciliary body, and hence,
too, the root of the iris, as it springs from the ciliary body, do not correspond precisely to the sclero-corneal junction, but lie somewhat behind it—that is, the most anterior portion of the sclera, which lies in front of the root of the iris, belongs to the anterior chamber. But, although it is just in this portion that an intercalary staphyloma develops, the iris does not lie behind the latter but in

![Diagram](image)

**Fig. 69.—Intercalary Staphyloma.** Magnified 4 × 1.

The figure represents a vertical section through the anterior half of the ectatic eyeball, which presents a great resemblance to the eye shown in Fig. 68, except that the most marked ectasia in the present case is situated above the cornea. The limits of the cornea are marked by the limbus I and I. At I may be seen how the root of the iris is applied to the sclera; and the beginning of a process of thinning in the sclera can be made out, while on the other side of the eye there is a fully developed intercalary staphyloma, which extends from a to b, and which in the living eye formed a dark translucent prominence. In the region of the staphyloma the sclera is reduced to half its normal thickness, and its inner surface is covered with a thin pigment coating representing the remains of the iris. The iris is adherent to the sclera from the ciliary body, a, to the anterior border, b, of the ectasia. The ciliary processes, owing to atrophy, are flatter than normal.

front of it, just as in the case of ciliary staphyloma. This comes to pass in the following way: The formation of the ectasia is preceded by increase of tension, which causes the most peripheral portion of the iris to be pressed forward and to become united with the sclera (see § 84 and Figs. 118 and 119). Hence that part of the iris lying free in the anterior chamber is given off from the sclera at a point farther forward than usual. Looked at with the naked eye, it seems as if the insertion of the iris had been pushed forward, up to the sclero-corneal junction or beyond it. Now, an intercalary staphyloma develops precisely in that region of the sclera which is united with the periphery of the iris—i.e., at I in Fig. 69, where the beginning of such an ectasia may be made out from the fact that just in front of the point where the iris is given off the innermost lamella of the sclera have separated and the iris has been pushed into the gap. Hence the ectasia always lies between the real origin of the iris at the anterior border of the ciliary body and its apparent origin at the spot where the portion of the iris that is yet free commences; and does so still even when it gets to be as large as represented on the left side of Fig. 69 (between a and b). The inner surface of an intercalary staphyloma is coated with a layer of pigment, which is nothing but the completely atrophic root of the iris that has become united to the sclera.

In an eyeball which has not been dissected, the distinction between a ciliary and an intercalary staphyloma is more difficult to effect than in an anatomical specimen, but may still be made from the following diagnostic points: In intercalary staphyloma the anterior ciliary vessels are seen emerging from the

DISEASES OF THE SCLERA.
sclera at the posterior border of the ectasia, in ciliary staphyloma at its anterior border. A thin ciliary staphyloma usually transmits light, and so admits of our recognizing the elongated ciliary processes as black stria on its inner surface (c, Fig. 67).

Ectasia of the sclera usually entails still further changes in the interior of the eyeball. In consequence of the enlargement of the ring formed by the ciliary body, the iris becomes stretched and atrophic, and may even in places be separated from its insertion (spontaneous iridodialysis). The same is true of the zonule of Zinn, which, through atrophy, gets to be so deficient that the lens becomes tremulous or even undergoes luxation. The ciliary body, choroid, retina, and optic nerve become atrophic; the latter generally presents a deep excavation due to the increase of tension (e, Fig. 67).

Ulcers and Tumors of the Sclera.—The sclera is not very apt to become inflamed, and still less are the products of its inflammation apt to undergo purulent disintegration; thus, for example, ulceration of scleritic nodules is never observed. Ulcers which originate in the adjacent part of the cornea are always arrested as soon as they reach the sclera; nor are ulcers of the conjunctiva any more likely to extend to the sclera beneath them. Hence ulcers in the sclera are among the greatest of rarities. They originate from injuries associated with infection and also from the disintegration of new growths (gum-mata, tuberculous and leprosus nodules, malignant new growths).

New growths, too, occurring primarily in the sclera are extremely rare; although, of course, tumors originating in other parts of the eye do pass over to the sclera. Fibromata, sarcomata, and osteomata are the primary tumors that have been observed in the sclera.
CHAPTER IV.

ANATOMY AND PHYSIOLOGY OF THE UVEA,
EMBRYOLOGY OF THE EYE.

I. ANATOMY.

56. If we carefully remove the sclera and cornea from an eyeball, we have presented to us the iris, ciliary body, and choroid in connection. Together these form the middle tunic of the eye, which takes the shape of a sphere, colored dark brown by the pigment which it contains. In front this has a large aperture, the pupil; behind it has a small one, the opening designed for the transmission of the optic nerve. On account of the similarity of the dark sphere, hanging upon the optic nerve as upon a stalk, to a grape (uvea), the middle tunic of the eye has received the name of uvea, and also of uveal tract.

(a) Iris.

The iris* is a disk-shaped membrane, perforated in the center by the pupil.† By its peripheral or ciliary border it springs from the anterior surface of the ciliary body. From this point it stretches over the lens, its central or pupillary border lying upon the anterior capsule, and gliding upon it with the movements of the pupil (Fig. 71). By lying in this way upon the lens, the iris obtains a firm support. Hence, when the lens is absent or has lost contact with the iris, the latter is seen to tremble or vibrate with movements of the eyeball (tremulousness of the iris, iridodonesis ‡). Since the umbo of the lens lies farther forward than the spot where the iris originates in the ciliary body, the iris forms a shallow cone, whose apex, directed forward, is cut off short by the presence of the pupil. The shallower the anterior chamber becomes through advancement of the lens, the greater is the altitude of this cone; if, on the other hand, the lens is absent, the iris extends in a plane.

* Iris on account of its rainbow shape, not on account of its color.
† Pupilla properly means girl; perhaps so called because in the pupil one sees a diminutive image of himself reflected from the cornea. So, also, in old German works the pupil is named “Kindlein” (= little child). In Greek, too, the pupil is called όπαρ, girl, from which the expressions corectopia, corelysis, etc., are derived.
‡ From iris and στροφέαν, I vibrate.
In looking at the iris with the naked eye, or, still better, with the magnifying glass, we recognize in its delicate markings, which are formed by elevations and depressions of its anterior surface (relief of the iris, Fig. 71). Sharp and clear in the normal eye, these markings are blurred or absolutely indistinguishable in an inflamed or atrophic iris, so that they constitute an important sign in iridic affections. The markings are chiefly formed by radially directed, projecting ridges, which are nothing but the blood-vessels lying in the stroma of the iris, and running from the ciliary to the pupillary margin. Near the latter they interlace with a ring of circular ridges—the lesser circle (circulus minor) of the iris (k, Fig. 70). This latter divides the iris into two zones: that lying to the periphery of the circulus minor is the ciliary zone (C); that lying to the central side of it is the much narrower pupillary zone (P), which is often distinguished from the ciliary zone by a different coloration. Along the circulus minor may be noticed pitlike depressions (crypts, c) in the surface of the iris. Similar but much smaller openings in the anterior surface also exist at the periphery of the iris, close to its root; but these are not perceived in the living eye, partly because they are too small, partly because they are concealed by the margin of the sclera, which projects in front of them. It is only in blue eyes, especially in children, that this peripheral perforated zone becomes apparent as a dark, almost black, circle (p) close to the root of the iris. The pupillary margin of the iris is seen to be lined by a narrow black fringe (r), which stands out with especial prominence in eyes affected with cataract; for it contrasts much more forcibly with the white background of the clouded lens than with the black of the pupil of a normal eye.

Microscopical Anatomy.—The stroma of the iris consists essentially of numerous vessels running in a radial direction from the ciliary to the pupillary margin. The vessels are inclosed in a thick adventitia, and are surrounded by a loose meshwork of branched and pigmented cells, which fill up the interspaces between them. The vessels, together with the cellular meshwork, form the stroma of the iris, which consequently is a very loose, spongy sort of tissue. Close to the pupillary margin of the iris the muscle which closes the pupil—the sphincter iridis—is found imbedded in the stroma (Fig. 71, s). This is a flat band of smooth muscular fibers, one millimetre broad, lying close to the posterior surface of the iris.

On the anterior surface of the iris there is a specially dense layer
of cells (anterior limiting layer, Fig. 90, v). Next to this is a layer of endothelium, which is a continuation of the endothelium of Descemet's membrane, and covers the entire anterior surface of the iris as far as the pupillary margin. It is deficient only at those spots which correspond to the crypts, including both those at the pupillary (Fig. 71, cr) and those at the ciliary margin (c, c). These crypts, therefore, form apertures which lead into the interior of the tissue of the iris and place its tissue spaces in free communication with the cavity of the anterior chamber. This arrangement favors the rapid change in volume of the iris in the alternating movements of the pupil, since it enables fluid to pass rapidly from the tissue of the iris into the anterior chamber and vice versa.

The posterior surface of the stroma of the iris is covered by the posterior limiting membrane and the retinal pigment layer. The former (Fig. 90, b) consists of very even, tense fibers, which extend in a radial direction from the ciliary to the pupillary margin, and hence have been regarded as a dilator pupillae. Physiologically speaking, the function of a dilator does really belong to the posterior limiting membrane, since the pupil is actively dilated by its contraction. Probably, however, this is a case not of muscular but of elastic traction. To the posterior limiting membrane succeeds the retinal pigment layer, which coats the posterior surface of the iris. It extends to the pupillary margin, round which it turns so as to appear a little on the anterior surface of the iris (Fig. 71, at p), and so forms that black rim which we perceive along the pupillary margin, when looking at the eye from in front. The pigment layer consists of two strata of epithelial cells (v and b, Fig. 71, and c and d, Fig. 72), which merge into each other at the pupillary margin. The two together, as embryology teaches us, represent the continuation of the retina to its termination at the pupillary margin (Fig. 89). This layer of the iris is therefore designated as the retinal layer (pars retinalis iridis sive pars iridica retinae), in contradistinction to the anterior layers, which, as they belong to the uvea, are comprised under the name of pars uvealis iridis (Schwalbe).

The color of the iris, which is either light (blue or gray) or dark (brown), is caused by the iridic pigment. There are two kinds of pigment in the iris: one lies in the branched cells of the stroma, and is hence called the stroma pigment; the other fills up the epithelial cells of the retinal pigment layer (retinal pigment). Upon the proportion between the amount of pigment deposited in these two the color of the iris depends. The retinal layer of the iris always abounds in pigment, while the amount of stroma pigment that the iris contains varies greatly. When the stroma contains little pigment, the retinal pigment shows through the thin iris, and appears blue. This is due to the same phenomenon that causes a dark background always to appear blue when
looked at through a more or less opaque medium. Thus, for instance, through a delicate skin the veins look blue. If the stroma is deficient in pigment, but pretty thick and compact, the iris appears gray. And, finally, the greater the amount of brown stroma pigment that the iris contains, the more this pigment becomes visible and makes the iris appear of its own brown color, while the retinal pigment layer, which lies behind, is more and more concealed by the stroma pigment and withdrawn from view.

Not infrequently in an iris, that is but slightly pigmented as a whole, one or two isolated accumulations of pigment are found in the stroma. These then stand out as dark (rust-colored, brown, or black) spots in an otherwise gray or blue iris (naevi iridis, Fig. 70, n). The presence of a pretty large number of them gives the iris a mottled appearance.

Exceptionally, cases occur in which the iris has no pigment either in its stroma or in its retinal layer. Such an iris is found in albinos; it is translucent, and, on account of its numerous vessels, has a delicate, grayish-red color.

The examination of the iris in the living eye shows us, besides the details of relief mentioned above, a number of concentric curved lines near the ciliary margin of the iris (f, Fig. 70). They are particularly well seen in a dark iris with a contracted pupil, when by their light color they show off well upon the brown background. These are the contraction furrows of the iris; so called because, as the iris becomes narrower during the dilatation of the pupil, its anterior surface is disposed in folds, and depressions between the folds (f, f, Fig. 71) form the furrows in question, at the bottom of which the stroma of the iris generally contains less pigment. When the pupil contracts, these folds are smoothed down, and the furrows open out and are then easier to be seen.

With the varying dilatation and contraction of the pupil we also notice a change in the rim of pigment upon the pupillary margin: the more contracted the pupil is, the broader this becomes; on the other hand, when the pupil is strongly dilated, it disappears entirely.

When the pupil is very much contracted, we not infrequently observe even

---

**Explanation of Fig. 71.---Meridional Section through the Anterior Portion of the Eye.** Magnified 16 x 1.---The boundary between cornea, C, and sclera, S, is marked at its posterior surface by the cross section of Schlemm's canal, a. Anteriorly it is covered by the limbus conjunctivae, L, farther back the cross section of an anterior ciliary vein, c, is seen in the sclera. The iris is attached by the ligamentum pectinatum, l, to the inner posterior wall of Schlemm's canal. On the anterior surface of the iris may be recognized the orifices of the crypts both in the circus minor (c) and in the periphery (c), also the contraction furrow, f. The posterior surface of the iris is covered with a sheet of retinal pigment which turns forward sharply like a spur at the pupillary margin, p. At one spot the posterior layer, b, of the pigment has separated so that the anterior layer, a, can be seen isolated. Close to the pupillary margin, the cross section, sp, of the sphincter pupillae is visible. From the posterior wall of Schlemm's canal rises the ciliary muscle, consisting of longitudinal fibers, M, and circular fibers, Mc: the transition from one portion to another is effected by the radial fibers, r. At the anterior margin of the circular portion is seen the cross section of the circular anterior iris major (a). Upon the ciliary muscle are situated the ciliary processes, P, which are covered by the two layers of the pars ciliaris retinae—namely, by the pigmented cellular layer, ps, which is the continuation of the pigment epithelium, Pe, and by the non-pigmented layer, pc, the continuation of the retina proper, R. The flat part of the ciliary body, the orbiculus ciliaris, O, extends to the ora serrata, o, where the choroid, Ch, and the retina, R, begin. Upon the orbiculus lie the fibers of the zonule of Zinn, z, which farther forward pass into the free portion, z, of the zonula and there inclose the cavity of the canal of Petit, i. The lens, L, shows at its equator, besides the attachments of the zonular fibers, the cross section, t, of the ring of nuclei.
in normal eyes a faint tremulousness of the iris (iridodonesis), which otherwise occurs only in dislocation of the lens. This is due to the fact that with a contracted pupil the posterior chamber is deeper and at the same time the greatly dilated iris is considerably thinned—circumstances both of which favor wavering of the iris.

The *retinal pigment layer* is composed of two strata of cells, the recognition of which, however, is rendered very difficult by their profuse pigmentation. The two strata can be clearly distinguished from each other only in the albinotic eye (Fig. 72) and in the embryo (and sometimes also in the newborn infant); we can then also establish the fact that they are the continuation of the two layers of the retina upon the posterior surface of the iris. The anterior stratum of pigment (c, Fig. 72) arises from the pigment epithelium of the retina; the posterior (d) from the retina proper (Fig. 89). In the adult eye a separation not infrequently takes place between the two strata, because they are not attached with the same degree of firmness to the iris. While the anterior stratum is very intimately adherent to the posterior surface of the iris, the posterior stratum readily becomes separated from it (in Fig. 71 the separation has resulted accidentally from the dissection). When adhesions of the posterior surface of the iris to the capsule of the lens (posterior synechia) are torn away the posterior stratum is left as a black coating upon the anterior capsule, while the anterior stratum remains upon the iris. So, too, by penciling the iris we can easily remove the posterior stratum, leaving the anterior stratum behind upon the posterior surface of the iris. Then, when we make a microscopical examination of the iris that we have penciled, we find the anterior stratum intimately connected with the posterior limiting membrane.

As is universally known, the *color of the iris changes* in the first years of life. Most children are born with a deep-blue iris. The stroma contains but little pigment and is still very thin, so that the posterior pigment layer is seen through it, having a bluish look. With increasing age the stroma becomes thicker and thicker. If, while this is taking place, the pigmentation does not increase, the iris simply becomes of a light blue or gray; but if, simultaneously, there is an increase of the pigment of the stroma, the iris takes on a brown color. The transformation of a blue iris into a brown one is sometimes confined to a part of the membrane, so that a brown sector is seen in an otherwise light-colored iris. Moreover, the iris of one eye may be blue and that of the other brown. The color of the iris is always proportioned to the pigmentation of the rest of the body. The dark races always have a dark iris.

*(b) Ciliary Body.*

57. The ciliary *body* is brought into view when the eyeball is bisected, and the vitreous, the lens, and the retina are removed, so that

*From *cilium*, lashes, because of the fine, radiating folds. The ciliary body is also called *cyclon* (hence cyclitis), from *κύκλος*, a circle.
the uvea is everywhere exposed. The spot where the retina is torn away anteriorly is marked by a jagged line—the ora serrata (o, o, Fig. 73). Corresponding to this there is a change in the coloration of the uvea, which behind this line is brown (chorioid), in front of it black (ciliary body). At the anterior margin of the black zone rise the ciliary processes, about seventy in number. These are conspicuous not only because they jut forward, but also because of their lighter color, their apices being less strongly pigmented than are the depressions between them. The anterior zone of the ciliary body, bearing the ciliary processes, is called the folded part of the ciliary body—corona ciliaris (c, Fig. 73); back of this is the posterior part of the ciliary body—orbiculus ciliaris (or)—which is smooth and of a uniform black color.

If we strip off the entire uvea from the cornea and sclera, we get a view of the outer side of the ciliary body. This is covered by a layer of gray tissue—the ciliary muscle.

Longitudinal sections (i.e., those carried in a meridional direction, Fig. 71) are the ones best adapted for accurate study of the ciliary body. In such sections the ciliary body appears triangular. Its shortest side looks forward, and at about its center gives origin to the iris. The two long sides of the triangle look inward and outward respectively. The inner side bears the ciliary processes (P, Fig. 71), while the outer side is formed by the ciliary muscle (M).

Microscopical Anatomy.—If we examine the separate layers of the ciliary body, proceeding from without inward, we first come upon the ciliary muscle. This was discovered by Brücke, and was called by him the tensor chorioideus. It consists of two portions, distinguished by the differing direction of their muscular fibers. (a) The external portion contains the longitudinal or meridional fibers—that is, those running from before backward (M, Fig. 71). As these are the ones first discovered by Brücke, they are also called Brücke’s portion. The longitudinal fibers arise from the external fibrous tunic of the eye, at the boundary between the cornea and sclera (at l), and run straight backward to a point at which they gradually are lost in the external layers of the chorioid (Ch). (b) The second portion of the ciliary muscle lies to the inner side of the first, and contains those fibers which have a circular course, and which, hence, in sections made meridionally, are seen in cross section (Mu, Fig. 71). They are designated as Müller’s portion, from their discoverer, Heinrich Müller.

The ciliary processes (P, Fig. 71) are placed upon the ciliary muscle. They consist of a connective-tissue stroma, which, along with branched pigment cells, contains an extraordinary number of blood-vessels, so that the ciliary processes must be regarded as the most vascular portion of the entire eyeball. The inner surface of the ciliary body is covered by three layers of tissue. The first of these is a homogeneous
membrane, the hyaline lamella of the ciliary body. Succeeding this is a layer of pigmented cells, the pigment epithelium (P, Figs. 74 and 75); and, lastly, a single stratum of non-pigmented, cylindrical cells (C) forming the most superficial layer—i.e., the one that adjoins the vitreous humor. The last two layers are the continuation of the retina, which here has become reduced to a double row of cells—i.e., a pigmented and non-pigmented row. They are hence called the pars ciliaris retinae. All three layers pass over upon the posterior surface of the iris, the deepest layer, or hyaline membrane, being continued into the posterior limiting membrane of the iris, while the layers of pigmented and non-pigmented cells are converted into the two strata of the retinal pigment layer of the iris (pars iridica retinae, c and d, Fig. 72).

The place where the iris and the ciliary body are attached to the sclera deserves particular attention. We can readily convince ourselves that the iris does not arise from the sclero-corneal junction, but farther back, so that the most anterior portion of the sclera is still in the confines of the anterior chamber. The connection between the sclera and the root of the iris is made by means of loose tissue which arises at the margin of the cornea, and from this point extends backward to the root of the iris (Fig. 71, I). This tissue, which is called the ligamentum pectinatum, fills up the angle between the iris and the corneo-sclera, so that this angle is rounded off into a sinus—the sinus of the anterior chamber. Histologically, the tissue of the ligamentum pectinatum is composed of superimposed, laminated lamellae, which start from the margin of Descemet's membrane and run backward to a point at which a part of the longitudinal fibers of the ciliary muscle abuts against them. These lamellae consist of trabeculae inclosing rounded alveoli, so as to form, when superimposed, a spongy tissue (Fig. 76). Directly to the outer side of them, just at the boundary between the cornea and sclera, is observed an open space (Fig. 71, s), representing Schlemm's canal (sinus venosus sclerae), the inner wall of which is thus formed by the ligamentum pectinatum.

The iris and ciliary body take part in the formation of the two chambers of the eye. The anterior chamber is bounded in front by the

Explanations of Fig. 71.—The nasal wall of the orbit is formed by the lamina papyracea (os planum) of the ethmoid, L, the lacrimal bone, T, and the frontal process, F, of the superior maxilla. The last two bones bound the fossa saecel lacrimalis, in which lies the lacrimal sac, S. The bony walls of the orbit are coated by a periosteum (periocularis), P, from which the palpebral ligaments take their origin. The internal palpebral ligament, i, divides into an anterior limb, v, and a posterior limb, h, which together inclose the lacrimal sac. From the posterior limb arise the fibers of Horner's muscle; H. le, external palpebral ligament; h and fe, the slips of fascia, likewise passing from the periosteum to the internal rectus muscle, E. The skin, N, of the dorsum of the nose passes into the lower lid. At whose free border are seen the cilia and the orifices of the Meibomian glands, s; between the two extends a gray line, e. At the inner extremity of the lid lies the inferior punctum lacrimale, p, and farther along in the conjunctival sac the caruncle, c, and the plica semilunaris, r. From the eyeball, the lower half of which is exhibited, the lens and along with it the vitreous humor have been taken out, and the pigment epithelium has been removed by penciling. The anterior chamber, k, the iris, ir, and the ciliary body, consisting of the corona ciliaris, c, and the orbiculus ciliaris, or, are visible. Back of the ora serrata, o, is the chorioid with its veins which are aggregated into vortices, v, fovea centralis retinae; c, central vessels of the optic nerve, O, entering it at e.
cornea, behind by the iris and in the region of the pupil by the anterior capsule of the lens, and at its margins by the tissue of the ligamentum pectinatum, beneath which lie Schlemm's canal and the anterior border of the ciliary body. Even under normal conditions the depth of the anterior chamber is variable. It is greatest in the eyes of the young, and diminishes with advancing age. Myopic eyes have a deep anterior chamber, hyperopic eyes a shallow one. Even in the same eye the depth of the anterior chamber varies, as it becomes shallower during the accommodative act from the protrusion of the anterior surface of the lens. The posterior chamber is produced by the iris not being in contact with the capsule of the lens by its whole posterior surface, but only by its pupillary margin. Thus an open space is left between the iris and the lens, which increases in depth from the pupillary to the ciliary margin of the iris, and hence in cross-section has a triangular shape. This space, the posterior chamber of the eye, is bounded in front by the iris and to the outer side by the ciliary body, while its inner and posterior wall is formed by the lens (L, Fig. 71) and the zonule of Zinn (z₁, Fig. 71), the latter bridging over the interspace between the lens and the ciliary body. The two chambers communicate only by means of the pupil.

The ciliary muscle is composed of smooth muscular fibers, which do not present a compact mass but are disposed in flat bundles, which are separated by connective tissue, and which interlace repeatedly so as to form a sort of
plexus. For this reason there is no well-marked separation between the two portions of the ciliary muscle; on the contrary, the longitudinal fibers by a very gradual transformation become bent so as to take a circular direction. Those bundles which effect the transition from fibers of one direction to those of another have been denoted by the name of radial bundles (r, Fig. 71). Like the longitudinal fibers they arise from the wall of Schlemm's canal, but, unlike them, they do not extend outward and backward, but directly backward, and pass into the circular fibers.

The proportion between longitudinal and circular fibers varies according to the refractive state of the eye. In hypermetropic eyes the circular fibers are strongly developed, while in myopic eyes they are present in much smaller numbers (see § 144, and Figs. 223, 224, and 225).

The region of the angle (or sinus) of the anterior chamber demands particular consideration, both because of its complicated anatomical relations and also because of its importance with regard to the metabolic processes and the diseases of the eye. This region was studied in the eyes of animals before it was in human eyes, and hence names were selected at that time which are still in vogue, although they are not appropriate for the human eye. Thus Hucck introduced the name ligamentum pectinatum, because he found in the eyes of the Ungulata that, upon stripping the iris from the sclera, the tissue that united these parts projects in a series of ridges resembling the teeth of a comb. The triangular space between the sclera and the root of the iris which is filled by

![Image](https://via.placeholder.com/150)

**Fig. 76.** _Ligamentum Pectinatum (Surface View)._ Magnified 700 × 1.

Trabeculae, which show a delicately fibrillar structure, inclose alveoli, the larger of which are elliptical, and directed so that their long axis lies parallel to the margin of the cornea. Upon the walls of these alveoli lie cells (endothelial cells) provided with nucleus and large protoplasmic cell body; small alveoli are sometimes entirely filled by such cells.

the ligamentum pectinatum is also called Fontana's space, because Fontana was the first to describe the rather large cavities which are found in many animals between the lamellae of the ligamentum pectinatum.

The _ligamentum pectinatum_ is covered by the endothelial layer which passes over it from the posterior surface of Descemet's membrane to the anterior surface of the iris. Through the gaps in the lamellae of the ligamentum pectina-
tum the endothelium passes from the surface of the ligament into the deeper parts of it, and supplies all the lamellae and trabeculae of this spongy tissue with an endothelial lining (Fig. 76).

When the iris and the ciliary body are stripped off from the corneo-sclera, the ligamentum pectinatum comes away with them. It thus shows the close interrelation between it and the uvea, a relation, moreover, that is also proved by embryology, according to which both the ligamentum pectinatum and its derivative, Descemet's membrane, belong to the uvea. Hence, embryologically speaking, the uvea forms a perfectly closed hollow sphere, consisting of the chorioid, ciliary body, iris, ligamentum pectinatum, and Descemet's membrane.

By stripping off the uvea, together with the ligamentum pectinatum, from the corneo-sclera, an opening is made into Schlemm's canal, the inner wall of which is formed by the ligamentum pectinatum. It is then visible as an open channel running along the boundary between the cornea and sclera—scleral channel. Besides this, the ligamentum pectinatum covers in a part of the anterior surface of the ciliary body, which therefore, within these limits, likewise belongs to the region of the anterior chamber. Hence inflammatory products, and especially pus, may pass from the ciliary body directly into the anterior chamber, traversing the tissue of the ligamentum pectinatum as they do so. New growths also sometimes take this path, starting from the ciliary body and growing forward into the anterior chamber in the region of its sinus (Fig. 106).

It was a good while before people got a correct idea of the anatomical relations existing in the region of the anterior and posterior chamber, and even at the present time we very frequently find drawings which represent these relations incorrectly. The existence of the posterior chamber was for a long time contested, it being supposed that the iris came into contact with the lens by its whole posterior surface. If this were the case, the anterior chamber would present quite a different shape, since it would have to be much deeper at its periphery than it is. This state of things is actually observed in those pathological cases in which the iris is adherent throughout by means of an exudate to the capsule of the lens. The iris is then found to be retracted at its periphery much more than usual (see Fig. 98). The existence of a posterior chamber in the normal eye can be demonstrated by freezing a recently extracted eye: upon opening it, we see a ring-shaped piece of ice (the frozen liquid of the posterior chamber) lying between iris and lens.

(c) Chorioid.

58. The chorioid * is that part of the uvea which lines the posterior section of the eye from the ora serrata to the aperture for the optic nerve. If we observe it in situ, after opening the eyeball and removing the vitreous together with the retina, its inner surface appears smooth and uniformly brown. Then, if we try to strip it off from the sclera, we notice that at several spots it is attached more firmly than at others. The most intimate connection is at the margin of the aperture for the

---

* From χωρίωθη, i.e., like the χώρα (Lat., corium). This latter word signifies "skin," and not merely the epidermis, but also the envelope (chorion) of the embryo in utero; and, in fact, it is the latter that the chorioid resembles, from its abundant supply of vessels. This word is also erroneously written choroid or choroid.
optic nerve; in addition, loose attachments exist in the places where vessels and nerves enter the chorioid from the sclera, and especially in the region of the posterior pole (region of the posterior ciliary arteries) and of the equator (vena vorticosa). When, after tearing away these connections, we have separated the chorioid from the sclera, we get a view of the outer surface of the chorioid, which has a shaggy appearance on account of the shreds of membrane adhering to it.

Microscopical Anatomy.—The chorioid consists of five layers, which succeed one another in the following order, proceeding from without inward:

1. The suprachorioid (s, Fig. 77) consists of numerous fine nonvascular but richly pigmented lamellae lying between the chorioid proper and the sclera (sc). Upon stripping these latter apart these

![Diagram](https://via.placeholder.com/150)

**Fig. 77.—Cross Section through the Chorioid.** Magnified 175 x 1.

The chorioid consists of the suprachorioid, s, the layer of large vessels, H, the layer of medium-sized vessels, S, the chorio-capillaries, R, and the lamina vitrea, G. In the layer of large vessels are recognizable arteries, A, veins, P, and pigment cells, p. The inner surface of the chorioid is covered by the pigment epithelium, P, its outer surface by the sclera, sc.

lamellae are torn in two, and are left hanging partly upon the inner surface of the sclera, partly upon the outer surface of the chorioid, which thus acquires the rough, shaggy aspect above mentioned.

2. The layer of large vessels (Haller) (H, Fig. 77). These are chiefly veins, which are placed very close to each other and anastomose repeatedly. The intervals between the vessels (intervascular spaces) are richly supplied with pigment cells (p), and are hence of a brown color. This layer, accordingly, gives the same appearance upon a surface view as if we were looking at a plexus of bright lines (the vessels) upon a dark ground (Fig. 73). This is a picture which we often have the opportunity of seeing with the ophthalmoscope in the living eye (tessellated fundus, see Figs. 10 and 143).
3. The layer of medium-sized vessels (Sattler) (Fig. 77, $S$), which is very thin and but slightly pigmented.

4. The layer of capillaries (chorio-capillaris, or membrana Ruyschii—although it was not discovered by Ruysch—$R$, Fig. 77). This consists almost exclusively of capillaries which have a very wide bore, and at the same time are so closely packed together that the interspaces between the capillaries are often narrower than the capillaries themselves. This layer contains no pigment.

5. The lamina vitrea (or lamina basalis $G$, Fig. 77), a homogeneous membrane coating the inner surface of the chorioid.

We may briefly summarize the structure of the chorioid in the following way: The chorioid consists mainly of vessels which are arranged according to their caliber in three superimposed layers, in such a way that the largest vessels lie farthest to the outside, the smallest vessels farthest to the inside. The purpose of this arrangement is easily comprehended, since the chorioid is in great part designed for the nourishment of the tissues lying to the inner side of it (retina and vitreous). Hence the minutest vessels, the capillaries, from which the nutrient plasma of the blood exudes, must lie upon the inner surface of the chorioid. The vascular part of the chorioid is covered on either side by a non-vascular layer—i.e., on the outside by the suprachorioid, on the inside by the lamina vitrea. All the layers of the chorioid, with the exception of the two innermost ones—the capillary layer and the lamina vitrea—contain pigment inclosed in branched pigment cells (Fig. 78). To its abundant supply of pigment the chorioid owes its dark-brown color. The inner surface of the chorioid is covered by the pigment epithelium ($P$, Fig. 77) which lies upon the lamina vitrea. This, too, was formerly reckoned in with the chorioid, because it remains attached to it after the retina has been stripped off; embryological researches, however, have shown that it really belongs to the retina. It consists of regularly hexagonal cells, each of which has an unpigmented nucleus, while the protoplasm contains an abundance of pigment granules (Fig. 79). From this the entire layer acquires a dark-brown color.
The uvea in all of its parts is very rich in nerves. The ciliary nerves get to the uvea by piercing the sclera near its posterior pole. They form in the chorioid, and particularly in the ciliary muscle, a dense plexus, in which numerous ganglion cells are intercalated. The iris is also very rich in nerves, but contains no ganglion cells. The iris and the ciliary body contain, in addition to the motor nerves designed for the ciliary muscle and the muscular apparatus of the iris, a very great number of sensory nerve fibers which arise from the trigeminus; hence, inflammation of these parts is frequently attended with great pain. The chorioid, on the contrary, seems to possess no sensory nerves, since inflammation of this membrane runs its course without producing any sensations of pain.

The chorioid is continuous with the flat part of the ciliary body (orbiculus ciliaris), which possesses essentially the same structure as the chorioid, and is distinguished from it only by a somewhat different arrangement of the blood-vessels, and also by the absence of the chorio-capillaris, which ends at the ora serrata. The difference in color between the brown chorioid and the black orbiculus (Fig. 73), so striking to the naked eye, is not referable to a difference in the pigmentation of these parts of the uvea, but to a difference in the pigment epithelium which covers them and which belongs to the retina.

All the pigment that is contained in such abundance in the interior of the eye belongs to two categories: 1. In the tissue of the uvea itself there are everywhere found branched cells, of the character of the connective-tissue cells, containing pigment (Fig. 78). These are the pigment cells of the stroma, and the pigment contained in them is called stroma pigment, or, because it lies in the uvea itself, uveal pigment. 2. The inner surface of the uvea is everywhere coated with a layer of pigmented cells, belonging to the retina and having the character of epithelial cells (pigment epithelium, Fig. 79). This pigment, which hence lies not in the uvea but to the inner side of it, is called the retinal pigment.

These two kinds of pigment are further distinguished by their minute structure. The pigment in the stroma cells of the uvea consists of small amorphous masses; but the pigment granules in the cells of the pigment epithelium are short, rod-shaped structures, which should probably be regarded as small crystals, such as occur, very distinctly marked, in some of the lower vertebrates.

The pigmentiferous cells, including both those of the stroma and those of the pigment epithelium, are similar in all eyes, but the amount of pigment which they contain varies greatly. To this fact is due the inequality in the pigmentation of eyes; if the cells contain no pigment whatever, the eye is albinotic (Fig. 72).

II. Circulation and Metabolism of the Uvea.

(a) Blood-vessels.

59. Three systems of blood-vessels exist in the eye—that of the conjunctiva, that of the retina, and that of the uvea (ciliary system of vessels). The arteries of the ciliary system are: 1. The posterior ciliary arteries. These arise from the ophthalmic artery, and enter the in-
terior of the eye through the sclera in the region of the posterior pole. The majority of them pass at once into the chorioid (short posterior ciliary arteries, $c$, $e$, Fig. 80). Two of them, however (the long posterior ciliary arteries, $d$, Fig. 80), run, one on the outer side, the other on the inner side, between chorioid and sclera as far forward as the ciliary muscle. Here each divides into two branches, which run in a direction concentric with the margin of the cornea, and unite with the branches of the artery of the opposite side to form an arterial circle, the circulus arteriosus iridis major (Fig. 80, $h$, and Fig. 71, $a$). This gives off the arteries for the iris, which extend radially from its ciliary to its pupillary margin (Fig. 80, $i$). Shortly before they reach the latter they form by anastomoses a second, smaller vascular circle, the circulus arteriosus iridis minor or the small circle of the iris (Fig. 80, $k$). The anterior ciliary arteries come from in front, arising from the arteries of the four recti muscles (Fig. 80, $e$). They perforate the sclera near the margin of the cornea and assist in forming the circulus arteriosus iridis major. The short posterior ciliary arteries are therefore designed mainly for the chorioid, the long posterior ciliary arteries and the anterior ciliary arteries for the ciliary body and the iris.

The arrangement of the veins is essentially different from that of the arteries. In the chorioid the capillary network of the chorio-capillaris (Fig. 80, $f$) is fed by the arteries. The blood from this flows off through a very great number of veins that keep uniting to form larger and larger trunks. A number of these trunks simultaneously converge to a common center, where, consequently, a sort of whorl or vortex is produced by veins coming together from all sides. Fig. 73 shows a surface view of two such vortices, $v$. These vortices, the number of which amounts to four at least, usually more, lie somewhat behind the equator of the eye; from them are given off the venae vorticosae, which, perforating the sclera in a very oblique direction, carry off the blood to the outside (Fig. 80, $l$).

In the ciliary processes the arteries break up into a great number of twigs, which pass over into thin-walled veins ($g$, Fig. 80). These constitute the greater part of the ciliary processes, which, accordingly, consist mainly of vessels. The larger veins which are formed by the union of these vessels, and also most of the veins of the ciliary muscle, pass backward to the venae vorticosae. The veins that come from the iris ($i$, Fig. 80) likewise pass to the venae vorticosae. Hence almost all the venous blood of the uvea empties into the latter. A portion of the veins coming from the ciliary muscle ($m$, Fig. 80), however, take another course, as they pass out directly through the sclera and thus come into view beneath the conjunctiva, near the margin of the cornea (anterior ciliary veins, Fig. 80, $e$). In their course these correspond to the anterior ciliary arteries; it is they that principally constitute the violet vessels which we see running backward beneath the conjunctiva.
in ciliary injection or in stasis within the eyeball (glaucoma). The anterior ciliary veins anastomose with the conjunctival veins, and also

---

**Fig. 80.—Blood-vessels of the Eye. (Schematic.) (After Leber.)**

The retinal system of vessels is derived from the central artery, \( a \), and the central vein, \( a_1 \), of the optic nerve, which give off the retinal arteries, \( b \), and the retinal veins, \( b_1 \). These end at the ora serrata, \( Or \).

The system of ciliary vessels is fed by the posterior short ciliary arteries, \( c \), the posterior long ciliary arteries, \( d \), and the anterior ciliary arteries, \( e \). From these arise the vascular network of the chorioidal capillaries, \( f \), and of the ciliary body, \( g \), and the circulus arteriosus iridis major, \( h \). From this last spring the arteries of the iris, \( i \), which at the smaller [inner] circumference of the latter form the circulus arteriosus iridis minor, \( k \). The veins of the iris, \( l \), of the ciliary body, and of the choroid are collected into the veins vorticose, \( l \); these veins, however, that come from the ciliary muscle (\( m \)) leave the eye as anterior ciliary veins, \( e_1 \). With the latter, Schlemm's canal, \( o \), forms anastomoses.

The system of conjunctival vessels consists of the posterior conjunctival vessels, \( o \) and \( o_1 \). These communicate with those branches of the anterior ciliary vessels which run to meet them—that is, with the anterior conjunctival vessels, \( p \)—and form with these the marginal loops of the cornea, \( q \). \( O \), optic nerve; \( S \), its sheath; \( Sc \), sclera; \( A \), choroid; \( N \), retina; \( L \), lens; \( H \), cornea; \( R \), internal rectus; \( B \), conjunctiva.
with Schlemm's canal. The latter is a venous sinus running along the sclero-corneal junction (Fig. 80, r; Fig. 71, s).

The blood-vessels of the eye belong for the most part to the region of the uvea. It is this fact which determines the part played by the latter; for, while the firm corneo-sclera serves for the protection of the eye exteriorty and the retina for the perception of light, to the uvea is allotted the task of providing for the nourishment of the eyeball. Such is the abundance of blood-vessels which it contains that it really consists mainly of them; and by this fact its great tendency to become inflated is accounted for.

The separate branches of the ciliary system of vessels anastomose repeatedly with each other—a circumstance which favors the compensation of circulatory disturbance. Thus, for instance, in glaucoma, in which the outflow of venous blood through the vena vorticosa is impeded, we see the anterior ciliary veins taking their place and carrying off larger quantities of blood than usual.

The ciliary vessels likewise supply the sclera with blood, giving off a few minute twigs to it as they pass through it. The number of blood-vessels in the sclera, however, is very small. Nevertheless, in the immediate neighborhood of the entrance of the optic nerve, from two to four branches of the short posterior ciliary arteries enter the sclera and form in it by anastomoses an arterial ring, Zinn's scleral circle of vessels, surrounding the foramen for the optic nerve. This is of importance for the nutrition of the optic nerve, because numerous little branches go from it to the optic nerve and its sheaths, and anastomose with the branches of the central artery of the nerve. It is here, then, that the only connection between the ciliary and the retinal system of vessels exists.

It not infrequently happens that individual branches arising from the scleral circle of Zinn, instead of remaining in the optic nerve, make a bend and leave the nerve. They then enter the retina and run in it toward the macula lutea. These vessels, which are called cilio-retinal, ordinarily supply with blood a small district of the retina lying between the papilla and macula (Fig. 81).

(b) Lymph Passages.

60. If we disregard the conjunctiva, there are no lymphatic vessels in the eye. They are replaced by lymph channels and lymphsels. We distinguish the lymph passages into anterior and posterior.

1. Anterior Lymph Passages.—The lymph of the anterior section of the eye is collected into two large lymph spaces—namely, the anterior and the posterior chambers—which communicate by means of the pupil. The outflow of lymph from these spaces takes place by its
ANATOMY AND PHYSIOLOGY OF THE UVEA.

269

discharge from the posterior chamber through the pupil into the anterior chamber; thence it filters through the meshwork of the ligamentum pectinatum into the subjacent Schlemm's canal (Fig. 82, S), and from there gets into the anterior ciliary veins (c) with which Schlemm's canal is in direct communication.

2. Posterior Lymph Passages.—These are as follows: (A) The hyaloid canal, or central canal of the vitreous (Fig. 82, h), which extends from the point of entrance of the optic nerve forward as far as the posterior pole of the lens. During the development of the eye this canal lodges the hyaloid artery, which in the fully formed eye disappears, while the canal remains. It has its outlet in the lymph spaces of the optic nerve. (B) The perichorioidal space (p, Fig. 82) is the space between the choroid and sclera. It is continued along the vessels which pass through the sclera, especially the venæ vorticosæ (v), and thus communicates with (C) Tenon's space (Fig. 82, t, t), which lies between the sclera and Tenon's capsule. The outflow of lymph from all these spaces takes place into the lymph passages, which spread

---

**Fig. 82.—Lymph Passages of the Eye. (Schematic.)**

S, Schlemm's canal; c, anterior ciliary veins; h, hyaloid canal; p, perichorioidal space, which communicates by means of the venæ vorticosæ, v, with Tenon's space, t, t; s, supravagalal space; i, intervaginal space; e e, continuation of Tenon's capsule upon the tendons of the ocular muscles (lateral invagination).
out along the optic nerve. These latter are \((D)\) the intervaginal space, which is found between the sheaths of the optic nerve \((i, \text{Fig. 82})\), and \((E)\) the supravaginal space \((s, \text{Fig. 82})\), which surrounds the sheaths of the optic nerve.

By far the greatest amount of lymph leaves the eye through the anterior lymph passages. These, therefore, are the more important; their impermeability leads to serious changes in the eye (glaucoma), while up to the present time nothing certain is known in regard to disturbances of the function of the posterior lymph passages.

We owe our knowledge concerning the lymph passages chiefly to Schwalbe. For their study we make use of injections into the tissue of the dead and also of the living eye. Thus we find in what directions fluids penetrate most readily in and between the tissues of the eye. But to justify us in regarding the spaces thus exhibited as lymph passages, proof must also be brought to show that they are coated by a continuous layer of endothelium; and this, too, Schwalbe has established in the lymph spaces which he discovered.

\((c)\) Nutrition of the Eye.

61. The secretion of the fluids of the eye, and also the nourishment of its tissues, take place mainly through the vessels of the uvea.

The \textit{aqueous humor} is a limpid liquid, which in the normal state contains only an excessively small amount of albumin. It is produced by the iris and the ciliary processes, the latter playing the more important part in the process; for, in cases of congenital or acquired deficiency of the iris, the aqueous is still secreted in normal amount. The aqueous secreted by the ciliary processes arrives first into the posterior chamber, from which it passes through the pupil into the anterior chamber. Here it again leaves the eye by way of the ligamentum pectinatum and Schlemm’s canal. The secretion of aqueous goes on much more rapidly when the latter has been evacuated—e.g., by puncture of the cornea—than it does under physiological conditions. In the former case the anterior chamber is restored as early as a few minutes after it has been evacuated, a thing we have frequent opportunity of observing during operations. The rapid reproduction of aqueous is favored by the fact that after its escape the ocular tension is reduced much below the normal. Hence the blood pours in greater quantity into the vessels of the iris and ciliary body, thus relieved of their external pressure, and these expand proportionally and allow fluid to transude from them in greater abundance. This fluid that accumulates in the anterior chamber after the evacuation of the aqueous is distinguished from normal aqueous by the considerable amount of albumin that it contains.

The \textit{cornea} is nourished mainly by the network of marginal loops of the limbus, and to a small extent also by the aqueous humor which
makes its way into it by diffusion. The other two non-vascular tissues of the eye, the lens and the vitreous, are entirely dependent upon the uvea for their nourishment. They obtain nutrient material mainly from the ciliary body, perhaps also from the anterior section of the chorioid. Hence in diseases of these parts we very frequently see cloudiness of the lens and cloudiness and liquefaction of the vitreous, making their appearance as an expression of the disturbance in the nutrition. The process of tissue metamorphosis in the lens appears to be very slow, since pathological changes in it (opacities) often either remain stationary for an exceedingly long time or extend but slowly. The retina has its own vessels, which, however, are situated simply in its inner layers and do not suffice for its nourishment. The retina, therefore, especially in its outer layers, is dependent upon the chorioid, whose chorio-capillaris indeed is almost directly adjoining. The chorio-capillaris, furthermore, must be credited with accomplishing the continual regeneration of the used-up visual purple.

The aqueous can not be regarded as simply lymph, since it is distinguished from the latter by containing extremely little albumin. It must rather be looked upon as a secretion, in whose formation the two layers of retinal cells (pigmented and non-pigmented) that cover the surface of the ciliary body, play the part of a secreting epithelium. Treacher Collins has called attention to the numerous glandlike processes that the pigment epithelium in the flat portion of the ciliary body gives off (Fig. 75), and ascribes the secretion of the aqueous mainly to them.

The liquid that accumulates very rapidly in the anterior chamber after the aqueous has been withdrawn from it, and which is much more albuminous than the normal aqueous, is formed for the most part by direct transudation from the distended vessels of the ciliary processes, which transudation gives rise to numerous blisterlike elevations in the layer of retinal cells lining the ciliary processes (Greff).

With regard to the nourishment of the lens, it is assumed that nutrient material starting from the ciliary body and the anterior part of the chorioid enters it in the region of its equator. Inside of the lens the fluid circulates probably in clefts which lie between the fibers of the lens in the anterior and posterior cortical layers (Schlösser), and which under pathological conditions may become visible as stellate opacities. The lymph leaves the lens probably through the anterior capsule and empties into the anterior chamber (Samelson).

As regards the retina, various facts indicate that it is likewise dependent in part for its nourishment upon the chorioid, and particularly upon the most anterior layer of the latter—i.e., the chorio-capillaris. This layer extends forward only as far as the retina itself, or at least the complicated structure of it, does—that is, as far as the ora serrata. Again, at that spot where the retina displays its functions most actively—i.e., in the region of the macula lutea—the capillary loops of the chorioid are most densely disposed; and, lastly, there are many animals in which the retina has no vessels whatever, and hence evidently can be nourished only by the chorioid. The outflow of lymph from the retina takes place through the lymph sheaths surrounding the retinal vessels.
(d) **Intra-ocular Pressure.**

62. For the purpose of simplifying the study of the conditions of pressure, we may leave the lens out of consideration, and think of the eyeball as a capsule filled with fluid. The capsule is the fibrous corneo-sclera, which has only a very small degree of elasticity. The fluid contained in the capsule exerts upon the inner surface of the latter a pressure which, in accordance with the laws of hydrostatics, is transmitted with the same intensity in every direction, and hence presses with the same weight upon every unit of surface of the wall. A square millimetre of the posterior surface of the cornea has therefore the same pressure to bear as a square millimetre of any portion of the sclera.

The intensity of intra-ocular pressure depends upon the relation between the capacity of the capsule and the amount of its contents. If the former becomes smaller or the latter greater, the pressure rises, and vice versa. Under physiological conditions, the capacity of the capsule—i.e., the volume comprised by the cornea and sclera—undergoes such inconsiderable variation that it may be neglected, and the capacity regarded as constant. The variations in intra-ocular pressure are hence referable to changes in the amount of matter contained in the eyeball, which may be increased or diminished. For example, the pressure at once sinks considerably when the aqueous has been evacuated by puncture of the cornea.

Those portions of the contents of the eyeball whose amount is variable are the aqueous, the vitreous, and most of all the blood that circulates in the vessels of the inner tunics of the eye. Every increase or decrease of blood pressure in these vessels must result in a corresponding change in the ocular tension. Other causes, too, such as changes in the form and volume of the iris and ciliary muscle, the pressure of the lids and of the exterior muscles of the eye upon the ball, etc., can alter it. One might therefore be inclined to believe that it was subject to considerable variations. But, on the contrary, observation teaches us that the intra-ocular pressure under normal conditions is pretty constant. In fact, a regulation of the tension is effected by the circumstance that the outflow of the fluid of the eye through the lymph channels (excretion) changes in such a way that variations of pressure are at once compensated for. For example, the pressure in the whole vascular system, and consequently in the eye as well, may be elevated as the result of great muscular effort. The intra-ocular pressure is thus heightened; but proportionately more of the intra-ocular fluids which are subjected to this increased pressure are forced out of the eye through the excretory channels, so that the pressure very soon sinks again to its normal level. The converse would occur in a case in which the pressure has been diminished (e.g., in consequence of an escape of
the aqueous humor); then more blood flows into the vessels of the uvea, now subjected to less pressure, and a more copious outflow of fluids into the interior of the eye (secretion) is the result. But at the same time the outflow of ocular fluids through the lymph channels (excretion) is diminished, because the pressure to which the ocular fluids are subjected is less. In this way the normal pressure is very soon restored.

The practical estimation of the intra-ocular pressure is performed by palpating the eyeball through the closed lids, just as if we were intending to test for fluctuation. We determine in this way the degree of tension of the eye. This, to be sure, is not identical with the intra-ocular pressure, since the latter depends upon other factors as well, and particularly upon the degree of hardness and elasticity of the ocular tunic. But in any case it is proportional to the intra-ocular pressure, and may therefore be employed in practice as expressive of it.

Even under normal conditions the ocular tension varies within certain limits in different individuals; in general, the eyes of elderly persons feel harder than those of the young. Hence very slight pathological changes of tension can only be recognized with certainty as morbid, when we can make use of the second, normal eye of the same man for purposes of comparison; greater alterations of pressure, however, make themselves evident at once. It has been agreed to denote the normal tension by the expression $Tn$ ($T =$ tension or tone). Of increased tension (hypertony) we distinguish three degrees: $T+1$, $T+2$, and $T+3$, which are arbitrarily selected, and indicate approximately: tension noticeably increased—greatly increased—hard as stone. Similarly, we employ for diminished tension (hypotony) the designations $T-1$, $T-2$, and $T-3$.

The intra-ocular pressure plays an important part both under physiological conditions and also in diseases of the eye, and has hence been the subject of numerous investigations, chiefly experimental. For its exact measurement a manometer has been employed, one arm of which is connected with a cannula, the other being introduced into the eye. In this way it has been found that in the healthy human eye the average pressure equals that of a column of mercury twenty-six millimetres high; under pathological conditions (glaucoma) the pressure may exceed seventy millimetres (Wahlfors). This method of measurement, however, is practically inapplicable on account of its being dangerous for the eye. Tonometers of various construction have therefore been devised, which measure the intra-ocular pressure by being simply placed upon the eye and impinging against it; but none of these instruments have so far found their way into practice.

In the assumption above made, that the eyeball is represented by a capsule filled with liquid, the lens and its retaining ligament, the zonula of Zinn, are left out of consideration. These two together form a diaphragm dividing the interior of the eyeball into a smaller anterior and a larger posterior section. It is hence possible that the pressure is not the same throughout the whole interior of the eye, as is assumed above, but that its action is different in the anterior chamber from what it is in the cavity of the vitreous, since the dia-
phragm bears a part of the pressure. Under ordinary circumstances, to be sure, this is not the case, since the zonula, owing to its elasticity, gives way toward the side of less pressure, and hence, in general, the pressure in all parts of the eye may be regarded as equally great. Nevertheless, a difference in pressure may be developed when the zonula is tightly stretched, as is the case, for example, immediately after the evacuation of the aqueous, when the lens pushes forward against the cornea and so tightens the zonula. Then the pressure in the anterior chamber is practically nothing, while the pressure in the vitreous maintains a certain height. In this case the difference in pressure induces increased filtration of fluid from the vitreous in the anterior chamber—a circumstance that contributes to the more speedy replenishment of the chamber. That the reaccumulated aqueous really does arise in part from the vitreous, and is not simply secreted by the ciliary processes, is proved by the fact that even in the dead eye the anterior chamber fills up again within a short time after the aqueous has been evacuated (Deutschmann). And it is on this account that in the living eye also repeated punctures of the anterior chamber cause more rapid tissue metamorphosis in the vitreous, and hence prove useful in many cases of disease of the latter.

III. Participation of the Uvea in the Visual Act.

63. The iris forms a diaphragm which, as in the case of many optical instruments, is interposed between the refracting portions of the eye. It has a double task to perform: it prevents an excessive amount of light from entering the eye and so dazzling it and injuring the retina, and it cuts off the marginal rays. These are the rays that pass through the periphery of the cornea and of the lens, and which, being less regularly refracted, would, unless arrested, impair the sharpness of the retinal image. In order to be perfectly impermeable to light, the iris has a pigment layer on its posterior surface. The iris has the advantage over the artificial diaphragms of optical instruments that its size changes spontaneously to suit the circumstances of the case. For this purpose there exist contracting fibers (sphincter pupillae) and dilating fibers (posterior limiting membrane). Moreover, the vessels of the iris must be considered as also taking part in this process, since by their distention the iris becomes broadened and the pupil consequently contracted, and vice versa.

The contraction of the pupil is governed by the oculo-motor nerve, which supplies the sphincter pupillae (and also the ciliary muscle) through the ciliary ganglion and the ciliary nerves. By stimulation of the oculo-motor nerve, contraction of the pupil is produced; by its section or paralysis, dilatation of the pupil.

Dilatation of the pupil is dependent upon the sympathetic, which derives the fibers destined for the pupil from the cilio-spinal center of the cervical spinal cord. Irritation of this center or of the cervical sympathetic produces dilatation, and paralysis of it contraction of the pupil.
ANATOMY AND PHYSIOLOGY OF THE UVEA.

The reaction of the pupil takes place involuntarily and unconsciously. It is either reflex, in which case the stimulus is transmitted from centripetal nerve channels to the nerves of the iris, or it is associated, in which case the pupillary fibers of the oculo-motor nerve are set into action simultaneously with other fibers of the same nerve.

The stimulus to reflex reaction of the pupil is set in action—

1. By light. This produces contraction of the pupil, while conversely as the illumination diminishes the pupil dilates. The reflex arc in this case passes through the optic nerve to the nucleus of the oculo-motor nerve and along the latter to the eye. The reaction for light always affects both eyes—i.e., if the light falls into one eye alone, the pupil of the other eye also always contracts (consensual reaction). The reaction takes place in both eyes in exactly the same way—that is, appears at the same time and reaches the same pitch. The reaction of the pupil to light is exceedingly sensitive, and is employed with great advantage to determine objectively whether an eye has any sensation of light or not (particularly in children, malingerers, etc.).

2. Toward sensory stimuli, no matter what part of the body they affect, the pupil reacts by dilating. Hence, in deep sleep, and also in profound narcosis, in which sensory stimuli no longer produce reflexes, the pupil is very much contracted, dilating, however, the moment that waking from the sleep or from the narcosis occurs. Strong psychic stimuli—e.g., fright—in like fashion produce dilatation of the pupil.

The associated reaction of the pupil always consists of a contraction. It occurs—

1. In convergence (synergy with the internal recti).

2. In accommodation (synergy with the ciliary muscle). Since under physiological conditions every act of accommodation is accompanied by a corresponding convergence, and the contraction of the pupil keeps pace with both, we have here as a regular thing a uniform consentaneous action of the sphincter pupillæ, the ciliary muscle, and the internal rectus. These muscles are all supplied by the oculo-motor nerve, so that their associated action depends upon a simultaneous excitation of the several bundles of fibers in this nerve supplying them.

Since the pupil reacts to stimuli of so many kinds and varying so greatly in degree, it is in a state of constant motion. But in every case the pupils of the two eyes are equally large. Inequality of the pupils is always a pathological phenomenon. The mean width of the pupil differs with the individual and also alters with the age. Very greatly contracted in newborn infants, the pupil soon becomes more dilated, and then becomes smaller again in manhood, and still more in old age. In old people also the reaction of the pupil becomes sluggish, in consequence of the unyielding character of the tissue of the iris, and especially of the sphincter (rigidity of the sphincter).
64. Reaction of the Pupil to Poisons.—There is a series of alkaloids which produce either dilatation of the pupil (mydriasis) or its contraction (miosis).* These substances are accordingly distinguished into mydriatics and miotics. They always act upon the ciliary muscle in the same manner as upon the sphincter iridis. The most important of the mydriatics is atropine, the most important of the miotics are eserine and pilocarpine.

1. Atropine paralyzes the sphincter and the ciliary muscle, and hence results in dilatation of the pupil and also in inability to see clearly near by. The dilatation of the pupil is a very considerable one. If, in the case of a dilatation of the pupil caused by oculo-motor paralysis, atropine is instilled, the pupil becomes still more dilated. This proves that atropine, besides producing paralysis of the contracting fibers, causes also stimulation of the dilating fibers. The effect of the atropine makes its appearance in from ten to fifteen minutes after the instillation, and soon reaches its maximum. Commencing with the third day it begins to decrease again, but does not disappear completely until after the lapse of a week. The instillation of atropine, therefore, causes the patient a disturbance of pretty long duration, and hence should be employed only when there is good reason for it.

In practice, a one-per-cent solution of sulphate of atropine is most frequently employed. If it is desired to obtain a particularly intense effect, a granule of the atropine salt in substance is placed in the conjunctival sac, where it is dissolved by the tears, and affords a concentrated solution. In this case we must be on the lookout for symptoms of general poisoning, which do not ordinarily develop with the instillation of the one-per-cent solution. These symptoms consist in a troublesome sense of dryness in the throat, nausea, reddening of the face, and subsequently faintness, or even loss of consciousness, and acceleration of the pulse. In case of marked poisoning the pupil of the other eye also, which has not been treated with atropine, is always dilated. The poisoning is effected by the entrance of the atropine into the nose along with the tears and its absorption in excessive quantity by the nasal mucous membrane. Hence we may preclude the development of poisonous symptoms, especially in applying atropine in substance, by preventing the tears from running down into the nose. For this purpose we draw the lower lid for a short time away from the eyeball, so that the tears are poured out upon the cheek, or we compress the lachrymal sac with the finger. In serious cases of poisoning, the subcutaneous injection of morphine is indicated as the antidote.

* From μυορισ, contraction; hence miosis, and not myosis, as it is generally written (Hirschberg). The derivation of μυοπλασι is uncertain. This word was already used by the ancients to signify dilatation of the pupil, and also the blindness that is so frequently associated with it.
We are not to conceive of the action of atropine upon the pupil in the same light as if it had got by absorption into the circulation, as is the case when it is administered internally. For in this case the pupils of both eyes would necessarily be dilated, while, as a matter of fact, the dilatation of the pupil occurs only on the side in which the instillation has been made. The action, accordingly, is a local one, and takes place from the atropine passing through the cornea by diffusion and getting into the aqueous humor so as to act directly upon the iris. We can prove this by a simple experiment, by dropping atropine into one eye, and, as soon as the pupil has dilated, evacuating the aqueous by paracentesis. If, then, this aqueous is introduced into the other eye, it excites a dilatation of the pupil in the latter—a proof that it contains atropine. In a similar way is the action of the other mydriatics and miotics upon the iris to be explained.

2. Eserine (also called physostigmine) has an action exactly the opposite of that of atropine, since it places the sphincter iridis and the ciliary muscle in a state of tonic contraction. Consequently, miosis develops so that the pupil is about the size of a pin’s head, with adjustment of the eye for the near point, as if marked myopia were present. We generally apply sulphate of eserine in one-per-cent solution. This solution, when freshly prepared, is colorless, but after some days becomes red, although without losing its activity. The instillation of eserine produces, simultaneously with the changes in the iris, a feeling of great tension in the eye, and often also headache and even nausea, so that with many persons it can not be employed. For this reason hydrochloride of pilocarpine, prescribed in a one- to two-per-cent solution, is recommended as a miotic for ordinary use. Its solution keeps better than that of eserine, and does not act as powerfully as the latter, but is not accompanied by any unpleasant complications. Eserine is best reserved for those cases in which pilocarpine is ineffectual.

The action of miotics is of shorter duration than that of the mydriatics, and is also less powerful. Hence a pupil contracted by eserine or pilocarpine can be dilated by atropine, but a pupil dilated by atropine can not be contracted by a miotic.

3. Cocaine dilates the pupil, and hence would seem to call for mention in this place, although, strictly speaking, it does not belong to the mydriatics proper—that is, the dilatation of the pupil by cocaine is not produced, as in their case, by a paralysis of the sphincter pupillae, but simply by contraction of the dilator fibers and also by constriction of the blood-vessels of the iris. The dilatation of the pupil is therefore only a moderate one, and the reaction of the pupil to light persists; moreover, mydriatics and miotics still produce an effect. If cocaine is instilled into an eye the pupil of which has been dilated by atropine, the dilatation increases somewhat; hence the mydriasis produced by the simultaneous action of atropine and cocaine is the most consider-
able that can possibly be attained. The accommodation is not paralyzed by cocaine, but only somewhat weakened.

Besides acting upon the iris, cocaine produces also the following effects: The conjunctiva becomes very pale, and at the same time the patient has a feeling of cold in the eye. The palpebral fissure is more widely open and the act of winking is less frequent, so that the cornea may readily become dry upon its surface. Sometimes the eye is protruded somewhat forward, and the intra-ocular tension slightly diminished. The practically important phenomenon, however, is the anesthesia shown by the superficial tissues of the eye (cornea and conjunctiva).

The effects of cocaine are best explained upon the assumption that it acts as a stimulant to the fibers of the sympathetic. The contraction of the vessels thus produced causes the pallor of the conjunctiva; the contraction of the superior and inferior palpebral muscles (see § 105), which are also supplied by the sympathetic, is the cause of the dilatation of the palpebral fissure; and the contraction of the iridic vessels combines with the contraction of the dilator fibers of the iris in producing the mydriasis. Whether the anesthesia of the surface of the eyeball is to be referred to its bloodless state or not, has not yet been determined with certainty. Owing to this anesthesia the reflex movements of the lids are abrogated.

Cocaine was introduced into ophthalmology by Koller, and is employed under the form of the hydrochloride in a two- to five-per-cent solution. Its most frequent use is to produce anesthesia for the performance of operations (see § 151); in addition, it is instilled to ameliorate the pain in superficial inflammations, especially of the cornea, and also to diminish photophobia and blepharospasm. It may also be employed to dilate the pupil for examination with the ophthalmoscope.

The ciliary body takes part in the visual act, since it contains the ciliary muscle, which provides for accommodation (see § 139). The ciliary muscle acts synergetically with the sphincter pupillae, and, like it, is paralyzed by mydriatics and thrown into spasms by miotics.

The choroid takes part in the visual act inasmuch as it supplies the visual purple, and also because its pigment, together with the pigment epithelium of the retina, forms the dark coating of the interior of the eye, which is essential for the distinctness of the retinal images.

Besides the physiological forces (muscular and elastic fibers), which alter the width of the pupil, there are purely mechanical factors which require consideration in this connection. This is the case, for instance, with the contraction of the pupil that regularly occurs when the aqueous escapes. This contraction is of practical importance in the performance of many operations. When, for instance, we perform dissection of cataract through the cornea, we take care not to let the aqueous escape, since the consequent contraction of the pupil would expose the iris to greater pressure from the swelling lens. That this con-
traction owes its origin to purely mechanical causes, is deduced from the fact
that it occurs even in the eye of a dead man when the aqueous is evacuated.

Dilatation of the pupil manifests itself by a sense of dazzling. Sometimes
the patients also allege that objects appear smaller (micropsia). This phenome-
on, however, does not depend upon the dilatation of the pupil, but upon the
paralysis of accommodation, which is generally present at the same time, and is
therefore also observed when the latter alone is present. (For its explanation,
see under paralysis of accommodation, § 159.) Conversely, in contraction
of the pupil, sometimes—i.e., if spasm of accommodation is at the same time
present—objects appear larger (macropsia). Moreover, obscuration of vision is
often complained of, because less light enters the eye through the contracted
pupil. In very marked miosis, whether occurring after the employment of
miotics or appearing spontaneously (e.g., as the result of tabes), the pupil is
frequently found to be irregular and slightly angular, although no synechiae
exist.

The reaction of the pupil to light is a very valuable sign of the presence of
perception of light: in the first place, because it is exceedingly sensitive; and,
secondly, because it demonstrates the existence of perception of light independ-
ently of the statements of the patient. Its usefulness is still further enhanced
by its disclosing in the pupils of both eyes (through the consensual reaction)
the perception of light by one eye. How is this consensual reaction effected?
From the retina of each eye (e.g., the right eye, R, Fig. 88) fibers pass through
the chiasm partly into the right, partly into the left optic tract (Fig. 88, T and
T1). From these the stimulus is transmitted directly to both right and left
oculo-motor nuclei (K and K1); then each nucleus sets up a contraction of the
pupil on its own side. The consensual reaction, therefore, is really as direct as
is the pupillary reaction of the illuminated eye itself.

The result of the consensual reaction is that under normal conditions both
pupils must be of equal diameter, even if only one of the eyes is exposed to the
impact of light, or if the sensitiveness of the two eyes to light is different.
Inequality of the pupils (anisocoria) is always pathological. For the reasons
given it can never take its origin from the centripetal fibers (optic-nerve fibers),
but is always caused by a disturbance in the centrifugal channels (oculo-motor
nerve and its center).

In testing the perception of light by the reaction of the pupils, we must not
lose sight of the fact that there are cases in which, although the perception of
light is present, the reaction is absent; and, conversely, cases in which, with
good reaction, there is yet no perception of light.

(a) The cases in which the pupil does not react to light, although the percep-
tion of light is present, are frequent. The iris may be paralyzed either artificially
by mydriatics, or by disease, such as oculo-motor paralysis or paralysis of the
nerves of the iris due to increase of tension or to inflammation. In the same
category belong those cases in which the iris is mechanically prevented from
moving by adhesions to the posterior capsule of the lens or to the cornea. In
all these cases, however, consensual reaction of the pupil takes place in the
other eye, provided that that is healthy. The test for the perception of light
in such a case, then, would be performed by alternately exposing to light and
screening the eye to be tested, and meanwhile watching the pupil of the other
eye for any movements that it might make.

The absence of the reaction to light can also be caused by an interruption in
the course of the reflex arc. This occurs in spinal diseases, particularly in tabes dorsalis; also in progressive paralysis. In these cases the pupil is either found

FIG. 83.—SCHEMATIC REPRESENTATION OF THE OPTIC TRACTS.

The field of vision common to the two eyes is composed of a right half, G₁, and a left half, G₂. The former corresponds to the left halves, l₁ and l₄, of the two retinas; the latter to the right halves, r₁ and r₄. The boundary between the two halves of the retina is formed by the vertical meridian. This passes through the fovea centralis, f; in which the visual line (V) drawn from the point of fixation, F, impinges upon the retina. The optic nerve fibers arising from the right halves, r₁ and r₄, of the two retinas (indicated by the dotted line) all pass into the right optic tract, T₁, while the fibers belonging to the left halves, l₁ and l₄, of the two retinas pass into the left optic tract, T₂. The fibers of each optic tract for the most part pass to the cortex of the occipital lobe, B, forming Gratiolet's optic radiation, s; the smaller portion of them, m, goes to the oculo-motor nucleus, K₁. This consists of a series of partial nuclei, the most anterior of which sends fibers, P, to the pupil (sphincter iris); the next one sends fibers, A, to the muscle of accommodation; and the third sends fibers, O, to the converging muscle (internal rectus, 6). All three bundles of fibers run to the eye in the trunk of the oculo-motor nerve, O; Division of the optic tract at g₁ or at e₁ produces right hemiopia; and in the former case there would be no reaction to light on illuminating the left half of the right retina. Division of the chiasma at e₂ produces temporal hemiopia. Division of the fibers, m, abolishes the reaction of the pupil to light, but leaves the sight and also the associated contraction of the pupil in accommodation and convergence unaffected.
to be perfectly immobile, or its reaction for accommodation and convergence is retained, while the reaction for light has disappeared (Argyll-Robertson pupil). In the latter case the reflex arc running from the optic nerve to the oculo-motor nucleus is interrupted (Fig. 83, m), while the connections of the centers for the pupil, for accommodation, and for convergence, which adjoin each other in the oculo-motor nucleus, are undisturbed.

The reflex immobility of the pupil in tabes dorsalis and in progressive paralysis is generally combined with a marked contraction of the pupil (so-called spinal miosis), but it also is found at times with a normally wide or even with a dilated pupil.

(b) It also happens that the reaction of the pupil to light is present, without there being any perception of light. This occurs when the lesion is situated high up in the optic tract. The fibers of the optic nerve ascend to the cerebral hemispheres and terminate in the cortex of the occipital lobe (B, Fig. 83). But, some time before this takes place, those fibers (m) of the reflex arc, which pass to the center of the pupillary movements, branch off from the optic tract. If, then, the optic tract is interrupted above the place where they are given off (e.g., at e), stimulation of the optic nerve fibers no longer reaches the cerebral cortex and hence excites no perception, and yet the pupillary reflex is still regularly produced. The same thing would happen if the cerebral cortex itself were through some lesion incapacitated for performing its functions. In these cases, however, the lesion of the optic tracts [or of the cortex] would have to be bilateral, as otherwise hemiopia and not blindness would be present (see § 100). For this reason it is clear why such cases, in which blindness exists, even though the examination of the eye gives negative results and the reaction of the pupil to light is preserved, are very rare (occurring, for example, in uremic amaurosis, see § 96), so that under these circumstances our first thought would be of simulation or of hysteria, and we would examine for these conditions first.

In general, the pupil dilates upon the application of sensory stimuli. An exception to this rule is when the stimuli act intensely upon the eye itself. In this case the pupil contracts, and does so in consequence of the hyperæmia of the iris produced by the stimulus (see § 66).

Atropine is such an efficient mydriatic that exceedingly small quantities—the millionth part of a gramme—suffice to dilate the pupil. Sometimes all that we have to do in order to get a dilatation of our own pupils is to instill atropine into another person’s eye, and in so doing moisten our fingers and then through carelessness touch our own eyes with them. Dilatation of the pupil may also be produced by the internal use of atropine or of drugs which contain it. The most frequent occurrence of this sort is when patients who take belladonna internally complain of being dazzled, and of not seeing well near by in their work. We find in such cases moderate dilatation of the pupil and diminution in the power of accommodation.

With many people there exists an intolerance of atropine. This manifests itself in various ways: (a) By the development of toxic symptoms, such as dryness in the throat or nausea, with even small doses. This is especially apt to occur after the long-continued use of atropine. (b) By the production of a catarrh (atropine catarrh), which is usually characterized by the formation of numerous follicles. Here, again, a pretty long-continued use of atropine is re-
quired to produce the effect. (c) In many persons a single drop of atropine is enough to bring on marked redness and swelling of the lids, looking like an attack of erysipelas. In these and similar cases the atropine must either be simply abandoned, or be replaced by another mydriatic, according to circumstances. Among the other mydriatics that we are acquainted with are hyoscyamine (isomer of atropine), scopolamine (formerly known as hyoscine), daboisine (a mixture of hyoscyamine, hyoscine, and of other alkaloids, whose nature is not very precisely known), homatropine (prepared synthetically by Ladenburg from tropine and mandelic acid), ephedrine, pseudo-ephedrine, and gelsemine. Of the alkaloids mentioned, only three are at all in frequent use—namely, daboisine and scopolamine on the one hand, and homatropine on the other. Sulphate of daboisine acts like atropine, scopolamine hydrobromide more intensely, and both are employed instead of it in those cases in which it is not tolerated. Homatropine hydrobromide has a feebleer and, what is most important, a less enduring action than atropine, its effects lasting for scarcely more than about five hours.* It is hence a valuable agent when a transient dilatation of the pupil for purposes of examination of the eye is all that is required.

*Eserine* is the most efficient of the miotics, but is frequently not well borne, because in many cases it excites violent headache, which may lead to vomiting. These symptoms are not to be regarded as due to a general poisoning, but are caused by the marked contraction of the pupil, by which the nerves of the iris are strongly pulled upon. Hence, the symptoms are absent when marked contraction of the pupil fails to take place—e.g., in atrophy of the iris or in solutions of continuity of the sphincter (colobomata, fissures, etc.). In such cases eserine should be preferred to pilocarpine.

Pilocarpine is employed in ophthalmology by two entirely different methods—locally by instillation into the eye, and internally in the shape of a hypodermic injection. In the first way it is much employed for contracting the pupil, and especially for diminishing the intra-ocular pressure in glaucoma.

In subcutaneous injection (of 0.01 to 0.02 gm. per dose) pilocarpine is used to produce *diaphoresis*. If, as happens with many patients, it produces great nausea, diaphoresis may be effected by means of sodium salicylate. Of the latter salt the patient takes 1 to 2 gm. in a cup of hot tea (linden flower or elder tea) or of hot lemonade, and stays, covered up warm, in bed. In this case the specific action of the salicyl is combined with the diaphoresis. All patients, however, do not sweat sufficiently under the administration of sodium salicylate, and in others the latter excites digestive disturbance. In such cases diaphoresis may be produced by a hot bath, upon leaving which the patient is wrapped in a dry woolen blanket and put to bed for some hours. This method produces abundant transpiration with a fair degree of certainty and without special bad consequences, but owing to the circumstances of the case is not always applicable. Diaphoresis may be induced every day, or every other day, according to the patient's strength. During the treatment the patient should take altogether as little liquid as possible, since what we are trying to effect is the absorption of pathological effusions by the removal of a quantity of water from the tissues.

[*With solutions of homatropine of the strength usually employed for testing the refraction (two to three per cent), the effect on the pupil and the accommodation lasts from twenty-four to thirty-six hours.—D.]*
Diaphoretic treatment is contra-indicated in heart disease and marked atheroma of the arteries; and pilocarpine in particular is contra-indicated in pregnancy.

Diaphoresis is much employed in ophthalmology, and mainly (1) in violent acute inflammations, especially scleritis, irido-cyclitis, choroiditis, retinitis, and retrobulbar neuritis; (2) for clearing up opacities of the vitreous; (3) for producing absorption of effused blood; (4) in detachment of the retina; (5) in rheumatic paralyses.

Both the mydriatics and the miotics may be introduced into the eye in the form of an ointment, instead of in solution. Small gelatin disks containing a certain quantity of the alkaloid are also made, which, when introduced into the conjunctival sac, become dissolved and so develop their activity.

What effect do mydriatics and miotics exert upon the intra-ocular pressure? So far, observers have not arrived at concordant results in regard to this matter, but at least this much has been proved by experiments, that in the healthy eye the alkaloids cause only very insignificant variations of tension. The case is altogether different when elevation of tension exists, or there is a tendency to it; then atropine may raise the tension very considerably, while eserine and pilocarpine noticeably diminish it.

Besides cocaine, holocaine and eucaine have recently been employed as anesthetics.

IV. Development of the Eye.

65. The eye develops from a protrusion which forms on both sides of the first cerebral vesicle. This invagination, which is called the primitive ocular vesicle (Fig. 84, a), remains in connection with the cerebral vesicle by means of a pedicle, which, at first broad, afterward more narrow, becomes subsequently the optic nerve (b). Its surface is covered by the ectoderm (E E). Upon this ectoderm, at a point corresponding to the apex of the ocular vesicle, there soon forms a thickening. This is the first rudiment of the lens, and the way in which it is formed is that the ectoderm here grows thicker, becomes folded upon itself, and forms an everted pouch directed toward the ocular vesicle (L, Fig. 85). This pouch deepens, and finally becomes shut in in front so as to form a closed sac, the lens vesicle (L, Fig. 87 B). The lens is accordingly an epithelial structure, being a derivative of the external germinal layer, and in the beginning consists of a hollow vesicle, which afterward becomes filled up by the growth of its cells and is converted into a solid sphere.

In proportion as the ectoderm at the site
of the primitive lens pushes against the ocular vesicle, the surface of the latter is indented. Thus a flask-shaped structure with double walls is formed out of what was once a round sac (Fig. 86). This is called the secondary ocular vesicle, which is hence the primitive ocular vesicle

![Diagram](image)

**Fig. 85.** — Section through the Embryonic Eye at a Period of Development Corresponding to that of a Human Embryo of Twenty-two to Twenty-five Days. Magnified 100 x 1.

The vertically made section passes through the fotal ocular fissure. The ectoderm, E, dips in somewhat at the site of the lens-protocon, L, and besides is thickened, being made up here of several layers of cells. Corresponding to this in-dipping, the ocular vesicle, o, presents an indentation in its cavity, and is consequently converted into the ocular cup, the inner wall, r, of which subsequently becomes the retina, the outer wall, p, becoming the pigment epithelium. The interior of the ocular cup communicates with the first cerebral vesicle, b, through the optic-nerve protocon, o. The projecting portion of the wall of the ocular cup is wanting below, because the fotal ocular cleft is situated here. M, mesoderm, in which, near the lower edge of the rudimentary lens, can be seen the cross section of a capillary vessel.

**Fig. 86.** — Section through the Embryonic Eye at a Period of Development Corresponding to that of a Human Embryo of Twenty-four to Twenty-five Days. Magnified 100 x 1.

The section here depicted does not pass through the fotal ocular cleft, so that the secondary ocular vesicle appears as a complete cup; the more so since the portion of ectoderm, E, representing the rudimentary lens, L, has become invaginated further than in Fig. 85. In the bottom of the depression occupied by the lens there lies some cell detritus, and between the lens and the inner wall of the ocular cup are seen a few cells derived from the mesoderm, M. In one or two spots in the mesoderm are visible the cross sections of capillaries. O, rudimentary optic nerve.

that has been invaginated and thus, so to speak, reduplicated. From the ocular vesicle is subsequently formed the retina, which thus must be looked upon as an isolated portion of the brain itself. The exterior and interior layer of the secondary ocular vesicle become differentiated early. In Fig. 87 B, the inner layer, r, is seen to be already considerably thicker than the external, p, although the latter also consists of several rows of cells. The exterior layer later becomes composed of a single row of cells, takes up pigment (Fig. 88), and ultimately becomes the pigment epithelium, which therefore is rightly counted in with the retina. The interior layer (r) soon gets to surpass the exterior one considerably in thickness, especially at the posterior portion of the eye, where its cells acquire a radial arrangement and develop into the retina proper. The anterior margin of the ocular vesicle, where the
two layers become continuous, corresponds to the margin of the pupil in the fully developed eye (Fig. 89).

At the time when the indenting of the ocular vesicle by the lens takes place, the latter completely fills the cavity of the vesicle, no vitreous as yet existing. This latter is essentially connective tissue, and is derived from the mesoderm, which surrounds the ophthalmic vesicle (Fig. 84, M), and which makes its way into the interior of the latter through an opening—the *fetal ocular cleft*—in its lower

**FIG. 87.—SECONDARY OCULAR VESICLE WITH OCULAR FISSURE OF THE LEFT EYE OF A HUMAN FETUS TWENTY-SEVEN DAYS OLD. Magnified 88 x 1.**

A.—Ocular vesicle seen from in front and a little below. The drawing is taken from a model which Prof. Hochstetter has made from his dissections by the plate-model method. The model represents the rudimentary brain with its processes, but omitting the ectoderm and mesoderm. The eye rises by a thick hollow pedicle from the lateral wall of the first cerebral vesicle, G. At its distal end it presents an indentation, L, which corresponds to the invagination of the lens vesicle into the ocular vesicle. The limits of the lens vesicle are indicated by a dotted curved line. From the lower margin of the indentation runs the fetal ocular cleft. This, at first very narrow, afterward widens somewhat, and extends downward upon the pedicle of the optic vesicle.

B.—Ocular vesicle seen in vertical section. Out of the numerous sections combined to form the drawing, the one selected for representation in B is that passing precisely through the ocular cleft; hence the lower wall of the ocular fissure is wanting here, just as it is in Fig. 86. The walls of the first cerebral vesicle, G, approach each other and form the pedicle of the ocular vesicle (o, subsequently the optic nerve), and further along form the reduplicated wall of the secondary ocular vesicle. The external lamina, p, of this reduplicated wall, which later is transformed into the pigment epithelium, composed of a single layer of cells, is at this time still destitute of pigment and composed of several layers of cells. At the anterior border of the ocular vesicle it is reflected to form the thick inner lamina, r. This latter, from which the retina proper is developed, is already beginning to show a radial arrangement of nuclei. The anterior border of the ocular vesicle is covered by the ectoderm, E, E, upon which is the rudimentary lens, L, which has already become closed so as to form a vesicle, but is not yet completely detached. Above, the mesoderm, M, fills the space between the cerebral vesicle, the ocular vesicle, and ectoderm; but below, the mesoderm, wherever the ocular cleft extends, penetrates into the interior of the ocular cup till it reaches the lens vesicle.

side. Even as early as the time when the ocular vesicle is undergoing invagination so as to form a flask, we notice that at one spot in its lower side the wall of the flask is altogether deficient (Figs. 85 and 87 B). Here, then, a fissurelike defect exists in the wall of the flask, a defect which is continued backward upon the pedicle of the ocular vesicle (the optic nerve) in the form of a furrow (Fig. 87 A). Through this fissure the mesoderm gradually grows from the outside into the interior of the eye, pushing its way in between the retina and the lens,
separating them from each other, and itself becoming transformed into
the vitreous. Subsequently the margins of the fissure unite so that
the eye again forms a closed vesicle. The vitreous is thus cut off from
its connection with the portions of the mesoderm that lie without, and
which produce the uvea and the sclera.

The channel in the optic nerve, which represents the continuation
backward of the ocular cleft (Fig. 87 A), is also filled in by mesoder-
mal tissue. When, then, the margins of this channel afterward become
united in the same way as is the case with the cleft in the eyeball
itself, this tissue, which is derived from the mesoderm, is shut up here,
and retains none of its former connections save those existing anteriorly
with its continuation, the vitreous. This tissue afterward develops
into vessels running along in the eye stalk or optic nerve, which ac-
cordingly incloses them. They constitute the central vessels of the
optic nerve, and are continued forward into the vitreous as the vessels
of the latter (Fig. 88). The vessels in the embryonic eye are, in fact,
disposed as follows: The central artery of the optic nerve continues its
course as the arteria centralis corporis vitrei or arteria hyaloidea (Fig.
88), through the vitreous to the posterior pole of the lens, lying in the
central canal of the vitreous (canalis hyaloideus seu Cloqueti). Fur-
thermore, as it enters the eye, the central artery of the optic nerve
gives off lateral branches which form an arterial network in the periph-
eral portions of the vitreous (vasa hyaloidea propria—not yet present
in the eye that is represented in Fig. 88), and likewise extend forward
to the margin of the lens. The arteria centralis corporis vitrei, upon
arriving at the posterior pole of the lens, divides into branches, ramifi-
cing over the posterior surface of the lens and running forward to the
margin of the latter, where the anterior extremities of the vasa hya-
loidea propria unite with them and form a specially dense network of
vessels surrounding the border of the lens. In front of the equator of
the lens there are other branches that run to this vascular network,
turning round the anterior border of the ocular cup to reach it. These
are derived from that portion of the mesoderm that afterward forms
the uvea. They assist in covering also the anterior capsule of the lens
with a vascular network. Among the vessels derived from the uvea
are found veins as well as arteries, and these uveal veins provide for
the escape of all the blood, since all the other vessels going to the lens
are arteries. The lens in the fetal eye is accordingly surrounded by a
vascular membrane, the tunica vasculosa lentis, which in the region oc-
cupied by the pupil bears the name of pupillary membrane (mem-
brana pupillaris, M, Fig. 89), while its remaining portion is known as
the membrana capsularis (C, Fig. 89). The tunica vasculosa lentis
disappears in the last two months before birth, although scattered rem-
nants of the pupillary membrane are quite frequently found still pres-
ent in newborn infants.
The vessels of the retina develop by growing out from vessels that extend from the optic-nerve entrance out upon the inner surface of the

**Fig. 88.—**Section through an Eye at a Period of Development Corresponding to that of a Human Embryo in the Middle of the Third Month. Magnified 75 × 1.

The envelope of the ocular vesicle is formed of mesoderm, and in its anterior segment consists of the cornea, which contains an abundance of nuclei throughout and a particularly marked accumulation of nuclei separating it from the posterior segment. In this posterior segment no delimitation between sclera and uvea has as yet taken place. The uvea will develop from the inner layers, which are distinguished by containing more nuclei—a characteristic which is continued over into the hindmost, or uveal, layers of the cornea. At a point corresponding to the anterior margin of the ocular vesicle the mesoderm projects into the interior of the eye, and from the free border of the ring-shaped process thus formed rise two delicate vascular membranes which surround the lens, constituting a sort of vascular lenticular capsule. Into the hinder of these two membranes the hyaloid artery enters at a point corresponding to the posterior pole of the lens. This artery rises from the central artery, C, of the optic nerve. Of the two laminae composing the secondary ocular vesicle, the external or pigment epithelium, has been reduced in its posterior part to a single layer of cells, while in its anterior portion there are still several cell layers present which have already taken up pigment. The inner lamina, or retina, consists of numerous layers of cells, the nuclei of which show a partially radial arrangement. In the immediate vicinity of the optic-nerve entrance can be seen the way in which one lamina is reflected into the other. The anterior point of reflection corresponds to what is later the pupillary margin of the iris. The lens is of an almost spherical shape: its anterior-posterior diameter, in fact, is actually somewhat larger than its equatorial. Upon the anterior surface of the lens lies the epithelium, which still consists of several layers of cells; and no distinct lens capsule has yet been differentiated. In the region of what is later the equator of the lens the epithelial cells are growing out into lens fibers, which are still nucleated throughout, and take a sagittal direction. The posterior surface of the lens is destitute of epithelium, and is covered by an extremely delicate capsule. The vitreous cavity is very small. L, L', the eyelids growing out.

The mesoderm that envelopes the ocular vesicle forms through its outer layers the cornea and sclera, and through its inner layers the uvea. The most anterior portions of the latter—i.e., the ciliary body and iris—arise from that layer of the mesoderm which, jutting out like a spur into the interior of the eye, covers the anterior, tapering portion
of the wall of the vesicle (Fig. 89), which itself furnishes the inner lining for both these structures. Over the ciliary body it is only the external lamina of the ocular vesicle that is pigmented, while from the non-pigmented layer of cells constituting the internal lamina the pars ciliaris retinae is formed. Farther forward, over an area corresponding to the posterior surface of the mesodermal rudimentary iris, both laminae of the ocular vesicle are pigmented, and the two unite after under-

The epithelium of the cornea, $H$, is continued over upon the conjunctiva as far as the retrocorneal fold, $U$. Behind the cornea is seen the front wall of the ocular vesicle. The two laminae forming this wall are reflected so as to unite with each other at a point corresponding to the margin of the pupil. The external lamina, $P$, is pigmented throughout the internal lamina being pigmented only in its anterior portion, where it later is converted into the posterior stratum of the retinal pigment layer of the iris. Farther back, where the inner lamina is destitute of pigment, it is afterward converted into the pars ciliaris retinae, which lines the ciliary body, and is composed of a single layer of cells. Still farther back a sudden swelling out of the inner lamina denotes the beginning of the retina proper, $r$, at a spot corresponding to what is afterward the ora serrata. The two laminae of the ocular vesicle, so far as they constitute the coating of the ciliary body, lie closely applied to the mesodermal envelope. Farther forward, at a point corresponding to the rudimentary iris, they separate from the cornea, from which they receive a covering of mesodermal tissue, afterward converted into the stroma of the iris. From the free border of this tissue are given off two membranes—the membrana pupillaris, $M$, which passes to the opposite pupillary border, and the membrana capsularis, $C$, which runs backward, between ciliary body and lens, to the posterior surface of the latter. In the lens, $L$, the circle of nuclei is carried farther forward than in Fig. 88, and the shape of the lens in cross section has already become more elliptical.

going reflection at the border of the pupil. Conjointly they form the retinal pigment layer of the iris (see pages 253, 256).

The lids originate as folds, which keep growing out above and below the eye from the skin surrounding it, until their edges come into contact. They then become united to each other, but only by their epithelial lining; and shortly before birth this union of the two is dissolved again.

The lachrymal gland originates from a budlike intrusion of the epithelium of the conjunctiva into the orbital tissue. The lachrymal canal starts from a channel which exists even at an early period between the superior maxillary and the nasal processes.
CHAPTER V.

DISEASES OF THE IRIS AND OF THE CILIARY BODY.

I. INFLAMMATION.

66. The iris and the ciliary body form a continuous whole, inasmuch as the iris springs from the ciliary body; both, moreover, are supplied by the same blood-vessels. It is hence quite easy to understand that both organs are very frequently diseased at the same time. Unmixed inflammation of the iris (iritis) or of the ciliary body (cyclitis) is rare; in most cases we have to do with a combination of the two (irido-cyclitis). For practical reasons, however, it is advisable first to describe the symptoms of iritis and of cyclitis separately, and then show what sort of clinical picture is produced by their combination.

Symptoms of Iritis.—The symptoms of iritis are partly referable to the hyperemia of the iris, partly to the formation of exudation.

Hyperemia of the iris manifests itself chiefly by the discoloration which causes a blue or gray iris to appear greenish—a change which is particularly striking when comparison is made with the iris of the other eye, in case this is healthy. In dark eyes the discoloration is less pronounced. Sometimes, with the aid of a magnifying glass, we can clearly distinguish the separated dilated blood-vessels under the form of red strie or macula. The other changes found concern the pupil, which is contracted, and does not react as well as usual. The contraction is a necessary result of the dilatation of the iris due to the increased fullness of the vessels; besides, there is a spasm of the sphincter produced by the irritation. For these reasons the reaction of the iris to light is diminished, and atropine also acts less promptly and less thoroughly than usual. The hyperemia of the iris is accompanied by ciliary injection, photophobia, and increase of the lachrymal secretion.

The symptoms of congestion just described may exist by themselves without symptoms of exudation, in which case we do not speak of iritis, but merely of hyperemia iridis. This is observed as a result of the same causes as iritis itself, in case the irritation is not great enough to provoke actual inflammation. Pure hyperemia of the iris is most frequently seen in corneal affections, and particularly in case
of small ulcers or foreign bodies in the cornea. Hyperaemia of the iris, provided it is not the precursor of an iritis, disappears without leaving any lasting traces of its presence.

Exudation takes place partly into the tissue of the iris itself, partly into the surrounding cavities, the anterior and posterior chambers, and is accordingly characterized by varying symptoms:

1. Exudation into the tissue of the iris makes the latter, since it is filled with an abundance of round cells, appear swollen and thicker than usual. The discoloration is still more pronounced than in simple hyperaemia, the distinctness of the markings upon the anterior surface of the iris being obscured. It is easy to understand that the rigid and swollen iris should react but insufficiently to light; the pupil is greatly contracted.

2. Exudation into the anterior chamber manifests itself first by turbidity of the aqueous, in which numerous exudation cells are suspended. The turbidity is best recognized upon the dark background of the pupil, which in this case looks gray instead of being a pure black. Gradually the formed constituents floating in the aqueous sink to the bottom of the chamber, where they produce a hypopyon (Fig. 53). When there is very great hyperaemia, rupture of the blood-vessels in the iris may take place with an extravasation of blood, which also sinks to the bottom of the anterior chamber (hyphaema).

Besides the exudates suspended in the aqueous, a layer of exudate is also found covering the walls of the anterior chamber. Hence the cornea presents a uniform delicate cloudiness. Moreover, the layer of exudate deposited upon the iris (Fig. 90) contributes essentially to the hazy appearance of the iris markings. The layer of exudate extends from the iris upon the anterior capsule of the lens (Fig. 91, c), and covers the latter throughout the area of the pupil, which consequently appears gray.

If this exudate becomes organized, a membrane is produced which
DISEASES OF THE IRIS AND OF THE CILIARY BODY.

closes the pupil and is connected with the pupillary margin of the iris (Figs. 92 and 93, e). This is called a pupillary membrane, and the condition thus brought about is called occlusio pupillae. It is evident that this condition must result in a very considerable impairment of vision.

3. Exudation poured out into the posterior chamber is not accessible to direct observation, but manifests itself only by the adhesions which it causes between the iris and the capsule of the lens (posterior synechiae). These adhesions develop principally at the spot where the iris and the capsule of the lens are in contact—i.e., at the pupillary margin. They form at the time when the iritis is at its height, and when, therefore, the pupil is greatly contracted. When, after the iritis has run its course, the pupil tends to resume its usual mean width, this is only

---

**Fig. 91.—Recent Iritis with Pupillary Membrane.** Magnified 55 x 1.

The iris, i, is greatly thickened by swelling and infiltrated by numerous round cells. Attached to the pupillary margin is an exudate, e, which fills the whole pupil, and which, on the one hand, pushes its way somewhat beneath the pigment layer, p, and, on the other hand, extends up on the anterior surface of the iris. That it is a quite recent exudate is evident from its thickness and from its being composed of a network of fibrin, inclosing scattered pus corpuscles. The number of the latter increases toward the surface of the iris.

**Fig. 92.—Occlusio Pupillae Two Months after a Perforating Injury.** Magnified 55 x 1.

The exudate, e, has become converted into connective tissue, and has, in consequence, shrunken down to a thin pellicle, which, becoming constantly more and more attenuated, can be traced over the entire surface of the iris. The iris itself has become thinned from atrophy, and where it ends at the pupillary margin is tapered off owing to its being pulled upon by the pupillary membrane. The pigment layer, p, is the part most drawn out into the pupil, so that it projects a good bit beyond the sphincter, s, and the stroma of the iris, i. Hence the margin of the pupil in the living eye, when looked at from in front, seems as though encompassed by a broad brown rim, which appears to attach the edge of the pupil to the capsule of the lens.

**Fig. 93.—Occlusio Pupillae Three Months after a Perforating Injury.** Magnified 55 x 1.

The exudate, e, is converted into a thin membrane of connective tissue, which, at the pupillary border of the iris, extends [somewhat over upon, but] mainly beneath the latter, and can be traced as a delicate pellicle for a long distance between the pigment layer, p, and the lens capsule, k. The tension set up by the pupillary membrane upon the border of the atrophic iris, i, has drawn the latter down over the pigment layer, so that the sphincter iris, s, which is solidly united with the pigment layer, has its anterior border turned back in a hook-shaped bend. In the living eye the margin of the pupil appeared encompassed by a gray rim, which merged gradually into the less gray, because more transparent, pupillary membrane.
possible over the area in which the pupillary margin has remained unattached. The portions that are adherent to the capsule of the lens can not retract, but remain as tags of greater or less size, projecting in toward the center of the pupil. The pupil thus acquires an irregular shape which is still more obvious if atropine is instilled; for, as the iris then retracts strongly at its unattached portions, the synechiae stand out in the clearest possible way (a and b, Fig. 94). Atropine is hence a very valuable agent for the diagnosis of posterior synechiae.

In the formation of posterior synechiae, it is not the stroma of the iris, but the layer of retinal pigment (Figs. 91, 92, and 93, p) covering its posterior surface, that becomes adherent to the capsule of the lens. When the iris starts to retract, the pigment layer is held back at the points of adhesion, and is thus exposed to view more extensively than usual. Hence in dilatation of the pupil, especially by atropine, the tags jutting out into the pupil look brown. From the traction exerted by the iris, rupture of the synechiae may result. This sometimes is effected spontaneously by the traction which is constantly being made upon the adhesions during the ceaseless movements of the iris; for the most part, however, rupture is produced artificially by the instillation of atropine. In that case we see, at the spot where the synechia has been set free, a brown spot remaining upon the anterior capsule of the lens. This is the pigment layer whose pathological adhesion to the capsule of the lens is firmer than its physiological connection with the tissue of the iris. If several synechiae have been ruptured, we find remains of them in the shape of a corresponding number of brown dots arranged in a circle upon the anterior capsule of the lens (Fig. 94, between and on either side of a and b). This circle is narrower than the mean diameter of the pupil, because the synechiae were formed at the time when the pupil was contracted by

---

**FIG. 94.—POSTERIOR SYNECHIA AND THE REMAINS OF A PUPILLARY MEMBRANE.**

Magnified 2 x 1.

The pupil has been dilated by the instillation of atropine. The dilatation, however, is unequal, because the upper part of the pupillary margin is fixed by means of adhesions to the anterior capsule of the lens. At a there is a slender synechia which is drawn out into a fine black point; at b, on the other hand, is found a broad and but slightly elevated adhesion, such as frequently occur, especially in syphilitic iritis. Between the synechiae and by the side of them, the capsule of the lens is covered with minute black dots arranged in a semi-circle. They correspond to the situation of the pupillary margin when the pupil was contracted and have been left by the rupture of the adhesions. From the lower part of the iris a filament, c, runs straight upward. This arises from the trabeculae of the circular iris, minor, and passes in the region of the pupil to the anterior capsule of the lens, where it is attached to a small, round, capsular opacity. This filament is not a posterior synechia, but a remnant of the fetal pupillary membrane. It does not prevent the iris from retracting properly under atropine, but is simply stretched and drawn out thin itself.
DISEASES OF THE IRIS AND OF THE CILIARY BODY. 293

iritis. The dots of pigment never disappear, and hence during the whole life give evidence of an iritis that has once existed.

If the adhesion of the iris to the capsule of the lens is not confined to single points, but comprises the whole extent of the pupillary margin, we speak of an annular posterior synchia. No projecting tags are then apparent, because the iris is no longer able to retract at any spot, the pupil remaining unchanged all the time, even after the instillation of atropine. There is generally a brown rim (pigment) or a gray rim (exudate) investing the pupillary margin (Figs. 92 and 93). An annular synchia is seldom formed all at once; it is for the most part the result of a number of recurring attacks of iritis, which little by little produce a more and more extensive adhesion of the iris to the lens. The direct consequence of an annular synchia is the shutting off of the anterior from the posterior chamber—shutting off of the pupil (seclusio pupillae, Fig. 97).

The two sequelae of iritis, shutting off of the pupil (seclusio pupillae) and shutting up of the pupil (occlusio pupillae), very often occur together owing to the fact that the exudate which attaches the pupillary margin to the lens may also extend over the entire pupil. But they may also occur separately and then have very different consequences. Occlusion of the pupil occurring by itself produces very great diminution of sight, without, however, entailing any dangers for the future. Seclusion of the pupil in itself does not affect the sight, if the pupil is free from membrane, but subsequently induces changes (increase of tension) which cause blinding of the eye.

67. Symptoms of Cyclitis.—Exudation from the ciliary body, apart from the infiltration of the tissue itself, takes place into the anterior chamber, the posterior chamber, and the vitreous:

1. The exudate produced by the ciliary body can get into the anterior chamber in two ways: either directly, in case there is implication of the most anterior portion of the ciliary body—i. e., that covered by the ligamentum pectinatum and lying at the confines of the anterior chamber; or indirectly, from the exudate being deposited first in the posterior chamber and then carried along with the aqueous through the pupil into the anterior chamber.

A form of exudate that is found in many, especially the chronic cases of inflammation of the ciliary body, are the precipitates (deposits) upon the posterior surface of the cornea. These are small dots, no bigger than a pin’s head, of a light gray or brownish color, which lie upon the posterior corneal surface (p, Fig. 97). They were formerly thought to be located in the cornea itself; but if by puncturing the cornea the aqueous is allowed to escape, some of the deposits may be seen to disappear too, being swept away with the aqueous—a proof that they simply lie upon the posterior surface of the cornea. If the deposits are large, but few of them are generally present, and they are
then commonly scattered irregularly over the cornea (Fig. 96 A). The smaller the deposits, the more numerous they generally are. They then occupy the lower half of the cornea, in which they cover a surface having the shape of a triangle. The base of the triangle corresponds to the lower corneal margin, and its apex is directed upward toward the center of the cornea. It is frequently observed that the deposits diminish in size from the base toward the apex of the triangle (Fig. 96 B).

The peculiar arrangement of the deposits is readily explained by their mode of origin. The deposits are conglomerations of cells,
agglutinated into masses by means of fibrin (Fig. 99). At first they are suspended in the aqueous, and by the movements of the eye are thrown by virtue of centrifugal force against the posterior surface of the cornea and adhere to it. In so doing they arrange themselves according to weight, the largest being lowest down. The triangular shape of the arrangement is a result of the movements of the eyeball, by which the deposits are cast upon the cornea. We have only to think of what happens when we throw sand through a wire screen or shake grain in a sieve. The little fragments of stone or of grain always form a pointed figure with the apex, which contains the finest particles, running upward, while successively coarser particles follow in order below. The same is the case with the deposits. By their peculiar arrangement the deposits are generally easily distinguishable from macular opacities in the cornea itself (in keratitis punctata, see

**Fig. 96A.—Precipitates.**
Besides minute deposits, there are found also large ones, which are light gray and lardaceous-looking.

**Fig. 96B.—Precipitates.**
These are small and disposed in the form of a triangle.

**Fig. 97.—Secclusion and Occlusion of the Pupil.**
Magnified 5 × 1.

The iris is adherent by its entire pupillary margin to the lens, but elsewhere is pushed forward. The posterior chamber, $h$, is thus made deeper, the anterior chamber, $v$, shallower, especially at the periphery where the root of the iris, $o$, is pressed against the cornea by the increase of tension. In consequence of the traction made upon the iris, its retinal pigment is beginning to separate (at $a$) and to be left upon the capsule of the lens. The pupil is closed by an evaginate membrane, $o$, by the shrinking of which the anterior capsule is thrown into folds. In the lower part of the anterior chamber there is matter, $p$, precipitated upon the posterior surface of the cornea. In consequence of the increase in tension, both the ciliary processes, $c$, and the ciliary muscle, $m$, are atrophic and flattened. The cortex of the lens has undergone catactous disintegration, and at $r$ is separated from the capsule by liquor Morgagni; the nucleus, $b$, of the lens is unaltered.
DISEASES OF THE EYE.

pages 184 and 192). Other distinguishing marks are the clearer outline and frequently the brownish color of the deposits, which, moreover, do not lie at different depths like macula in the cornea itself, but lie all in the same plane—that is, on the posterior surface of the cornea.

That the deposits actually originate in the ciliary body and not in the iris is proved by the cases of pure cyclitis, in which deposits are present in abundance, although all symptoms of inflammation on the part of the iris are wanting.

The exudate from the ciliary body, deposited in the anterior chamber, may also appear there under the form of hypopyon, just as in iritis. But what particularly characterizes cyclitis are the gray or grayish-white exudates that develop in many cases and which appear to grow out in the form of spongy masses from the sinus of the chamber, and that not merely below, but also from other directions.

2. In consonance with the anatomical situation of the ciliary body, the great mass of the exudate is deposited in the posterior cham-

![Fig. 98.—Total Posterior Synechia. Vertical Section through the Eye.](image)

The iris is adherent by its posterior surface to the anterior capsule of the lens and also to the anterior surface of the ciliary body. The posterior chamber consequently is obliterated and the anterior chamber deepened at its periphery, b; at this spot the iris is strongly retracted and at the same time is here the most thinned through atrophy. The exudate connecting the iris with the lens also stretches as a thin membrane, p, across the pupil. The hull of exudate, s, springing from the ciliary body, envelopes the posterior surface of the lens and by its shrinking draws the ciliary processes toward the center. As a result of this, a separation of the ciliary body, c, from its bed has already taken place below, and in the intermediate space are seen the detached lamellas of the suprachoroidal membrane, a. The pigment epithelium, f, of the ciliary processes has undergone proliferation. At the lower part of the cornea there is a zonular opacity, g. The lens is swollen and is opaque throughout; there is no hard, undissolved nucleus (i.e., it is a soft cataract).

This exudation, if extensive, leads to the adhesion of the whole posterior surface of the iris to the anterior capsule of the lens (total posterior synechia, Fig. 98). This adhesion of the surface of the iris is distinguished from the annular synechia, in which only the pupillary border of the iris is attached to the capsule, chiefly from the altered
form of the anterior chamber. The exudate, as it shrinks, draws the iris everywhere up to the anterior surface of the lens, so that the posterior chamber is completely obliterated. The anterior chamber is hence proportionately deeper, above all at the periphery, where the iris is displaced farthest backward (6, Fig. 98).

3. Exudation into the vitreous appears under the form of opacities of the vitreous, which can be made out with the ophthalmoscope if the condition of the refracting media permits. Moreover, they manifest themselves by a corresponding diminution of the vision. In severe cases, an exudation of large size exists in the anterior division of the vitreous (s, Fig. 98), and under favorable circumstances can be seen with lateral illumination as a gray mass behind the lens. The sight is then almost completely abolished, and atrophy of the whole eye is subsequently produced by the shrinking of this mass of exudation.

The tension of the eye, which in iritis is usually unchanged, often shows an alteration in cyclitis. It is not infrequently found to be elevated in the beginning of the cyclitis; indeed, such a great elevation of tension may be developed that blindness is produced by it. In the later stages of cyclitis, on the contrary, diminution of the intra-ocular pressure is more frequent, and is the result of the shrinking of the exudate while in process of organization.

Both iritis and cyclitis are associated with symptoms of inflammatory irritation, consisting of ciliary injection, photophobia, lachrymation, and pain. The pain is not only situated in the eye itself, but radiates to the parts in the vicinity, especially the supra-orbital region. The intensity of the irritative symptoms is regulated by the greater or less acuteness with which the case runs its course. Chronic cases occur in which inflammatory symptoms are wanting altogether, so that the eye is at no time reddened or painful; on the other hand, there are cases of irido-cyclitis in which the pain reaches an absolutely intolerable pitch and is associated with vomiting and a febrile movement. Sometimes the pain sets in with special violence at night (particularly in syphilitic iritis and irido-cyclitis).

Vision is always diminished through turbidity of the aqueous or through exudation in the region of the pupil or in the cavity of the vitreous.

Differential Diagnosis between Iritis and Cyclitis.—We speak of iritis if the symptoms enumerated above are present, and there is no direct proof of the participation of the ciliary body in the inflammation. That the ciliary body is pathologically altered in most cases of apparently simple iritis is put beyond a doubt by anatomical investigations. But, since we can not see the ciliary body directly, slight changes in it escape diagnosis. We hence make the diagnosis of irido-cyclitis only in those cases in which in addition to the symptoms of
iritis positive evidences of involvement of the ciliary body are also present. This is the case—

1. When the inflammatory symptoms reach a considerable pitch, and especially if oedema of the upper lid is associated with them—a thing which does not occur in simple iritis.

2. When the eyeball in the ciliary region is painful to the touch.

3. When deposits are present upon the cornea, or when the marked retraction of the periphery of the iris leads us to infer the existence of a total posterior synechia.

4. When the disturbance of vision is more considerable than one would expect from the opacities within the confines of the anterior chamber. We are then justified in inferring the existence of opacities in the vitreous causing diminution of vision.

5. If the tension is altered—either elevated or lowered.

The participation of the ciliary body in the inflammation of the iris makes the disease a far more serious one and renders the prognosis worse. Not only is the inflammation more violent, but it induces changes which are much more difficult to remedy. The exudates, such as posterior synechiae and pupillary membranes, produced by iritis in the confines of the anterior chamber, may be attacked successfully by operative procedures. But the exudates left by cyclitis in the vitreous, so far as they do not become absorbed spontaneously, are in no way susceptible of removal. Severe cyclitis leads to destruction of the eye (atrophy of the eyeball)—a thing that never occurs with iritis alone.

Simple cyclitis * without iritis occurs but seldom, and that only in the chronic form. The inflammatory symptoms are slight or absent, the iris is of normal appearance, and the pupil is generally somewhat dilated. The chief symptoms are the presence of deposits upon the cornea and opacities in the vitreous.

Inexperienced physicians often fail to recognize slight cases of iritis, considering it as catarrh on account of the injection of the eyeball that coexists with it. The treatment then employed, such as the application of the silver-nitrate solution or the instillation of irritating collyria, commonly aggravates the iritis. We can avoid this mistake if in every case we pay careful attention to any discoloration that there may be in the iris (particularly by comparing it with that of the other eye), and also to the dimensions of the pupil, which in an eye with iritis is contracted. Moreover, a slight turbidity of the aqueous can be recognized, even in the early stages, from the fact that the pupil has not the same pure black look as in the other eye. On the other hand, the mistake is often made of considering an inflammatory glaucoma as an iritis on account of the ciliary injection and the discoloration of the iris—a mistake which is the more disastrous because in glaucoma great harm is done by the instillation of atropine. Here, besides the testing of the tension, our chief means of

* The serous iritis of authors.
DISEASES OF THE IRIS AND OF THE CILIARY BODY. 299

guarding against mistakes is the examination of the pupil, which in iritis is
always more contracted, in glaucoma always more dilated, than usual.

In recent acute iritis and irido-cyclitis examination of the sight discloses
sometimes the existence of a moderate degree of myopia, which did not exist
previous to the inflammation, and which, moreover, gradually disappears again
after the latter has run its course.

A peculiar appearance is furnished by the presence of a pretty large fibrili-
nous exudate in the anterior chamber, such as is at times observed in every sort
of acute iritis. If, for example, much fibrin is deposited in the aqueous, it
may become coagulated into a uniformly gray, translucent mass (hence the
name gelatinous exudate and also lenticular exudate, because with its rounded
edges it sometimes looks like a half-transparent lens that has been dislocated
into the anterior chamber). The exudate speedily shrinks, since the fibrin in
contracting expels the liquid from its meshes (for which reason we also speak
of it as a spongy exudate).* After a few days the exudate has either com-
pletely disappeared or it has been reduced to a thin pellicle lying in the pupil
and often still connected with the pupillary margin by one or two slender
filaments.

It happens sometimes that posterior synechiae develop in the presence of a
dilated, instead of contracted, pupil; as, for example, when they form in an eye
under the influence of atropine. In this case the margin of the pupil becomes
adherent to the capsule of the lens at some peripherally located spot, so that
afterward, when the pupil assumes its mean width, the synechia is marked, not
by a projecting process, but by a re-entrant angle.

For the diagnosis of seclusio pupillae, the employment of atropine is indis-
peensable. It often happens that the pupillary margin is thought to be adher-
ent to the capsule all round, when, nevertheless, upon the employment of atro-
pine it retracts at one small spot. At this unattached portion, which is most
frequently situated above, there is thus formed a curved or horseshoe-shaped
indentation of the pupillary margin. Similarly we may infer the existence of
a small opening if, after the case has been under observation for a long time, no
protrusion of the iris takes place, since in true seclusio pupillae such protrusion
never fails to appear. Of course, we must be able to exclude the existence of
a total posterior synechia, in which case evidently protrusion of the iris could
not take place.

Seclusio pupillae appears to occur frequently without there being any simulta-
neous formation of membrane in the pupil (occlusio pupillae). This, how-
ever, is only apparent, as a rule. Upon careful examination we usually notice
that the gray fringe of exudate which runs along the adherent pupillary margin
projects far into the pupil, becoming gradually thinner as it does so, so that
perhaps only the center of the pupil appears to be quite free. Nay more, if,
after performing an iridectomy, we compare the pupil with the pure black col-
oboma, we can almost always convince ourselves that really no part of the pupil
is quite free from a membrane.

Much more frequently than seclusion without occlusion, the converse,—i. e.,
occlusion without seclusion—occurs. That is, there is a membrane in the pupil,
and sometimes quite a thick one, which is not connected with the pupillary
margin all round, but only at separate spots.

[* Iritis associated with this sort of exudate is often called spongy iritis.—D.]
The presence of a well-marked reaction of the pupil to light is not altogether conclusive evidence against the existence of seclusio pupillae. If the tissue of the iris is not yet atrophic, and a fair perception of light at the same time exists, the anterior layers of the iris, when the illumination is varied, move quite perceptibly over the fixed posterior pigment layer.

The deposits upon the posterior surface of the cornea are easily overlooked, because they are often so excessively minute. We should, therefore, in every case in which there is a suspicion of the existence of an affection of the uveal tract, look for them with a strong magnifying glass. In doing this we may in rare cases discover deposits upon the iris also and, within the pupillary area, upon the anterior capsule of the lens as well. Deposits are found not only in affections of the ciliary body, but sometimes also in those of the most anterior sections of the choroid.

I have quite frequently found minute deposits in eyes in which a soft cataract had been operated upon by diascopy, and was consequently swelling up and undergoing absorption at the time. These so-called lens deposits are, however, essentially different from the genuine deposits; they are not agglomerations of exudation, but small rounded lens fragments, detached from the swelling lens and thrown against the posterior surface of the cornea, to which they then adhere. They are therefore in no sense to be regarded as a sign of inflammation; and this view of their nature is confirmed by the favorable course that such cases pursue. Other evidences of inflammation were wanting, and the subsequent course in these cases furthermore was favorable.

In severe cases of irido-cyclitis (especially of sympathetic origin) blanching of the cilia on the lids of the affected eye is sometimes observed.

Results of Anatomical Examination in Irido-cyclitis.—Exudation into the tissue of the iris is characterized by the presence of numerous round cells in the latter, the quantity of which increases with the intensity of the inflammation. Often they are not distributed everywhere alike, but collect in certain spots, especially along the vessels, so that circumscribed nodules of exudation are produced. This state of things is most strongly marked in syphilitic inflammation, in which the nodules are often so large that they can be seen with the naked eye (papulae iridis). Within the ciliary body the cellular infiltration is much more profuse in the vascular ciliary processes than in the ciliary muscle (Fig. 95).

The free exudate, deposited in the anterior chamber, in part sinks to the bottom of the chamber and forms a hypopyon, in part attaches itself to the walls of the chamber—that is, to the cornea, the iris, and the capsule of the lens. The thin coating of exudate, which covers the posterior surface of the cornea (Fig. 99, b and f), causes the latter in recent cases of iritis to appear slightly and uniformly clouded. It generally disappears with the subsidence of the inflammation; only in rare cases is the layer of exudation so considerable (especially in the lower half of the cornea) that it afterward becomes organized and leads to the production of a lasting opacity of the cornea.

The deposits are conglomerations of round cells many of which contain pigment granules (P, Fig. 99), thus proving their derivation from the uvea. They lie upon the endothelium of Descemet’s membrane, which, at first, is perfectly normal and not till afterward becomes destroyed beneath the aggregations formed by the cells of the deposit (e, Fig. 99). The endothelium, therefore, has no more to do with taking an active part in the formation of the deposit...
DISEASES OF THE IRIS AND OF THE CILIARY BODY. 301

than any other part of the cornea. Accordingly, the terms formerly employed to designate the deposits, such as keratitis punctata, descemetitis, aquacapsulitis, hydromeningitis,* which impute their place of origin to the cornea and more particularly to Descemet’s membrane, are inapplicable. After lasting for some time the cells of the deposit undergo fatty degeneration and are absorbed, while the pigment granules are left behind. Hence many deposits are seen to take on little by little a darker color until at length nothing but minute black specks are left at the place where they were situated.

In many cases of irido-cyclitis, particularly those that are chronic, there are found especially large, gray, lardaceous-looking deposits, which as the disease progresses change their shape, enlarge, and coalesce with neighboring deposits to form biscuit- or trefoil-shaped masses of exudation (Fig. 96 A). Here, in contradistinction to the conglomterations of exudate that simply adhere to the cornea, we have to do with independent foci of inflammation, in which, moreover, bacteria have been demonstrated to exist (Snellen the younger).

The exudate that is poured out upon the anterior surface of the iris displaces the endothelial membrane present there. The fate of this exudate depends upon its character. In the lighter cases, in which it consists chiefly of coagulated fibrin with only a few round cells (Fig. 90), it disappears completely by resorption. In severe cases, the exudate is richer in cells and subsequently becomes organized. We then find the iris atrophic and covered by a thin membrane of connective tissue (Fig. 92). The same is true of the exudation deposited upon the anterior capsule in the pupillary area, and of the exudates in the posterior chamber and in the cavity of the vitreous; in the light cases they are absorbed, in the severe ones they become organized into membranes, as will be more precisely described in treating of the different modes of termination of irido-cyclitis.

An anatomical classification of irido-cyclitis has been based upon the varying anatomical characters of the exudate. In general, the exudates which are very poor in cells and are incapable of undergoing organization are called serous, those which are rich in cells and lead to the formation of adhesions and of

* Descemet’s membrane was called capsula aqua, or, in Greek, hydromeningez, because it was supposed to secrete the aqueous humor.

**Fig. 99.—Deposit upon the Posterior Surface of the Cornea. Magnified 140 x 1.**

The posterior surface of the cornea, C, is covered by Descemet’s membrane, D, and the endothelium, E. The latter, which as a whole is of normal character, is wanting at the spot where the deposit, P, is situated. This deposit forms an accumulation of cells with interspersed pigment granules which are partly free and partly inclosed in the round cells. In the place where no deposits are situated the posterior surface of the cornea is covered by a layer of exudation consisting of two strata, an anterior one, b, composed of round cells, and a posterior one, f, formed of coagulated fibrin.
membranes are called plastic. Purulent exudates are those which contain very numerous cells with a fluid intercellular substance. Nevertheless, to classify irido-cyclitis, upon the basis of differences of this sort, into a serous, a plastic, and a purulent variety, is a procedure that has its difficulties and can not be carried out rigorously. In the first place, several kinds of exudation are often present at the same time; for instance, a purulent exudation constituting a hypopyon, and a plastic exudation forming synechiae and pupillary membranes. In the second place, the macroscopic appearance of an exudation is by no means indicative of its pathological significance. This is particularly the case with regard to pus. Purulent iritis—i.e., iritis with hypopyon—which we so frequently find in connection with a corneal ulcer or with a foreign body implanted in the cornea, often runs a very mild course and one devoid of ill consequences. We know, however, that the pus of such a hypopyon is free from micro-organisms. A very different significance, on the other hand, attaches to a purulent exudate containing cocci, which develops after the entrance of an infecting foreign body and causes destruction of the eye. A term to be altogether rejected is that of serous iritis, which is used by authors for those cases in which deposits are present while synechiae are absent. The deposits, however, are certainly not serous exudates, and, anyway, these cases are to be looked upon as examples of cyclitis, not of iritis. Because of all these reasons, it seems to me better to classify irido-cyclitis, not according to the kind of exudation, but according to the etiology, as will be done later on.

In irido-cyclitis, the microscope generally establishes the fact of a participation of the deep parts of the eye in the inflammation. The chorioid suffers the most injury, so that, when evident signs of its implication are present, we speak of irido-chorioiditis. But the retina too and the optic disk are almost never free from pathological changes in irido-cyclitis, although these changes are often too insignificant to be demonstrable by clinical examination alone.

68. Course and Termination of Iritis and Cyclitis.—With regard to the course, a distinction is made between acute and chronic cases. The former are associated with marked inflammatory symptoms, but run a quicker course. But even in the acute cases—if we except the very lightest ones—it takes four weeks or more before the inflammation entirely subsides. The first signs of a change for the better in the inflammation are the decrease of the injection and of the pain, and especially the prompt action of atropine, while at the acme of the inflammation the pupil is so spasmodically contracted that atropine has little or no effect.

Chronic cases run their course with few or absolutely no symptoms of inflammation. The patients, in the latter case, become aware of the existence of their trouble only at a comparatively late period, and then only from the increasing disturbance of vision. Chronic iritis (irido-cyclitis and irido-chorioiditis) is not infrequently protracted over a course of years.

Inflammations of the iris and of the ciliary body often show a great tendency to relapse. Formerly the chief cause for the recurrence of the inflammation was supposed to lie in the posterior synechiae left by
the first attack of iritis. It was believed that in the constant movement of the pupil traction was continually made upon the iris at the places of adhesion, and thus a new source of inflammatory irritation was provided. But it has been demonstrated that relapses are to be apprehended only in certain cases of posterior synechiae. If, for instance, anybody has had an ulcer of the cornea, and, as a result of it, an iritis from which there are some synechiae remaining, he need never fear having a relapse of his iritis. But another man who has got synechiae as the result of an iritis with a constitutional basis (e.g., a syphilitic or rheumatic iritis) can very readily have recurrences. We hence conclude that what produces the recurrences is not the synechiae, but the continuance of the same constitutional cause that was accountable for the first attack of iritis; and, as a matter of fact, we sometimes see a syphilitic patient suffering from a recurrence of his iritis even when the first attack has got well without leaving any synechiae; or we see a recurrence affecting, not the eye that was previously diseased, but the other eye which has hitherto been sound. The recognition of the fact that one or two synechiae are in themselves of no great significance has had an important practical result: the numerous operative methods designed for the division of synechiae have now been entirely given up.

Recurrences of iritis are often less severe than the primary inflammation; but, as they are pretty frequently repeated, and as they leave a new exudate after them each time, they ultimately lead to serious changes, such as sequela and cicatrix of the pupil.

The outcome of inflammation may be a perfect cure in light cases. The synechiae rupture, leaving behind bits of pigment attached to the anterior capsule, which are unproductive of injury to the eye. The hypopyon disappears by resorption. The deposits generally persist for a long time (for months), until they also are removed by resorption. In many cases they leave at the spot where they were situated a permanent opacity of the cornea in the shape of a gray speck, or the pigment that is contained in them remains permanently as a black dot. Slight opacities of the vitreous may also disappear completely by resorption.

In most cases, however, permanent sequela remain after iritis and cyclitis. These are—

1. **Atrophy of the Iris.**—This rarely develops after a single attack of acute iritis; generally it is the result of repeated recurrences or of chronic inflammation. It is characterized by a bleached-out, gray, or grayish-brown aspect of the iris (resembling gray felt or blotting paper); the delicate markings of the anterior surface have disappeared, and in their stead dilated vessels can often be recognized as reddish blotches upon the iris. The pupillary margin is thinned down, often looking as if it had been frayed out; the reaction of the iris is diminished or altogether lost. The great friability of the atrophic iris often renders the correct performance of iridectomy impossible.
The most frequent and important sequelae are the exudates and adhesions which remain after nearly every case of iritis or irido-cyclitis. Among these are—

2. Posterior Synechiae.—These, if only a few are present, cause no special injury to the eye, and also produce little or no impairment of sight. Very much worse is the annular posterior synechia or *seclusio pupillae*. By this the communication between the anterior and the posterior chamber is obliterated. The aqueous secreted by the ciliary processes can no longer pass through the pupil into the anterior chamber; it hence collects in the posterior chamber, pressing the iris forward (Fig. 97). A hump-shaped protrusion of the iris is thus produced, which finally reaches as far forward as the cornea, while the pupil is represented by a crater-shaped retraction of the pupillary margin which is attached to the lens capsule. In consequence of being so greatly stretched, the iris becomes atrophic. To this condition elevation of the intra-ocular pressure (secondary glaucoma; see § 86) is added. The increased hardness of the eye can be established by palpation; the anterior ciliary veins are dilated; the cornea is dull and less sensitive to touch; the sight fails, with a decrease in the field of vision starting from the nasal side, until at length the perception of light is entirely abolished. Then the formation of scleral ectasie takes place in the blinded eye in the shape of anterior and equatorial staphylomata of the sclera. Seclusio pupillae, accordingly, if it is not remedied in time, infallibly leads to blindness.

3. Pupillary Membrane (*Occlusio Pupillae*).—This causes an interference with vision, the degree of which depends upon the thickness of the membrane.

4. Exudates behind the Iris.—These lie either between the iris and the lens (total posterior synechia) or between the ciliary body and the lens and upon the posterior surface of the latter. In severe cases they form a coherent fibrous mass which completely envelopes the lens, and which, on account of its solidity, is called the cyclitic hull (s, Fig. 98). This has a great tendency to shrink. In total posterior synechia there is evidently no hump-shaped protrusion of the iris—on the contrary, the anterior chamber in the beginning is unusually deep at the periphery owing to the retraction of the iris (b, Fig. 98). Afterward, when atrophy of the eye sets in, the anterior chamber often becomes shallower again, because iris and lens together are pushed forward. The exudates which lie behind the lens in the vitreous (c, Fig. 100) cause by their contraction a diminution of volume of the vitreous; the eyeball then becomes softer. The shrinking of the vitreous (g, Fig. 100) results in detachment of the retina (r) from the chorioid; in part also this detachment is produced by direct traction, since the hull of cyclitic membranes as it shrinks attaches itself to the inner surface of the retina and draws it out of its bed. In consequence of the detachment
of the retina, complete blindness ensues. This state of things, consisting of diminished tension of the eyeball, with decrease in its size and with complete blindness, is known as atrophy of the eyeball. An atrophic eyeball presents the following picture: The whole eye is smaller and of slightly quadrangular shape. This is because the four recti muscles, stretching across the equator of the eyeball, press the sclera in somewhat at this spot, and hence produce flattening at the four sides. With the higher degrees of atrophy quite deep furrows are formed, so that the eyeball has the form of a bale of goods grooved by the cord with which it is tied. The cornea is smaller, often opaque and flattened; at

![Diagram of the eye showing atrophy](image)

**Fig. 100.—Atrophy of the Eyeball. (In part after Well-Book.)**

The eye is smaller and of irregular shape, chiefly from the wrinkling of the sclera, S, behind the points of attachment of the ocular muscles, the rectus internus, ri, and the rectus externus, re. The cornea, C, is diminished in size, flattened, and wrinkled especially on its posterior surface. At its inner border it bears the depressed cicatrix, N, which was produced by the injury. The anterior chamber is shallow; the iris, i, is thickened and forms an unbroken surface, because the pupil is closed by exudate. Behind the iris lies the shrunken lens, l, and behind this is the great hull of cyclical membrane, c, the shrinking of which is the cause of the atrophy of the eyeball. By reason of this shrinking, the ciliary processes, the pigment layer of which has markedly proliferated, are drawn in toward the center, and, together with the adjacent choroid, ch, are detached from the sclera; between the two structures are seen the disjoined lamellae of the suprachoroid membrane, a. The retina, r, is detached and folded in the form of a funnel, which incloses the remains of the degenerated vitreous. The subretinal space, s, is filled with a fluid rich in albumin. The optic nerve, o, is thinner than usual and atrophic.

other times, again, transparent, but abnormally protuberant or thrown into folds. The atrophic iris is either pressed quite against the posterior surface of the cornea, or an anterior chamber still exists. In the latter case, we find the chamber bounded behind by a firm diaphragm in which the iris, which is imbedded in the hull of exudate, is often but indistinctly recognizable. If the pupil is still distinguishable, a membrane and the opaque lens are found in it. The eye is softer, and is often sensitive to the touch. In the later stages
markedly hard spots (ossified exudates) may sometimes be felt through the sclera.

Atrophy develops gradually through a course of months and years. The inflammation and the pain, which have been present for a long time, disappear when the atrophy is complete. But even then secondary attacks of pain occur, especially if the eye harbors a foreign body, or if ossification of the exudate takes place.

5. Opacity of the Lens.—This develops in consequence of the disturbed nutrition of the lens. If merely a few synechiae are present, it is rarely observed; on the other hand, it is observed with proportionately great regularity when seclusio pupillæ has existed for a long time, and particularly so in those severe cases in which the lens is completely swathed in ciclicid exudates. Such a cataract is denoted by the name of cataracta complicata or cataracta accreta (= grown fast to—i. e., grown fast to the iris). In atrophic eyeballs the lens is always opaque, and generally shrunked as well.

Atrophy of the iris can progress to such an extent that the iris becomes transparent, or even so far that complete gaps form in it. A spontaneous formation of gaps in the iris is also sometimes observed when occlusio pupillæ makes its appearance in early childhood. The iris is then fixed not only at its ciliary, but also at its pupillary margin, being attached to the membrane that exists in the pupil. As the eye grows, the iris is stretched constantly more and more between its two points of attachment until atrophy and finally dehiscence in spots occur. In this way, through the formation of an opening, the sight may be spontaneously restored. In like fashion, the formation of gaps (or even the separation of the iris from the ciliary margin) may take place in cases in which the iris was attached to a cicatrix of the cornea in childhood.

The dilated vessels that are frequently visible in the atrophic iris, have quite often a course that does not in any way correspond with the regular radial arrangement of the normal vessels of the iris. As a matter of fact, vessels of this sort, as anatomical examination shows, do not lie in the iris itself, but in a thin exudative membrane deposited upon it.

The protrusion of the iris does not take place uniformly, but with the formation of projecting prominences separated by constrictions. The latter represent the more resistant, radial fibers which do not give way before the pressure of the aqueous until afterward. The condition in which the iris is found protruding in a greater part of its circumference, while one sector of it remains in its normal situation, is generally referable to the fact that at this spot an adhesion of the surface of the iris to the lens exists, preventing its protrusion. It would, therefore, be a mistake to select just this spot for performing an iridectomy, although on other accounts it would seem to be very suitable for such a purpose, because of the greater depth of the chamber there. If the iris has been pushed forward as far as the cornea, it may become agglutinated to the latter in places, and in this way anterior synechiae may be produced without there having ever been a perforation of the cornea (see page 398).
DISEASES OF THE IRIS AND OF THE CILIARY BODY.

It should be remembered that seclusio and occlusio pupillae develop not only as the result of irido-cyclitis but also in connection with the larger perforating ulcers of the cornea if the margin of the pupil is incarcerated through its whole extent in the cicatrix. In this case, too, the usual consequences of seclusio pupillae make their appearance; the iris is pressed forward as far as the cornea, and an increase in tension takes place, as is so often observed in staphylooma of the cornea (see page 215, and Figs. 60 to 62).

The cornea in irido-cyclitis suffers harm through the deeply situated infiltrates that may form in it (see page 196), through the deposition of exudate (deposits, hypopyon), or through the contact of the iris, which when lasting a long time produces corneal opacity (page 196). In the stage of atrophy of the eyeball a zonular opacity frequently forms upon the cornea. Keratitis bullosa and vesiculosa also often make their appearance in eyes which are blinded by irido-cyclitis.

The anatomical changes, after an irido-cyclitis has run its course, manifest themselves under microscopical examination as follows: The atrophic iris is thinner than usual (Figs. 92 and 93), and consists chiefly of fibrillary connective tissue. The cells of the stroma with their slender branches have been transformed in great part into coarse, round cells filled with pigment ($k$, Fig. 90); masses of pigment also are often found lying free in the tissue. The vessels are in part obliterated and the nerve trunks also have disappeared. The sphincter pupillae and the retinal pigments are the parts which remain the longest. The ciliary body, including both the ciliary muscle and the ciliary processes (Fig. 97, c), is also found to be atrophic in old cases. The two innermost layers of the ciliary processes, however, often undergo proliferation, the two strata of cells of the pars ciliaris retina growing extensively into the cyclitic exudates ($f$, Fig. 98). By the traction which the masses of exudate, as they shrink, exert upon the ciliary processes, the latter are greatly elongated, so that their apices project well toward their posterior pole of the lens; when the traction is still greater, the entire ciliary body is pulled out of its bed ($e$, Fig. 98). This traction upon the ciliary body is one of the causes of the continuous or constantly recurring sense of pain, which exists in so many cases of old irido-cyclitis and sets the patients almost frantic.

The exudates themselves consist in the recent state of round cells and of an interstitial substance of fibrin, in varying proportions (Figs. 91 and 95). The exudates afterward become organized into false membranes, the round cells turning into spindle cells and ultimately into connective-tissue fibers. In this way a very tough tissue is produced, which grates when cut through, and which rightly bears the name of "hull." On account of this tenacity it puts great difficulties in the way of any attempts at the formation of a pupil. In cases in which the irido-cyclitis has been produced by a foreign body, the latter not infrequently is found imbedded in this hull of exudate.

Besides the above-mentioned tissue constituents there are often found in the exudation membranes new-formed blood-vessels which have developed from the neighboring organs, the iris and ciliary body, and also pigment which takes its origin from the retinal pigment layer of the iris and of the ciliary body. The lens which is inclosed in the exudation membranes forms with these a rigid diaphragm separating the anterior from the posterior section of the eyeball. The lens becomes opaque and disintegrates, its capsule ruptures, and masses of exu-
date penetrate into the capsular sac. If these masses afterward become ossified, the picture—to be sure only an apparent one—of ossification of the lens may be developed.

By the subsequent shrinking of the exudation membranes, softening and diminution in size of the eyeball—atrophy of the eyeball—are produced. The anterior chamber becomes shallower, because the hull of exudate which is stretched between the ciliary processes and arches over the posterior surface of the lens (s, Fig. 98) tends, as it shortens, to become approximated to a straight line (e, Fig. 100), and in so doing presses the lens forward. In other cases, on the contrary, the cicatricial traction may manifest itself more in a backward direction, so that the anterior chamber becomes deeper. Through the same force of traction cicatrices in the cornea or in the sclera, with which the exudates are connected, are drawn steadily inward (N, Fig. 100); hence the depression of cicatrices after injuries or operations is always to be considered a bad omen for the course of the disease. The traction of the exudates furthermore causes detachment of the retina (r, Fig. 100) and often, too, detachment of the ciliary processes and even of the choroid (ch). The cavity of the vitreous is reduced to a small space (g) lying directly behind the lens. The space beneath the retina (s) and also beneath the choroid, wherever detached (o), is filled with an albuminous transudation and often also contains extravasated blood. In advanced atrophy, the sclera (S) is thrown into folds and is thickened in spots. The holl of exudate not infrequently becomes ossified later on, and, if the choroid has participated in the process of exudation, the whole back part of the eye may be occupied by a shell of bone. The optic nerve is atrophied to a thin strand of connective tissue.

69. Etiology of Iritis and Cyclitis.—Iritis and cyclitis are either primary or secondary in their development. In the first case, the original site of the disease is in the iris or ciliary body itself; in the second case, there is an affection of neighboring parts, which has been transmitted to the iris and the ciliary body (e.g., in iritis with ulcer of the cornes). Primary inflammation of the iris and ciliary body as well as of the uvea in general is caused in the majority of cases by a deep-seated general disease, such as syphilis, scrofula, etc. In these cases both eyes are frequently affected, although not always at the same time. Furthermore, many of those cases which at present we still regard as purely local inflammations and which, because their origin is unknown to us, we designate as idiopathic, certainly belong in the same category. In proportion as our knowledge of the interdependence of morbid phenomena increases, the group of so-called idiopathic inflammations of the uvea will melt away. Among the primary iritides the only ones of undoubtedly local nature are traumatic and sympathetic iritis.

We may, therefore, classify the inflammations of the iris and the ciliary body with reference to their etiology according to the subjoined scheme. In it, as well as in the subsequent description, the expression "iritis" stands for the sake of brevity as the representative of iritis, cyclitis, irido-cyclitis, and irido-chorioiditis—that is, for
all inflammations which predominantly affect the anterior part of
the uvea:

\[
\begin{align*}
\text{A. Primary} & \quad \text{Iritis.} \\
\text{Iritis in consequence of general diseases.} & \\
1. & \text{Iritis syphilitica.} \\
2. & \text{Iritis scrofulosa.} \\
3. & \text{Iritis tuberculosa.} \\
4. & \text{Iritis rheumatica.} \\
5. & \text{Iritis gonorrhoeica.} \\
6. & \text{Iritis in acute infectious diseases.} \\
7. & \text{Iritis diabetica.} \\
\text{Iritis as a local affection.} & \\
8. & \text{Iritis idiopathica.} \\
9. & \text{Iritis traumatica.} \\
10. & \text{Iritis sympathica.}
\end{align*}
\]

\text{B. Secondary iritis.}

**A. Primary Iritis.**—1. *Syphilitic Iritis.*—Syphilis is by far the most
frequent cause of iritis, at least half of all the cases of iritis being referrable to it. For the most part, it is *acquired* syphilis that we have to
do with. The diagnosis of syphilitic iritis is very easy in those cases
in which the characteristic formation of nodules (iritis papulosa) is
present. The nodules have a yellowish-red color, are of the size of a
pin’s head or larger, and are situated either on the ciliary or the pupil-
lary margin of the iris, but never between the two zones in the mid-
breadth of the iris. The nodules afterward disappear again by resorp-
tion without any purulent disintegration taking place. At the places
where they were situated, broad and solid synechiae are left, and there
is often also a circumscribed atrophy of the tissue of the iris. At
other times no distinct nodules are found, these being so small that
they lie concealed within the tissue of the iris, but several portions of
the pupillary margin are greatly swollen, or at all events there are un-
usually broad synechiae which do not yield to atropine (b, Fig. 94).
Finally, in many cases iritis syphilitica presents absolutely no charac-
teristic marks; the diagnosis, then, can be certainly established only
by demonstrating the presence of syphilis, or the favorable action of
antisyphilitic remedies.

Syphilitic iritis generally belongs to the secondary stage of syphilis.
It makes its appearance soon after the first eruptions upon the skin
(macular or papular), for which reason we may compare the nodules in
the iris to papules or to condylomata, and may designate the iritis as
iritis papulosa. In most cases, the time when the iritis first appears is
comprised within the first year after the infection has taken place.
More rarely the iritis breaks out in the later stages of syphilis, and is
then not associated with the formation of nodules. In exceptional
cases, however, nodules do show themselves in this late form also and
they must then be regarded as gummata (iritis gummosa). These are
observed both in the iris and the ciliary body. They may attain great
dimensions, break through the envelopes of the eyeball, and bring about the destruction of the eye.

Iritis also occurs in consequence of hereditary syphilis, although by no means as frequently as after acquired syphilis. Parenchymatous keratitis, dependent upon hereditary syphilis, is often associated with iritis. Sometimes it happens that the iritis becomes, comparatively speaking, very conspicuous, while the keratitis attains but a slight degree of prominence; and there may even be iritis without any keratitis whatever. Iritis due to hereditary syphilis is a disease of childhood and youth, while iritis resulting from acquired syphilis is usually observed only in adults.

Syphilitic iritis is very frequently associated with diseases of the posterior section of the eye—that is, with inflammation of the choroidal, retina, and optic nerve. Moreover, it displays a great tendency to recur.

2. *Iritis Scrofulosa.*—This bears in its appearance and course much resemblance to iritis due to hereditary syphilis. It is often marked by the presence of large, lardaceous-looking deposits or by lardaceous exudation masses, which appear to grow out from the sinus of the chamber. It is found in the ages of childhood and youth in scrofulous persons, and also in those suffering simply from anemia.

3. *Iritis Tuberculosa.*—See § 74, Tumors of the Iris.

4. *Iritis Rheumatica.*—This occurs in persons who have been ill with articular rheumatism (arthritis rheumatica). It is the form of iritis which has the greatest tendency to recur. From the fact that in many cases the recurrences of the iritis coincide with recurrences of the rheumatism (attacks of swelling in the individual joints), the connection between the two is demonstrated. Iritis also occurs as a result of arthritis deformans and arthritis urica [gout].

5. *Iritis Gonorrhoeica* develops in those cases in which gonorrhoea has given rise to a general infection. This latter runs a course similar to that of acute articular rheumatism, but generally of a milder character. As a general thing the knee-joint is the part first attacked by inflammation, which may afterward migrate to the other joints also; associated cardiac complications may even occur. This disease is known as gonorrhoeal gout [rheumatism]. Iritis does not generally set in until after the outbreak of the arthritis, but there are cases in which gonorrhoea causes iritis alone and no disease of the joints. Just as the gonorrhoeal lesion of the joints is very similar to articular rheumatism, so also gonorrhoeal iritis resembles in external features the rheumatic variety. Like the latter, too, it very frequently exhibits recurrences, with which is frequently associated a renewal of the discharge from the urethra or a return of swelling in the affected joints.

6. *Iritis in Acute Infectious Diseases.*—Among these relapsing fever is the chief one in which iritis forms a frequent complica-
tion. It is usually protracted in its course, but ultimately goes on to a cure.

7. *Iritis Diabetica.*—This is often associated with copious exudation into the anterior chamber (hypopyon), but on the whole runs a favorable course (Leber).

70. 8. *Iritis Idiopathica.*—Under this head are comprised those cases in which the inflammation apparently develops spontaneously in the iris, without its being possible to make out the presence of any local cause (traumatism, etc.), or of a constitutional affection. In many cases a cold is charged with being the cause of the iritis, but in most instances the cause remains obscure.

*Acute* idiopathic iritis is generally unilateral; it attacks none but adults, and those, in most cases, of the male sex. The iris of the adult man is much more prone to be inflamed than is the iris of the child. In childhood, therefore, iritis is rare anyway, and if no local cause (traumatism, sympathetic ophthalmia, transmission from the neighboring parts) is present, the existence of a constitutional affection can always be demonstrated.

*Chronic* idiopathic iritis generally appears under the form of *iridochorioiditis chronica* (also called iritis serosa). This disease is associated with but very slight symptoms of inflammation; injection of the eyes and pain are present only now and then, and with but little intensity when they do exist; frequently the only complaint that the patients make at all is in regard to the steadily increasing disturbance of vision. Examination of the eye shows posterior synechiae which slowly increase in numbers until finally seclusion of the pupil is developed. Almost always too there is a thin membrane present in the pupil. The iris becomes atrophic early, and afterward, when seclusion of the pupil develops, bulges forward in hump-shaped projections. Hypopyon is never present, but instead there are very frequently fine deposits which point to the implication of the posterior division of the uvea, an implication which also manifests itself through the presence of opacities in the vitreous. As these opacities continually increase in number and the vitreous at the same time becomes liquefied, the latter is finally converted into an opaque, mucilaginous liquid. Subsequently opacity of the lens is added, and atrophy of the chorioid and retina sets in. The interference with vision in these eyes is, therefore, always much greater than the optical obstructions in the anterior division of the eye (deposits, membrane in the pupil) would lead one to expect. This disease, which really affects all parts of the eyeball, in most cases terminates in complete blindness. In consequence of the seclusio pupillae, increase of tension sets in with blindness from excavation of the optic nerve; afterward the eyeball may become ectatic. In other cases, blindness takes place under the guise of a gradually developing atrophy of the eyeball; the eye becomes softer, and the retina undergoes total detachment.
Chronic irido-chorioiditis almost always attacks both eyes. It runs so slow a course that years pass before complete blindness makes its appearance. It is a disease of advanced age, and is one of the most frequent causes of incurable blindness in elderly people, especially females. The cause of it appears in many cases to be seated in bad nutritive conditions, or in early cessation of the menses; but very often cases occur in patients who, apart from their eye trouble, are perfectly healthy.

9. *Iritis Traumatica.*—The causes of this are traumatisms of all kinds, especially if perforation of the eyeball has taken place, and particularly if a foreign body is left in the eye. Operations upon the eyeball are, of course, to be counted among the traumatisms, and of these the most dangerous with regard to iritis and irido-cyclitis are the cataract operations.

The irido-cyclitis that follows traumatism is frequently of the most serious nature, so that atrophy of the eyeball speedily ensues; in contradistinction to iritis due to constitutional causes, which even when the inflammation is a violent one often gets well without leaving any ill results worth mentioning.

With traumatic iritis and irido-cyclitis in the wider sense of an inflammation produced by direct injury to the iris, may be also enumerated the following cases: Iritis frequently develops when, after opening the lens capsule, the masses of lens matter as they swell come into direct contact with the iris and press against it. The same is the case when there is pressure made upon the iris by a lens which is obliquely placed or completely dislocated. Finally, there might also be adduced in this connection those cases in which an intra-ocular tumor or cysticercus in a certain stage of development sets up a violent irido-cyclitis.

The exciting cause of traumatic iritis in cases of the sort just adduced may be of three kinds: either mechanical injury (traction, contusion), chemical irritation (e.g., in the case of contact with swollen portions of the lens or in the case of a cysticercus); or, finally, infection from without. The last-named cause is without doubt the most frequent.

10. *Irido-Cyclitis Sympathica.*—When inflammation is carried from an eye suffering with irido-cyclitis over to the other side and attacks the other eye, which has hitherto been sound, the disease produced in the latter is designated by the name of sympathetic inflammation. This inflammation, like the primary one, makes its appearance under the guise of an irido-cyclitis.

In the majority of cases iritis sympathica is preceded by a prodromal stage. The patient notices that during the performance of fine work he is suddenly obliged to stop because the work grows indistinct before his eyes; after a period of rest he is again able to continue his
work. This interference with vision is caused by a weakness of the accommodation. Another symptom of the prodromal stage is sensitiveness to light, and also, though not often, violent pain, the latter appearing sometimes at a portion of the eye which is symmetrically placed with reference to the diseased portion of the other eye. These symptoms are also denoted by the name *sympathetic irritation*. They may, in rare cases, exist for years without inflammation supervening. In most cases, however, after a short time (from a few days to a few weeks) they pass over into manifest inflammation.

*Sympathetic inflammation* declares itself by a development of the objective symptoms of irido-cyclitis together with an increase of the subjective troubles just described. Ciliary injection, contraction of the pupil, discoloration of the iris, and the formation of synechiae are found. Deposits are almost never wanting, while, on the other hand, hypopyon is not ordinarily present. Minute opacities show themselves in the vitreous. These changes sometimes set in insidiously, sometimes suddenly with great photophobia and considerable pain. In the severest cases the very first attack of inflammation induces annular or total posterior synechia and occlusion of the pupil; in less severe cases it is possible, with suitable treatment, to effect after many weeks the disappearance of the inflammation, although a number of synechiae are left behind. Unfortunately, after an interval during which the cure is apparently complete, a recurrence of the inflammation almost invariably sets in. By reason of this and subsequent recurrences the eye at length is destroyed, either as the result of increase of tension (due to seclusio pupillae) or of a slowly developing atrophy. Those cases are to be classed as the exceptions which run so favorable a course that the patient gets off with a single attack of inflammation, and retains an eye with serviceable sight.

The *affectio of the first eye*, which gives rise to a sympathetic inflammation, is always an irido-cyclitis, and is, in fact, almost without exception, an irido-cyclitis traumatica, due to a penetrating injury of the eyeball. All cases of traumatic irido-cyclitis are not equally fraught with peril for the second eye. To be regarded as particularly dangerous are: (1) Those cases in which the injury has affected the region of the ciliary body, and particularly if it has left the iris or the ciliary body incarcerated in the cicatrix. For this reason, unsuccessful cases of *Graefe’s cataract operation* have become a frequent cause of sympathetic inflammation. (2) Cases in which a foreign body has been left in the eye.

The *point of time* at which the greatest danger of the transmission of the inflammation exists is when the irido-cyclitis in the injured eye is at its height. Hence sympathetic inflammation makes its appearance, in most cases, from four to eight weeks after the injury to the first eye has taken place. Later than this, when the traumatic irido-
cyclitis has subsided and the eye has fallen a prey to atrophy, there
need be generally no fear of sympathetic inflammation so long as the
atrophic eye is free from inflammation and is not painful, either sponta-
neously or to the touch. The danger for the other eye does not de-
develop again until the atrophic eye becomes once more the seat of in-
flammation and of pain—an event which, to be sure, very frequently
occurs. The most usual cause for these recurring attacks of inflam-
ination is the persistent presence of a foreign body in the eye or the
continual shrinking and ultimate ossification of the exudates. In this
way an eye which has been carried for many years in an atrophic state
without causing trouble may suddenly become the cause of a sympa-
thetic inflammation. While, therefore, the minimum period for the
development of sympathetic irido-cyclitis is a few weeks (the shortest
period hitherto observed is ten days), no limits can be set to the
maximum period; sympathetic inflammation has been seen to appear
forty years and more after the injury of the first eye. An eye which
has been destroyed in consequence of injury is therefore a constant
source of danger to the other eye.

It is not necessary for the injured eye to be perfectly blind for it
to excite sympathetic inflammation. Cases occur in which the eye has
retained a remnant of visual power after the injury and the irido-
cyclitis following it, and has yet given rise to sympathetic inflam-
ination. In that case it may happen that the sympathetically affected eye
undergoes complete destruction, while the injured eye is still used to
see with.

It is important to know—especially with reference to prognosis and
treatment—under what conditions sympathetic inflammation of the
second eye occurs only as a rare exception, and hence is generally not
to be apprehended. These conditions are: 1. Phthisis cornæ, due to
suppuration of the cornæ (after uleæ serpens, acute blennorrhöæ, etc.).
2. Staphyloma of the cornæ. 3. Glaucoma absolutum. 4. Phthisis
bulbi after panophthalmitis.

In what way does the transfer of the inflammation from one eye to
the other take place? This question has not, up to this time, been
definitely decided. Mackenzie was the first to direct the attention of
physicians to the dependence of the inflammation of the second eye
upon that of the first. His idea of the method of transmission was
that the inflammation made its way backward along the optic nerve
and passed over along the chiasm to the optic nerve of the other side,
in which it traveled forward. This explanation was afterward given
up, because the inflammation in the second eye made its appearance,
not under the guise of an optic neuritis, but under that of an irido-
cyclitis. Then, as the uvea is supplied by the ciliary nerves, the path
of transmission was regarded as being in them. The ciliary nerves of
the two sides are not connected with each other directly, as is the case
DISEASES OF THE IRIS AND OF THE CILIARY BODY. 315

with the optic nerves through the chiasm; hence the transmission of inflammation in this case can not be conceived of as a direct one. On the contrary, we should have to assume that the ciliary nerves starting from the inflamed eye cause an irritation in the nerve center, which is transmitted like a reflex to the ciliary nerves of the other side and to their termination in the eye.

Recently many (Leber, Deutschmann, and others) have returned to the old theory of transmission through the optic nerves. It is supposed that, through the injury of one eye, micro-organisms are introduced into it and multiply there. Then they are supposed to travel along the optic nerve and its sheaths from one eye across to the other and to excite inflammation in the latter.

B. Secondary Iritis and Irido-cyclitis are the varieties which develop through transfer of inflammation from neighboring organs to the iris and ciliary body. Inflammations of the cornea are the lesions that most frequently give rise to it; above all the suppurative keratides, which are very frequently indeed complicated with iritis. Of the varieties of scleritis, it is the deep form that leads to inflammation of the iris and the ciliary body. More rarely, inflammations pass forward from the posterior section of the eye to the iris. Among conditions that produce this result are chorioiditis and detachment of the retina. The iritides thus produced are usually of a lighter sort or are chronic, insidious forms. Finally, we may also put down under the head of secondary iritis the cases of iritis traumatica, already adduced, in which the iris is not affected by direct traumatism, as the iritis due to swelling of the lens, to luxation of the lens, to intra-ocular tumors, to cysticercus, etc.

That form of syphilitic iritis which is associated with the formation of nodules is generally designated under the name of iritis gummosa. For it was believed that these nodular exudates were necessarily to be regarded as gummy tumors on account of their sharply circumscribed form, which gives them sometimes just the appearance of small neoplasms. If we agreed to this view we should have to ascribe this form of syphilitic iritis to the tertiary stage of syphilis, which is especially characterized by circumscribed exudates (gummata) resembling new formations. But in so doing we should be contradicting clinical observation, which shows that iritis with the formation of nodules always occurs simultaneously with the symptoms of the secondary stage. We are hence justified in comparing the nodules in the iris with the papules and condylomata, which also belong to this stage, and in designating the iritis as iritis papulosa or condylomatosa (Widder). Another argument against the gummy nature of the nodules in the iris is the fact that they never break down nor suppurate, as gummata are apt to do. True gummata of the iris do exist, however, but they are extremely rare.

Apart from its physical signs, the diagnosis of syphilitic iritis will, of course, always have to be based upon the history of the case or upon the demonstration of the presence of syphilis in the patient. But should we call every iritis which has no characteristic marks syphilitic, simply because it occurs in a syphilitic person?
In the majority of cases, to be sure, we should be right, since syphilis is, in fact, the most frequent cause of iritis; but still a syphilitic patient may also acquire an iritis from any other cause whatever. In the absence of other guides, the indication in every case is to initiate an antisyphilitic treatment. This will, in most cases, cause rapid improvement in iritis of syphilitic origin, while other kinds of cases are but little or not at all affected; from which fact a conclusion may be drawn as to the source of the iritis. The effect of antisyphilitic treatment is also of assistance in making the diagnosis in those cases in which we are in doubt as to whether a nodule in the iris is of syphilitic nature or must be regarded as a new formation (sarcoma, tubercle).

Syphilitic iritis also occurs during intra-uterine life; the children then come into the world with the remains of it, such as synechiae, occlusion of the pupil, atrophy of the iris, and even atrophy of the eyeball.

As regards the acute infectious diseases, we find that, if we except relapsing fever, they only exceptionally give rise to iritis. We are acquainted with cases of iritis following pneumonia, intermittent fever, typhus, influenza, variola, erysipelas, and mumps. The iritis, moreover, that sometimes accompanies herpes zoster, should probably be put down under this head.

Of the chronic diseases, I have seen general alopecia sometimes accompanied by a severe irido-cyclitis; and by many chronic nephritis is added as a cause of iritis.

Some few cases are known in which a transient iritis with hypopyon recurred regularly with the menses in women.

Sympathetic Ophthalmia.—The symptoms of sympathetic irritation which generally precede the inflammation are regarded by many as something entirely different from the latter and having no connection with it. They are thought to be produced through the ciliary nerves, while the transmission of the inflammation takes place through the optic nerves. It is adduced as a proof of the essential difference between irritation and inflammation that the former is certainly and permanently relieved by the enucleation of the eye originally affected, while this operation is powerless against sympathetic inflammation. On the other hand, it can not be denied that in very many cases the symptoms of inflammation develop so gradually and imperceptibly from the symptoms of sympathetic irritation that no sharp line of distinction can be drawn between the two, and the inflammation appears only in the light of an exacerbation of the prodromal irritation.

It is supposed that the sympathetic disease may appear not only in the form of an irido-cyclitis, but also under some other guise. The greatest variety of affections have been described as sympathetic. Among non-inflammatory affections, cases of paralysis of accommodation, of amblyopia, and of blepharospasm have been adduced as sympathetic; among inflammatory affections in the posterior division of the eye, neuritis, choroiditis, and glaucoma; and in the anterior division of the eye, conjunctivitis and keratitis. Most of these accounts are to be received with great caution, because observers have often gone too far in taking the sympathetic nature of the disease for granted. The fact that an eye has been destroyed through traumatism by no means justifies us in regarding, without further proof, any subsequent disease of the other eye as sympathetic. This assumption should be made only when such disease presents the characteristic clinical picture of sympathetic irido-cyclitis, or when, upon the enucleation of the eye first diseased, the symptoms in the second eye recede too
DISEASES OF THE IRIS AND OF THE CILIARY BODY. 317

rapidly to be accounted for upon any other assumption than that the affection of the second eye was caused by that of the first. The converse of this inference does not hold good—that is, the fact that enucleation of the first eye does not influence the course of the disease in the second is no argument against the sympathetic nature of the lesion; indeed, it is a well-established fact that when sympathetic ophthalmia has once broken out, enucleation of the eye first diseased is not generally able to cause much change.

Can an irido-cyclitis of non-traumatic origin be transmitted to the other eye? We very often see irido-cyclitis develop spontaneously first in one eye, then in the other. But we must not therefore at once conclude that the inflammation has been transmitted from one eye to the other. It may be that we have to do with a deeply seared common cause, generally of constitutional nature, which makes itself felt first upon one eye, then upon the other. Nevertheless, undoubted cases of sympathetic inflammation have also been observed without any antecedent traumatic or perforation of the envelopes of the eyeball. In this category belong the instances of irido-cyclitis in the case of intra-ocular tumor and of cysticercus, in which the presence of a constitutional disorder as the common cause of the disease of the two eyes can be excluded. The fact deserves mention that the wearing of an artificial eye over an atrophic stump may be the source of sympathetic inflammation through the irritation which it causes.

In regard to the method of transmission of the inflammation, the view that it takes place by the way of the optic nerves is chiefly based upon the experiments of Deutschmann. In animals, it is not possible to excite by the injury of one eye a sympathetic inflammation in the other. Hence Deutschmann has employed another method, namely, the injection of cultivations of fungi (especially of the staphylococcus) either into the eye itself or beneath the sheath of the optic nerve. He found that the fungi traveled from the site of injection along the optic nerves to the brain. At the base of the brain they made their way to the optic nerve of the other side, and passed down upon this to the eye. Here they set up an inflammation in the form of a neuritis of the intra-ocular end of the optic nerve, and with this, in one or two cases, an irido-cyclitis was associated. The animals, moreover, speedily perished from general infection. Whether the inflammation which Deutschmann produced in this way in the second eye is identical with sympathetic inflammation in man has not yet, to be sure, been certainly established.

71. Treatment of Iritis and Cyclitis.—In every case of iritis and cyclitis it is incumbent upon us, on the one hand, to combat the local symptoms (indicatio morbi); on the other, to remove the causes lying at their foundation (indicatio causalis). In those cases in which an etiological factor is not demonstrable, we are thrown back solely upon the symptomatic treatment.

1. Symptomatic Treatment.—Atropine is the most important remedy in iritis. Inasmuch as it contracts the iris, it necessarily diminishes the amount of blood in its vessels, and hence directly counteracts the hyperemia. By paralyzing the sphincter it fulfills a second indication which requires every inflamed organ to be put at rest; the constant to-and-fro movement of the pupil is completely arrested by atropine. The third action of atropine consists in its rupturing poste-
rior synechiae which already exist and in its counteracting the formation of new ones, through the dilatation of the pupil that it causes. The amount of atropine administered must be carefully regulated according to the degree of the intensity of the iritis. During the period of increase of the inflammation it is usually difficult to obtain dilatation of the pupil, because a spasm of the sphincter exists. In this case we must instill atropine several times a day. If this does no good, we place a little granule of atropine in substance in the conjunctival sac (for the necessary precautions, see page 276); this is better than to instill the solution too frequently, by doing which irritation of the conjunctiva (atropine catarrh) is readily set up. By the simultaneous employment of cocaine the action of atropine may be heightened. When the inflammation is abating, atropine is simply instilled often enough to keep the pupil constantly dilated.

In cases of irido-cyclitis in which the implication of the ciliary body is particularly prominent, and also in cases of pure cyclitis, atropine is not always well borne. For, in proportion as the iris becomes narrower and its vessels can contain less blood, the vessels of the ciliary body are overdistended, since they have to take up the blood which finds no lodgment in the iris. Hence, in such cases, we must be very cautious in the use of atropine, and must suspend it whenever we find that the pain increases after the instillation. So also, when an irido-cyclitis is combined with elevation of tension, the atropine must be stopped and, if necessary, replaced by a miotic.

In violent inflammation, moist warm compresses or poultices afford the best results, especially for the relief of pain. Cold compresses are generally not well borne, and are suitable only for recent cases of traumatic iritis.

Extensive bloodletting by means of six to ten leeches applied to the temple, or by a Heurteloup's artificial leech, may very greatly diminish the inflammatory symptoms in the bad cases; not infrequently directly after such a bloodletting the pupil for the first time yields to the action of atropine, while before this it had remained in a constant state of spasmodic contraction.

If the disease lasts a long time, the bloodletting may, if needed, be repeated once or twice. The production of profuse diaphoresis often has a very marked effect (see page 282).

Operative procedures are for the most part indicated more in the sequelae of iritis than in recent inflammation. Paracentesis is performed whenever increase of tension sets in. It may also be tried in cases of long-persisting inflammation which will not yield to other remedies. As the aqueous escapes, the deposits upon the cornea are often washed out with it, and their escape can be facilitated by rubbing the cornea; but the removal of such deposits is not the proper aim of paracentesis. Iridectomy is performed, but not while inflammation
still exists, save in very exceptional cases, since if we perform it then we should have reason to fear that the newly made pupil would be closed up again owing to a continuance of the exudative process. Hence we undertake an iridectomy only when we are compelled to do so because of the development of an increase of tension, or as a last resort in order to put an end to the iritis when all other means have failed. Otherwise we wait until the inflammation has run its course, and then perform an iridectomy, either because a seclusio or occlusio pupillae has developed, or as a prophylactic in relapsing iritis to prevent further recurrences. And, in fact, in many cases, an end is put once and for all to recurrences by this means; in other cases, however, this successful result fails to occur.

A proper regulation of the mode of life in iritis requires first of all protection from the light, not only on account of the photophobia that is generally present, but also because light excites the pupil to contraction. For the latter reason the protection against light must be applied to both eyes, since with the contraction of the pupil of one eye that of the other also tends to contract. The patient is kept in a moderately darkened room, or is made to wear dark goggles. This is better than a bandage, which it would be difficult to apply to both eyes. The patient should be moderate in eating and drinking, and should abstain from spirituous beverages. Care should also be taken to secure bodily rest by the avoidance of all physical exertion and in severe cases by rest in bed. The healthy eye should not be strained by reading, etc. Moreover, it is important to see that the bowels move easily.

2. Causal Indication.—With reference to the etiological factor, syphilitic iritis gives the most favorable prognosis, since it generally yields promptly to an energetic antisyphilitic treatment. The chief requisite here is promptness of action, since we are dealing with a lesion in which a few days may produce great and lasting damage (by the formation of a seclusio or occlusio pupillae). Hence mercury is selected, and this is best applied in the form of inunction (two to four grammes of blue ointment being rubbed in daily). The inunctions should be kept up until the diseased eye has become perfectly free from discoloration and then potassium iodide (up to three grammes a day) may be used for after-treatment. In iritis due to hereditary syphilis less value is attributed to specific antisyphilitic treatment and more to the strengthening of the organism as a whole.

In iritis rheumatica sodium salicylate is administered, although not always with success. This drug also does good service sometimes in other forms of iritis, especially in iritis gonorrhoeica and iritis diabetica. In the former variety I have also employed with advantage the oil of gaultheria (fifteen drops per diem in capsules).

In iritis traumatica the causal factor is first of all to be eliminated, in case it still continues to act. Foreign bodies are to be removed
from the iris; portions of the iris that are much contused or are incarcerated are to be excised. A swelling or luxated lens causing iritis must be removed from the eye. To combat the inflammation of the iris, iced compresses are employed in very recent cases in addition to the atropine. With respect to those traumatic iritides which follow an operation, the most important part belongs to prophylaxis. This consists in strict antisepsis during the operation; and, as a matter of fact, since this has been employed such iritides have become much more rare.

Irido-cyclitis sympathica, too, is very amenable to prophylaxis, while, when it has once broken out, it often resists treatment of every kind.

(a) The only certain prophylactic treatment of sympathetic inflammation consists in enucleation of the eye which might give rise to it. This is the case in every eye which has been made blind by injury and is painful either spontaneously or upon pressure. Most emphatically requiring enucleation are eyes which are suspected to contain a foreign body. A contra-indication to enucleation is present only when the injured eye has still a serviceable residue of visual power or can get it through an operation. When this is not the case, enucleation should, under the circumstances above given, be performed without delay. At the utmost, if the patient can not bring himself to consent to enucleation, it is permissible to wait until the prodromal symptoms of sympathetic disease make their appearance, since even in this stage enucleation is generally still able to prevent the outbreak of sympathetic inflammation.

(b) When sympathetic ophthalmia has already broken out, the effect of enucleation is uncertain. In the lighter cases it appears to exert a favorable influence upon the course of the sympathetic inflammation; in severe cases, on the contrary, it is often of no use and appears sometimes actually to increase the inflammation in the second eye. Hence we wait for an abatement of the inflammatory symptoms in the second eye before performing enucleation.

The sympathetic inflammation itself is to be treated according to general rules. Of especial importance is the protection of the diseased eye from light, which is most perfectly attained by long-continued bandaging of the eye. Operations generally give a bad result, since they start up the inflammation again, so that the newly formed pupil is once more closed by fresh exudate. Hence operations are done only when it is absolutely requisite (e. g., when done on account of increase of tension); other operations, such as, for example, an iridectomy for optical purposes, are put off as long as possible, preferably for years.

72. Treatment of the Sequelae of Iritis and Irido-cyclitis.—Isolated posterior synechiae can often be ruptured by the employment of atropine either by itself or in combination with cocaine. Here it is not so much a long-continued action as a very energetic one that is required,
and this is most certainly secured by placing atropine in substance in
the conjunctival sac. Still more effectual sometimes is the alternate
use of miotics and mydriatics, the pupil being first contracted with
eserine, then suddenly and energetically dilated with atropine. But
since the iris is made hyperemic by eserine, attempts of this sort must
not be made until some time has elapsed since the occurrence of the
iritis.

It is frequently possible to rupture synechiae which are narrow and
drawn out into a point, while broad synechiae (such as occur after syph-
ilitic or sympathetic iritis) withstand all attempts.

Annular posterior synechia (seclusio pupillae) demands iridectomy
unconditionally, the object being to restore the communication between
the anterior and posterior chambers. The operation is often difficult
on account of the shallowness of the anterior chamber (due to protru-
sion of the iris), and also on account of the atrophy of the iris. Accord-
ingly, we must often be contented if we succeed in making a small
opening in the iris. Then the anterior chamber, in consequence of the
restoration of the connection between the two chambers, regains its
normal depth, so that a second iridectomy can be performed later under
more favorable conditions.

Total posterior synechia also requires iridectomy, which, however,
is often void of result, as on account of the adhesion between the sur-
faces of the iris and the lens it is frequently impossible to excise a suf-
fi ciently large piece of the iris, or because the pigment layer of the iris,
which has grown fast to the lens, remains attached to it. In such cases
the only thing to be done is to remove the lens, too, even if it is still
transparent (Wenzel’s extraction, see remarks to § 162). If the lens
is atrophied or absent, iridotomy is indicated (see § 157).

Too much caution can not be inculcated in regard to the senseless way in
which atropine is often used, as it still is, unfortunately, by many general prac-
titioners, who instill atropine in every kind of eye disease. In many cases—e. g.,
in conjunctival catarrh—atropine is not only superfluous, but also causes the
patient annoyance through the disturbance of vision produced by its use; and
in eyes which have a tendency to glaucoma, atropine may actually inflict
great injury by determining an attack of acute glaucoma. Accordingly, atro-
pine should be employed only upon quite specific indications, and should be
applied no oftener than is requisite to obtain just the result desired. Even
in iritis atropine is useless if the pupillary margin is adherent to the capsule
throughout, and the iris hence can not retract.

If, after an iritis, one or two posterior synechiae are left which do not rupture
when atropine is energetically employed, we abstain from further treatment of
them, since they generally do no harm to the eye. At the present time we have
entirely desisted from releasing them by operation (corelysis). When, however,
an annular synechia is present, we ought not to let it stay, but must make an
iridectomy. This is also indicated in those cases in which the seclusion of the
pupil is not yet indeed complete, but is on the verge of being so, only one small
spot of the pupillary margin being free from it. For if we are dealing with a chronic irido-cyclitis, we can count upon this small spot soon becoming adherent too, and in that case it is better not to wait for the seclusion of the pupil to become complete. It is particularly advisable not to do so if the patient lives far from the physician, and might perhaps let the proper moment for the iridectomy pass by.

In seclusio pupillae the iridectomy is made upward. If occlusio pupillae is simultaneously present, we should, according to the rules laid down for an optical iridectomy in § 155, make the coloboma to the inner side and below. But even in these cases it is advisable to make the iridectomy upward, because it is so often the case that the lens afterward becomes opaque, and in that case a coloboma situated above will be of advantage in performing the extraction that will be required later.

In cases of chronic irido-chorioiditis, iridectomy is not only mechanically efficient by removing the seclusio pupillae, but it also has a favorable influence upon the entire nutritive condition of the eye. The vitreous clears up and the sight improves, often for quite a long time. If an operation is done upon eyes which have already begun to grow softer—that is, are on the road to atrophy—the eye in favorable cases fills out again, and the ocular tension becomes normal.

Although enucleation generally affords a sure safeguard against sympathetic inflammation of the other eye, nevertheless a series of cases is known in which, in spite of enucleation, inflammation has subsequently made its appearance. In every instance it has set in within a short time—from a few days to a few weeks—after the enucleation.* It must probably, therefore, be assumed that at the time of the enucleation the transfer of the inflammation had already begun. Yet even in this case enucleation does not fail to exert a favorable effect, since in the great majority of these cases the sympathetic inflammation runs an unusually favorable course, probably because the removal of the first eye prevents the constant emission from it of new impulses for the production of inflammation.

II. INJURIES OF THE IRIS.

73. In addition to what has been already said in the previous sections in regard to injuries of the iris and their consequences, the following special varieties of injury, which are most frequently observed after contusions of the eye, may be mentioned:

1. Under the name of iridodialysis † is designated the separation of the iris from the ciliary body. We then find on one side, at the ciliary margin of the iris, a black crescent which is formed by the separation of the iris from its insertion at this spot, so that we can look into the interior of the eye (Fig. 101). When the separation is pretty considerable, the edge of the lens (I), the ciliary processes (P), and the fibers of the zonula of Zinn stretching between the two can be recognized by means of lateral illumination in the gap that is thus produced. The pupil has lost its round form, owing to the fact that the pupillary margin toward the side of the iridodialysis has shortened so as to oc-

* The longest interval so far observed has been thirty-two days (Snellen).
† From ἴρις, iris, and διάλύω, separation.
cupy the chord of an arc instead of the arc itself (Fig. 101, a). The cause of this inward displacement of the pupillary margin lies in the fact that the separated portion of the iris is stretched in a straight line by the contraction of the sphincter. By this means it is withdrawn from its insertion in the ciliary body, and its reunion with the latter is rendered forever impossible. The sight is but little affected by iridodialysis; the only thing being that, if the eye is not accurately focused,

![Diagram](image)

**Fig. 101.—Iridodialysis.** Magnified 2 x 1.

The pupillary margin at a is sloped off so as to form a straight line. At a point corresponding to this spot the iris is separated from the ciliary body and is narrower and somewhat wrinkled. In the interval between the iris and the margin of the cornea are seen the margin of the lens, l, and the apices of the ciliary processes, p; the fine radiating striation between the two structures represents the zonula of Zinn. k, circulus iridis minor; c, contraction furrows.

Monocular diplopia may occur, due to the formation upon the retina of an image both by means of the pupil and also of the peripheral opening (see § 122).

Iridodialysis may occur to any extent, from a scarcely perceptible tear to complete separation of the iris from its ciliary attachment. In the latter case the iris rolls up into a ball which sinks to the bottom of the chamber, and which by the next day has shrunken into an inconspicuous little gray mass. If a rupture of the sclera has been at the same time produced by the injury, the separated iris may be expelled altogether from the eye through the scleral wound. In both cases complete absence of the iris, *irideremia* * or *aniridia † *traumatica* is produced. Again, a partial expulsion of the iris from the eye may occur, especially in cases of rupture of the sclera, and thus a traumatic coloboma is produced.

2. Radiating lacerations which start from the pupil. These may extend to the ciliary margin, so that the pupil at the site of laceration appears to be prolonged in the form of a pointed Gothic arch to the margin of the cornea (Fig. 102). Such large lacerations, however, are rare. Generally the pupillary margin is simply torn into a little, and the laceration gapes so slightly that it is discovered only upon careful examination, especially with the aid of a magnifying glass. Such small lacerations are the most frequent cause of the dilatation of the pupil (*mydriasis traumatica*) which develops after contusions and which is founded upon the weakening or paralysis of the sphincter due to the

---

* From ἴός and ἵππον, loneliness, want. † From α privative, and ἴός.
laceration. In such cases, for the most part, a moderate dilatation of
the pupil remains permanently.

The ciliary muscle, too, may be paralyzed by a contusion, as mani-
ifested by the diminution of the amplitude of accommodation (recess-
on of the near point).

3. Inversion of the iris (Ammon) consists in its being turned back
so as to lie upon the surface of the ciliary body (o, Fig. 103). The iris
then can not be seen occupying its normal place, and looks as though

it were absent altogether. Total inversion of the iris is very rare. Par-
tial dislocation backward is more frequently observed. At the spot
where this takes place the iris seems to be wanting, and a coloboma ap-
ppears to exist just as if an iridectomy had been made.

Injuries of the iris are generally accompanied by haemorrhage into
the anterior chamber. The blood which arises from the ruptured ves-
sels of the iris sinks rapidly to the bottom of the chamber (hyphaema).
and for the most part disappears by resorption within a few days,
Then, and not before, are we able to investigate completely the damage
which the iris has suffered from the injury, and we find perhaps an
iridodialysis or radiating lacerations. But often even then it is impos-
sible to discover a solution of continuity in the iris, and so the source
of the bleeding remains unknown. In many of these cases the blood
is supposed to come from a laceration of Schlemm's canal (Czermak).

Treatment.—If the symptoms of irritation after the injury are par-
ticularly marked, we apply iced compresses for several days; in other
cases it is sufficient to keep the injured eye under a bandage and to
insure quiet on the part of the patient, secured, if need be, by rest in
bed. If an iridodialysis can be made out, we instill atropine in order
that the contracting sphincter shall not draw the iris farther away
from its point of attachment; in radiating lacerations, however, atro-
pine is contra-indicated, because it would make the lacerations gape
still more. For the reabsorption of large quantities of blood diapho-
retic treatment may be initiated. Iritis is generally not to be appre-
hended after injuries of the iris not connected with perforation of
the membranes of the eye. With reference to the treatment of perforating injuries, see page 237.

Iridodialysis is sometimes unintentionally produced in operations upon the iris. If the eye that is being operated upon makes a violent movement at the moment when the operator grasps the iris with the forceps, the iris may by this means be separated from its insertion to a varying extent, or even be torn out of the eye. Great haemorrhage into the anterior chamber is always the result of this unfortunate accident. In iridectomy done on account of occlusion of the pupil, iridodialysis may also be produced in the following way: The operator grasps the iris and tries to draw it out of the wound. To effect this it ought first to be set free from the pupillary membrane. But if the connection between the latter and the iris is very firm, the two do not separate, but the membrane and also the iris of the opposite side follow the course of the traction, so that an iridodialysis is produced upon the side opposite the iridectomy. Hence, in such cases, the iris ought always to be first released from the pupillary membrane by lateral movements of the forceps before it is drawn out of the wound.

Iridodialysis is produced in a non-traumatic way, when neoplasms of the ciliary body grow out into the anterior chamber so as gradually to push the iris away from its insertion (Fig. 103).

To account for the above-described traumatic changes in the iris, two factors have to be taken into consideration. The first is based upon the flattening which the cornea undergoes through the contusion, and through which its circumference and consequently also the circle of insertion of the iris become larger. If this enlargement takes place suddenly, the iris can not adapt itself to it and tears away in places from its insertion, so that iridodialysis is produced (Ahh). The second factor consists in the circumstance that the blow which strikes the cornea and flattens it out also pushes the aqueous backward. The latter tends to recede and pushes against the posterior wall of the anterior chamber, which in the area of the pupil is formed by the lens and in the rest of its extent by the iris. The latter, when pushed backward, finds a support in the lens except at the marginal portion of the iris which lies outside of the margin of the lens. Here the posterior chamber is deepest and is bounded posteriorly only by the feeble zonula of Zinn. The periphery of the iris, therefore, forms the most yielding spot in the posterior wall of the anterior chamber and the one which is the first to give way before the pressure of the receding aqueous. Hence the iris is bulged out backward by the aqueous so as to form a sac extending as far as the zonula, or, if this ruptures, extending even into the vitreous (Fig. 103, u). The direct consequences of this dislocation of the iris are threefold: marked stretching of the fibers of the iris in a radial direction; dilatation of the pupil;
and, finally, in extreme cases, rupture of the zonula. The first factor may result in iridodialysis. The sudden dilatation of the pupil may cause radiating lacerations of the sphincter and consequently paralysis of the latter. The rupture of the zonula causes tremulousness, subluxation, or luxation of the lens. If the backward dislocation of the iris and the consequent recession of its pupillary margin are of a sufficiently high degree to cause the latter to slip back over the edge of the lens, the lens being no longer held in place by the zonula will slip through the pupil into the anterior chamber, where it is then held captive by the iris, which again contracts behind it (luxation of the lens into the anterior chamber). Finally, the saclike inversion of the periphery of the iris may be so extensive that the iris at one spot is completely reversed and points straight backward (Fig. 103, o), and inversion of the iris is produced ( Förster).

III. TUMORS OF THE IRIS AND CILIARY BODY.

74. 1. **Cysts of the Iris.**—Serous cysts occur in the iris. These are filled with a clear substance, and develop within the stroma of the iris, so that their walls are formed by rarefied iris tissue (Fig. 104). They develop after penetrating wounds of the eyeball, and grow very gradually until they reach the posterior surface of the cornea and fill at least half the anterior chamber. Then elevation of tension is superadded, and as a result of this the eye becomes entirely blind. To prevent this, the cysts must be removed in season by an operation. This is performed by making an incision at the margin of the cornea at a point corresponding to the cyst; the forceps is entered through the incision, and the cyst, together with the adjoining iris, is drawn out and excised. Often complete removal is not possible, in which case a recurrence of the cyst is to be expected, which will require a new operation.

2. **Tuberculosis of the Iris.**—This is observed in children and young people. It occurs as disseminated (miliary) tuberculosis and as conglomerated (solitary) tubercle—i.e., either in the form of small nodules or as a larger growth resembling a neoplasm. In the milder cases re-
covery may take place, while in the severe cases the eye is usually lost. The treatment, in addition to combating the local symptoms of iritis, consists mainly in the application of the rules for diet and method of living laid down for tuberculosis in general. But if the disease, nevertheless, keeps on and blindness is impending, it is better to remove the eye by enucleation, that it may not be the source of a further extension of the tuberculosis.

3. Sarcomata.—Sarcomata of the iris are for the most part pigmented, brown tumors, which grow at first very slowly, afterward more rapidly, until they fill the anterior chamber, and finally, breaking through the envelopes of the eye, extend their growth exteriorly. Sarcomata of the ciliary body remain for a long time unnoticed, since they are covered by the iris. It is not until they have reached a certain size that they are seen as a brown projection behind the iris, or are recognized by their growing forward into the anterior chamber (Fig. 108). This latter process takes place at the angle of the chamber, where they push the iris away from its insertion (iridodialysis). With regard to their subsequent course, sarcomata of the iris and the ciliary body resemble those which spring from the choroid, to which reference must be made for particulars ($§$ 79). The only treatment for these tumors is radical removal, which should be performed as early as pos-
sible. Very small sarcomata of the iris can be removed by iridectomy, those parts of the iris which bear the nodules of the tumor being excised. Larger sarcomata of the iris, and also sarcomata of the ciliary body, require enucleation of the eye without delay.

Serous cysts of the iris are a very rare affection. They appear under the form of grayish, transparent vesicles whose anterior wall usually shows still one or two fibers of rarefled iris tissue, and also some pigment. When they have reached the posterior surface of the cornea, they flatten out upon it, while the cornea at the point of apposition becomes cloudy, as it always does when in contact with foreign tissue. Meanwhile the cyst has already reached the pupillary margin of the iris and pushes it forward into the pupil, so that the latter becomes kidney-shaped, and afterward even reduced to a slit. Moreover, the cyst keeps extending backward, too, and thus causes tilting and afterward opacity of the lens. All these factors give rise to disturbance of vision, which, to be sure, is frequently unnoticed by the patient, whose vision has already been impaired by the injury.

Cases of congenital serous cysts have been observed; also cases of pearl cysts, which are distinguished from the serous cysts by their contents, which are pulvaceous, tallowy, or like gruel; in rare cases hairs are also found in them.

Microscopical examination of the cysts has proved that their walls are formed by iris tissue, while their inner surface is lined with epithelium, which secretes the serous contents of the cyst; in the pearl cysts the pulvaceous contents are formed by the epithelial cells which are constantly thrown off from the inner surface and undergo fatty disintegration.

How do cysts arise? Normally there are nowhere in the iris either glands or epithelium, so that the ordinary retention cysts are not to be thought of. The epithelium must have been brought into the iris from outside. How this is possible is clear to us when we remember that cysts of the iris develop, as a rule, only after penetrating injuries. By means of the body which causes the injury some epithelium from the outside is torn off of the edges of the lids, the conjunctiva, or the cornea, or perhaps a cilium is torn off with its follicle, and these are carried into the eye. There they are deposited in the anterior chamber, or perhaps in the tissue of the iris itself. The epithelium implanted here finds favorable conditions for its nutrition and keeps on growing; afterward a cavity forms inside of it through the accumulation of fluid, which pushes the epithelial cells apart and converts them into a coating for the newly formed cyst cavity (Buhl, Rothmund). In support of this explanation, experimental implantations of fragments of living tissue have been made in the chamber of the eye (Doremaul, Goldzieher). The introduced tissue becomes vascularized by the vessels of the iris and grows to a certain size, after which it undergoes regression. According to Stölting, the epithelium may also get from the surface to the deeper parts by a process of gradual ingrowth taking place during cicatrisation. Thus it passes from the surface of the cornea into a corneal wound and lines the sides of the latter. From this it grows out upon the iris, provided that this is connected with the wound in the cornea, and here it develops into a cyst. In this way it has been attempted to explain the cysts that develop after an operation for cataract (Guaita).

An attempt has been made to account for the development of the cysts in still another way. De Wecker assumes that a part of the posterior chamber is
converted into a sac by means of posterior synechiae, and afterward through accumulation of liquid dilates into a cyst cavity. According to Alt, anterior synechiae also can produce acculations of this sort.

Eversbusch thinks that at first, in consequence of the injury, a separation of the innermost lamellae of the ligamentum pectinatum takes place (e. g., through the extravasation of blood beneath it). This separation keeps going on in a centripetal direction, so that the tissue of the iris is gradually forced apart as far as the pupillary margin into two layers, the walls of the cyst.

With regard to the rare cases of spontaneous—i. e., non-traumatic—cysts of the iris, Schmidt-Rimpler conjectures that they arise from a closure of the orifice of a crypt with subsequent accumulation of fluid in its cavity.

Not to be confounded with the cysts of the iris are the cysticercus cecicola, which in very rare cases are observed in the anterior chamber. They either lie free in the latter or are attached to the anterior surface of the iris.

Tuberculosis of the iris is a disease that is well understood, as it can be produced experimentally. Cohnheim has shown that tuberculous iritis can be set up by the introduction of tuberculous masses into the anterior chamber. The tuberculous masses (fragments of excised tuberculous lymphatic glands, granulations removed from tuberculous joints by scraping, etc.) must be aseptic—i. e., free from pyrogenic germs—as otherwise, upon their inoculation into the anterior chamber, violent irido-cyclitis or even panophthalmitis would be produced, by which the eye would be destroyed. It is safer, therefore, to employ pure cultures of tubercle bacilli for the inoculation. The fragments of tuberculous tissue, when introduced into the anterior chamber, excite there a slight irritation, which, after a few days, disappears again. As the fragments of tissue themselves are also rapidly absorbed, the eye soon appears perfectly normal again, as if the inoculation had remained without result. But in twenty or thirty days afterward the eye begins to become red once more, and the phenomena of iritis make their appearance; at the same time small gray nodules are noticed in the iris. These increase in number, become confluent, afterward fill the anterior chamber, and finally break their way through to the outside. Generally the animal experimented on afterward perishes from the development of general tuberculosis due to infection starting from the eye. Tuberculous iritis is employed as a means of demonstrating the tubercular nature of excised pieces of tissue, for which purpose we introduce the latter into the anterior chamber of a rabbit's eye, and see if tuberculous nodules develop after the usual period in the iris.

The tuberculosis of the iris experimentally introduced in animals is a primary tuberculosis, but tuberculosis of the iris in man is secondary—i. e., has originated from another tuberculous focus somewhere in the body. As a matter of fact, in most cases of tuberculosis of the iris, signs of tuberculous disease in other organs (lungs, lymphatic glands, bones, etc.) are also found. In many cases, to be sure, the patients appear to have been perfectly healthy up to the time of their eye trouble, but even in these cases a primary tuberculous focus (e. g., caseous bronchial glands), although not demonstrable clinically, must be assumed to exist—in fact, the iris, on account of its protected situation, can not be infected by tubercle bacilli from without, as, for example, the conjunctiva can, in which primary tuberculosis is not so very rare. Direct tuberculous infection of the iris would be conceivable only as a consequence of penetrating wounds—a thing which I have actually observed in one instance.
Disseminated tuberculosis of the iris occurs in man under the form of an iritis, which presents as its characteristic feature the small, gray, transparent nodules spoken of. These keep changing slowly, some disappearing while others are being newly formed. Recovery may finally take place; more frequently, however, atrophy of the eyeball occurs in consequence of plastic irido-cyclitis. The disease often appears in both eyes. Removal of individual nodules through excision by an iridectomy of the portion of iris bearing them is generally useless, since new nodules form afterward in other parts of the iris.

The solitary tubercle, as so far observed, is confined to one eye. It either develops simultaneously with the mililiary nodules, or, more frequently, without them and without any symptoms of iritis, so that it resembles a neoplasm; indeed, it was at first described as such by Von Graefe, under the name of granuloma, because Virchow, who made the anatomical examination of the tumor, described it as granulation tissue. Its subsequent course seems at first to confirm the diagnosis of a neoplasm, since the tumor keeps growing constantly, and finally, perforating the cornea near its margin, forms a proliferating mass outside. But then, instead of a larger tumor developing from this, which keeps growing on indefinitely, the growth breaks down, so that ultimately nothing is left of the eyeball but an atrophic stump. Haab was the first to bring proof of the fact that these tumors, formerly designated as granuloma, are tubercles. As far as treatment is concerned, however, this mistake in diagnosis would be of little significance, since enucleation is indicated alike in the case of a neoplasm and in that of a granuloma. The eye which bears a granuloma is, in fact, lost for purposes of vision, and may become the source of a general tuberculous infection. Solitary tuberculous tumors have also been observed in the ciliary body.

There are cases in which, owing to the formation of nodules in the iris, the clinical picture of a disseminated tuberculosis is simulated, while another disease is at the bottom of them. So it is in the rare cases of iritis with the formation of nodules in leucaemia and pseudo-leucaemia. Under the name of ophthalmia nodosa is denoted the affection resembling tuberculosis produced by the entry of caterpillar hairs into the conjunctival sac. Some weeks or months later nodules develop with violent inflammatory symptoms in the iris and often also in the conjunctiva and cornea. Examination of the excised nodules shows that they contain caterpillar hairs (Pagenstecher and others).

The name of granuloma of the iris has also been bestowed upon granulating prolapses of the iris when they develop into small, mushroom-shaped growths. It is better not to use this designation; it gives rise, on the one hand, to confusion with the tubercles called granuloma, and, on the other hand, to the incorrect assumption that the growth in question is a neoplasm.

Benign tumors, called melanomata, occur in the iris. They are found under two different forms: The first consists in the outgrowth of a blackish tumor from the stroma of the iris into the anterior chamber. This kind of melanoma arises from the proliferation of the pigmented stroma cells of the iris. The second kind of melanoma has its seat at the pupillary margin of the iris. It develops from the cells of the retinal pigment layer at the spot where it is reflected upon the anterior surface of the iris at the edge of the pupil. Here small blackish-brown nodules develop which project into the
pupil.* Sometimes, in consequence of the alternating movements of the pupil, they become separated from the pupillary margin and then lie free in the anterior chamber. A feature common to both kinds of melanoma is that they are benign tumors which reach only a certain size. Nevertheless, cases are known in which pigmented sarcomata have afterward developed from melanomata of the first kind.

The differential diagnosis of tumors of the iris sometimes presents difficulties. A non-pigmented nodular tumor in the iris may be a syphilitic growth (papule or gumma), a solitary tubercle, or an unpigmented sarcoma. The distinguishing marks are as follows:

1. The sarcomata contain most vessels; the syphilitic growths have fewer, the tuberculous masses scarcely any vessels passing through them. In the case of the tubercles, small gray tuberculous nodules of characteristic appearance are sometimes found in the neighborhood of the large tumor.

2. Papules of the iris are situated only at its pupillary and ciliary margins—never at other spots—while other tumors may take their origin from any point whatever of the surface of the iris.

3. With syphilitic and tuberculous tumors, iritis appears earlier than with sarcomata.

4. Tubercle is found, as a rule, only in people under twenty, while both the other kinds of tumors usually occur after that age.

5. Particular importance must be attached to the general examination of the patient, with the purpose of determining whether symptoms of syphilis or tuberculosis are found in other organs. In doubtful cases it is justifiable to initiate an energetic mercurial treatment, from the result of which a conclusion may be drawn as to the nature of the tumor.

Among the pigmented tumors, pigmented sarcomata and melanomata (of the first variety) resemble each other exceedingly. They can be distinguished with certainty only by determining, from the previous history or from observation, whether a process of growth is going on or not.

As tumors of very rare occurrence may be mentioned: Vascular tumors (Mooren, Schirmer); myomata (Lagrange) and myo-sarcomata (De Wecker and Iwanoff, Dreschfeld, Deutschmann) springing from the ciliary muscle; epithelial growths resembling carcinoma, originating from the cylindrical cells of the pars ciliaris retinae (Badal, Lagrange, Lawford, etc.); and, lastly, lepra nodules (Bull and Hansen).

IV. DISORDERS OF MOTILITY OF THE IRIS.

75. Disorders of motility of the iris manifest themselves in diminished reaction of the latter, but chiefly in an alteration of the diameter of the pupil. This alteration is particularly striking when the disease affects but one eye, so that a difference in the pupils (anisocoria†) results. This is always to be regarded as a pathological condition, since in the normal state the two pupils are of the same size under all circumstances. The pathological alterations of the diameter of the pupil

---

* Such pigmentary outgrowths occur normally and greatly developed in the iris of the horse, forming the so-called grape kernels.
† From ā privative, ís, equal, and ἀόρ, pupil.
comprise dilatation (mydriasis), and contraction (miosis) of the pupil. Either of these conditions may be brought about by spasm (active or spastic processes) or by paralysis (passive or paralytic processes). Spastic mydriasis is produced by active contraction of the fibers which dilate the pupil; paralytic mydriasis, on the contrary, by paralysis of the sphincter. The converse is true of miosis; spastic miosis being referable to contraction of the sphincter, and paralytic miosis to paralysis of the fibers which dilate the pupil.

(a) Mydriasis.

Spastic mydriasis accompanies conditions of cerebral irritation of the most widely differing kinds.

Paralytic mydriasis is far more frequent. It is caused by paralysis of the fibers of the oculo-motor nerve, whose branches innervate the intrinsic muscles of the eye—i.e., the sphincter pupillae and the ciliary muscle. These two muscles are hence generally found to be paralyzed simultaneously (ophthalmoplegia interna). The oculo-motor paralysis may be a diffused one—i.e., affect several or all of the branches of the nerve—or it may be confined to the pupil (either alone or in conjunction with the muscle of accommodation). Such isolated paralyses occur—1. In diseases of the central nervous system, and most frequently in tabes and progressive paralysis. Mainly on account of the connection existing between these diseases and syphilis, it is a fact long recognized that syphilis is one of the most frequent causes of isolated mydriasis. 2. Through the action of poisons. Among these belong, above all, the alkaloids known as mydriatics. Paralysis of the pupil and of accommodation also occurs in case of poisoning by the toxic principles of putrefaction (rotten meat, fish, sausages, etc.). 3. After diphtheria (cf. § 150).

Paralyses of the pupil and of accommodation, occurring after contusions and in case of increased tension, are accounted for by an entirely local lesion of the sphincter and the muscle of accommodation. In the case of contusions, besides the concussion, small lacerations and extravasations of blood into the muscles are also met with. In the case of increased tension the paralysis is produced by the pressure upon the nerves, with which is very soon associated atrophy of the muscular fibers themselves.

The dilatation of the pupil in complete blindness (amaurosis) is not to be regarded as a disorder of motility of the iris, but simply as a physiological cessation of the pupillary reflex when the perception of light is absent.

(b) Miosis.

Spastic miosis is observed in beginning meningitis. The greatest degree of spastic miosis is produced by the alkaloids which contract
the pupil (miotics); other poisons, such as opium, chloral, and nicotine, also cause contraction of the pupil, though in less degree.

Paralytic miosis is one of the most important symptoms of paralysis of the cervical sympathetic. Moreover, it very frequently accompanies spinal lesions, especially tabes dorsalis. This spinal miosis is very often distinguished by the fact that the pupil has ceased to react to light, while it still contracts synchronously with accommodation and convergence (Argyll-Robertson pupil; see page 281).

Enlargement and diminution of the pupil in themselves cause no considerable interference with vision if they are not combined with paralysis of accommodation. Hence they are but seldom, in themselves, the subject of treatment; their chief significance lies in their being an important symptom of a deeply seated and widespread disorder. This latter, therefore, as a rule, is alone the object of treatment. Paralytic mydriasis may be treated symptomatically by miotics and electricity.

Paralysis of the sympathetic is characterized by a series of symptoms which Horner was the first to describe fully. The pupil is contracted through paralysis of the fibers which dilate it—a fact which is particularly manifested in the non-dilatation of the pupil when the eye is shaded. The difference between the diameter of the pupil in the two eyes is hence much more striking in a feeble than in a bright light. The palpebral fissure is smaller in consequence of drooping of the upper lid. This moderate ptosis is caused by the paralysis of the smooth muscular fibers in the upper lid (the musculus tarsalis superior described by Müller), which are supplied by the sympathetic. The eyeball itself often seems to have sunk back into the orbit and to be less tense. An important symptom is the difference in the fullness of the vessels on the two sides of the face. In a recent paralysis the face is redder and warmer on the paralyzed side; afterward, the opposite is the case, the paralyzed side being paler, cooler, and no longer sweating (a thing easily made out in men by the hat lining, which is stained with sweat on one side and not on the other). The causes of sympathetic paralysis are usually the coarser lesions, and most frequently pressure from tumors of the nerve in the neck, such as goiter or enlarged lymphatic glands. More rarely it is caused by traumatisms (among which are fractures of the clavicle) and by operations (e.g., the extirpation of tumors). Among central diseases lesions of the spinal cord, such as tabes or injury of the uppermost part of the cervical cord, have been observed as the cause of sympathetic paralysis. In many cases it is impossible to find a cause. The paralysis, in addition to the inconsiderable disfigurement due to the slight ptosis, causes no annoyance, and not infrequently is first discovered accidentally by the physician. It is commonly incurable.

Under the name of hippus is designated a pathological condition which consists in a constant and rapid change in the diameter of the pupil. Since even under physiological conditions the pupil never remains quite at rest, it is hard
to draw the line between physiological and pathological inquietude of the pupil, and many believe that a genuine hippus does not exist.

For disorders of motility of the ciliary body, see under the anomalies of accommodation ($\S$ 150).

V. CONGENITAL ANOMALIES OF THE IRIS,

76. 1. Membrana Pupillaris Perseverans (persistent pupillary membrane).—This consists of a gray or brown tissue which lies upon the anterior capsule of the lens in the region of the pupil, and is usually connected with the iris by brown filaments. Very frequently, however, there are simply a few brown dots present on the lens capsule or only one or two filaments that run from one portion of the pupillary margin to the opposite, and thus bridge over the pupil, or that pass from the iris to the capsule of the lens. They bear a great resemblance to the posterior synechiae remaining after iritis, but do not, like the latter, rise from the pupillary margin itself, but outside of it, from

![Fig. 106.—Remains of the Pupillary Membranes.](image)

This rises under the form of a small filament, c, from the circumulus minor iridis, and runs to the pupil, in the center of which it becomes attached to a small, round, white capsular opacity. In spite of the filament, the lower half of the iris has retracted widely under atropine, so that the filament is greatly elongated; but the upper part of the iris is prevented by two posterior synechiae (a and b) from submitting readily to the action of atropine. (See explanation to Fig. 94.)

the circumulus iridis minor, which lies on the anterior surface of the iris (c, Fig. 106), and which, as embryology shows, gives off the vessels for the pupillary membrane.

2. Coloboma* Iridis.—Congenital coloboma of the iris is always situated below. The pupil is continued downward to the margin of the cornea, growing narrower all the time, so that it has the shape of a pear with its small end at the lower margin of the cornea (Fig. 107). The sphincter lines the margin of the pupil together with the coloboma as far as the apex of the latter. Congenital coloboma is thus distinguished from the artificial one made by iridectomy. In the latter the sphincter is wanting in the course of the coloboma, because it has been excised; it is seen to end with sharp edges at the dividing line between pupil and coloboma (cf. Fig. 234). Coloboma of the iris is very frequently combined with coloboma in the chorioid and in the ciliary body (see § 80), and sometimes also with a small indentation of the edge of

* From cutis, mutilation.
the lens (coloboma of the lens) at the spot corresponding to the colo-
forma in the iris.

3. *Irideremia (Aniridia).*—The iris may be wanting either alto-
gether or all except a small residual portion. This defect is frequently
complicated with congenital opacities in the cornea or in the lens.

4. *Ectopia Pupillae.*—Even in the normal eye the pupil is not pre-
cisely in the center, but is usually placed a little below and to the inner

side of it. While usually this can be noticed only upon careful exami-
nation, there are cases in which the displacement is so great as to be
obvious at once; indeed, the pupil may be situated quite excentrically,
in the neighborhood of the corneal margin. The displacement has
been observed to occur in different directions, and is frequently compi-
icated with a dislocation of the lens (ectopia lentis).

The congenital anomalies above described are found, for the most
part, in both eyes. They are apt to be inherited, so that they are
frequently found in several members of the same family; they are often
also met with in conjunction with other congenital anomalies. For
the latter reason the disturbance of sight is often much more consid-
erable than would be expected from the optical conditions. In such
eyes there frequently exists very great myopia, hypermetropia, or astig-
matism, or deficient development of the retina or of the whole eye it-
self, the latter being considerably smaller than usual (microphthalmus).
Such eyes, moreover, are more subject to disease than are normal ones
—(e. g., irido-chorioiditis, glaucoma, and cataract).

*Persistent pupillary membrane* is of comparatively frequent occurrence in
newborn infants, but afterward disappears, except in the few cases in which
remnants of it persist during the whole life. The brown filaments stretching
from the pupil to the capsule of the lens are blood-vessels which have been
obliterated and enveloped in pigment. Where they are attached to the lens
capsule, the latter frequently shows a punctate, densely white opacity (Fig.
106, e). These brown filaments do not hinder the free movement of the pupil.

* Also called *corectopia*, from κόσμος, pupil, κοτ, out of, and ροζωσ, place.
Moreover, under atropine the pupil dilates ad maximum without suffering any change in its roundness, because the filaments are so extremely extensible. This is another mark distinguishing them from the acquired synechiae due to inflammation.

Congenital coloboma of the iris occurs under different forms. Besides the pear-shaped colobomata above described there are occasionally observed some in which the pupil has the shape of a keyhole, as in artificial coloboma. A special variety is the bridge coloboma. In this the pupil is separated from the coloboma by a narrow thread of iris tissue, which stretches like a bridge from one pillar of the coloboma to the other. Incomplete colobomata are of comparatively frequent occurrence; there is then simply a shallow indentation of the pupillary margin, or the portion of the iris corresponding to the coloboma is distinguished by a different color, which is generally due to the absence of the anterior layers of the iris at this point.

A pear-shaped appearance of the cornea, due to narrowing of the latter below, is often associated with coloboma of the iris.

The formation of a coloboma is accounted for upon the ground of incomplete closure of the fetal ocular fissure; but, as this lies at the lower side of the eyeball, congenital colobomata are likewise directed downward. (For a more precise account, see under Colobomata of the Chorioid, § 80.) This explanation, of course, does not apply to those extremely rare cases of congenital coloboma which are not situated below. Most of such colobomata are probably due to an inflammation of the iris during fetal life, having as its sequel a partial arrest of development or an atrophy of the iris.

In regard to the frequent congenital anomalies in the coloration of the iris, see pages 255, 256.
CHAPTER VI.

DISEASES OF THE CHORIOID.

I. INFLAMMATION OF THE CHORIOID.

77. INFLAMMATION of the chorioid (chorioiditis) produces exudates which, as in the case of every other inflammation, may either disappear again by resorption or may go on to suppuration. Hence we distinguish between chorioiditis non-suppurativa, commonly known as chorioiditis exudativa, and chorioiditis suppurativa. If the inflammation remains confined to the chorioid proper, as is especially apt to be the case in the non-suppurative forms, all exterior signs of inflammation are absent. The eye looks normal externally, and the disease manifests itself to the patient only through the disturbance in sight—to the physician, only through ophthalmoscopic examination. But if the disease passes over to the anterior portion of the uvea it becomes recog-
nizable exteriorly through the symptoms of cyclitis and iritis (iridochorioiditis). This extension of the disease forward is the rule in violent inflammations, and hence in the suppurative forms.

A. Chorioiditis Exudativa (Non-Suppressiva).

Symptoms.—Exudative chorioiditis appears for the most part under the form of isolated foci of inflammation scattered over the choroid (Fig. 108). While still recent they appear, when seen with the ophthalmoscope, as yellowish, indistinctly outlined spots which lie beneath the retinal vessels upon the red fundus oculi. The spots are produced by an infiltration of the choroid with exudate which hides the red of the chorioidal vessels; furthermore, the overlying retina is clouded and gray, and covers the subjacent chorioidal mass as with a faint veil. In proportion as the exudate disappears by resorption the choroid again comes into view, but in an altered state; it is atrophic, deprived of its pigment, and in part converted into cicatricial connective tissue. Hence, after the disappearance of the exudate, the diseased spot is seen to grow lighter in color. Where the choroid has become altogether atrophic, a white spot is formed, because the white sclera then shows through; in other cases remains of the vessels and of the pigment are recognized in the white cicatrix. Afterward the pigment often proliferates, so that the chorioidal spots appear lined with black pigment or covered with black spots (Fig. 108). The decolorized or pigmented spots remaining after chorioiditis may properly be characterized as cicatrices of the choroid.

It is easy to see that the retina, which directly adjoins the choroid, is also sympathetically affected in those spots where the choroid is diseased. If the implication of the retina is particularly prominent, we speak of retino-chorioiditis. Moreover, the exudates from the choroid pass not only into the superimposed retina, but also through the latter into the vitreous. Opacities of the vitreous thus produced are hence an almost constant accompaniment of chorioiditis.

It is the implication of the retina and vitreous which causes disturbances of vision of various kinds, and thus directs the patient's attention to the eye. The vision is diminished as a whole on account of the cloudiness of the vitreous and the hyperæmia of the retina. But in those spots in which inflammatory foci exist, sight may be entirely abolished, so that insular defects (scotomata) are present in the field of vision (see page 32). Owing to the fact that the retina over the focus of inflammation is pushed forward and its elements are displaced from their normal situation, objects whose images fall upon the retina may appear distorted (metamorphopsia); straight lines, for instance, appear bent in various directions. Frequently also objects appear smaller than they are (micropsia). As long as the inflammation is recent, symptoms of irritation of the retina manifest themselves; subjective sensations
DISEASES OF THE CHORIOID.

of light (photopsia) exist, such as spots before the eyes, sparks and balls of fire, etc. These phenomena cause the patient annoyance and anxiety, sometimes to an extreme degree. When, after the subsidence of the inflammation, atrophy of the choroid and of the superimposed layers of the retina has taken place, signs of absence of function—i. e., gaps in the field of vision—take the place of the signs of irritation. The influence that the scotomata exert upon the sight in general depends primarily upon the place they occupy in the fundus. Peripherally situated scotomata cause but little disturbance of vision, even when they are pretty numerous; and if they occur only in one or two places they usually escape the patient's notice altogether. On the other hand, when a scotoma occupies the site of the yellow spot the disturbance of vision is as great as in the preceding case it is trivial; direct vision is then destroyed, and the eye becomes unserviceable for fine work. The first case would be met with in the chorioiditis represented in Fig. 108, the second in Fig. 110.

The course of chorioiditis is chronic, it taking many weeks for the foci of exudation to be converted into atrophic spots. The opacities of the vitreous last even longer—often, in fact, permanently. But chorioiditis is chiefly dangerous because of its tendency to recur, in consequence of which new foci of inflammation are constantly developing in the choroid, so that the latter is finally covered all over with old and recent spots. With this is ultimately associated atrophy of the retina and optic nerve, so that obstinate cases of chorioiditis terminate in partial or total blindness. When the affection of the choroid is well advanced, cloudiness of the lens (cataracta complicata) is almost always associated with it.

Etiology.—Exudative chorioiditis is a frequent disease, which is observed at all ages. Among its most ordinary causes is syphilis, both acquired and hereditary. As a result of the latter, cases also of congenital chorioiditis have been observed. Chorioiditis may also be caused by general disorders of nutrition of various sorts, such as anaemia, chlorosis, scrofula, etc. In many cases of chorioiditis the cause remains obscure.

Myopia is frequently complicated with changes in the choroid, it being only a rare exception to find the latter normal in myopia of a high degree (Fig. 110). The changes in the choroid in this case are, to be sure, less those of a chorioiditis proper than those of a primary atrophy of the choroid, caused by the stretching which the latter must necessarily undergo, when the entire posterior segment of the sclera bulges backward, as is the case in extreme myopia.

Treatment.—The treatment of chorioiditis must have regard mainly to the etiological factor. When this is readily amenable to therapy, as is the case with syphilis, favorable results are promptly attained—in fact, syphilitic chorioiditis offers the best prognosis, inasmuch as by an
energetic antisyphilitic treatment speedy improvement in most cases, and often even an entire cure, can be obtained. To be sure, we are not able to prevent the frequent recurrences which may still lead ultimately to the destruction of the eye.

The treatment of the local changes should aim to produce rapid resorption of the exudate in the chorioid and the retina and also in the vitreous. Suitable remedies for this purpose are the iodide of potassium, or, when necessary, a treatment by inunction, which, even in non- syphilitic cases, can do good service through its absorptive action; furthermore, diaphoresis (see page 282). In marked hyperæmia of the fundus, blood-letting may be performed by the application of six to ten leeches behind the mastoid process. Besides these measures we must enforce what may be called the hygiene of the eyes—that is, the avoidance of any straining of the eyes, and the protection of them from light by dark glasses or, when necessary, by rest in a darkened room.

The distinction between recent exudates and old atrophic spots in the chorioid is based upon the following signs: Exudates are of a yellow or yellowish-white color, do not have a sharp outline, and present to view no chorioidal vessels; retinal vessels, which by chance run over them, show by their bending that a projection of the retina exists here, due to the prominence formed by the exudate. The atrophic spots are pure white, and have an irregular but sharp outline, often formed by a pigmented band. Pigment spots also lie in the white spot itself; sometimes, indeed, the growth of pigment becomes so excessive that the spots finally become entirely black. Moreover, remains of the chorioidal vessels are visible within the atrophic area. Such vessels not infrequently present thickened, white-looking walls, or are even quite obliterated and converted into light-colored cords.

In cases of old retino-chorioiditis the pigment often migrates from the chorioid into the retina. That the pigment is in the retina is obvious from the fact that the retinal vessels in the spots where this pigment lies are covered by it, whereas they pass over pigment that is situated in the chorioid and are hence not hidden by it.

There are cases in which the atrophy affects only the pigment epithelium, which gradually disappears. Then the stroma of the chorioid, with its vessels and pigmented intervascular spaces, is exposed to view, and there is developed the picture of a tessellated fundus resembling that observed as a physiological condition but much clearer cut (Fig. 110). Besides occurring in certain forms of chorioiditis, this also occurs in glaucoma, in myopia of high degree, in retinitis pigmentosa, etc. In old people, quite small, brilliantly white spots, often surrounded by a dark fringe, are sometimes found in the chorioid. They correspond to acinous outgrowths of the lamina vitrea of the chorioid, over which the pigment epithelium has undergone destruction.

Chorioiditis occurring in isolated foci of inflammation is distinguished, according to the location of the latter, into different forms:

1. Chorioiditis centralis is characterized by changes occurring directly in the region of the macula lutea. It thus causes a central scotoma. The most fre-
DISEASES OF THE CHORIOID.

quent cause of it is myopia, which, if of high degree, leads late in life, almost without exception, to changes in the yellow spot, which are mainly of an atrophic nature (Fig. 110). Inflammatory changes at this spot are often found in syphilis, in which the region of the macula is sometimes occupied by a large exudate, transformed later into a bluish-gray mass of connective tissue. Circumscribed disease of the macular region also develops as a result of injuries affecting the whole eyeball, such as contusions, the entry of foreign bodies into the vitreous, etc., so that the macula must be regarded as a particularly vulnerable spot in the background of the eye. Finally, a disease of the macula is observed in old people, which usually affects both eyes about equally, and is referable to senile changes.

2. Chorioiditis disseminata is characterized by numerous round or irregular spots which are scattered over the fundus (Fig. 108). This is an eminently chronic form, in which, in the usual course of events, new spots are being formed all the time. Ultimately, the choroid is studded all over with such spots, which in many places become confluent, so that in old cases a great extent of the fundus often looks whitish. The sight may, nevertheless, still be pretty good, if only the region of the macula lutea remains intact. In the beginning of the disease hyperemia of the retina and optic nerve exists, but later both become atrophic. The papilla takes on a dirty grayish-red color and loses its sharp outline (chorioiditic atrophy), the retinal vessels are fewer and are greatly contracted.

A special form of chorioiditis disseminata is the chorioiditis areolaris, first described by Förster. In this the first foci developed in the vicinity of the yellow spot, while the subsequent ones make their appearance at a constantly increasing distance from the latter. The most recent foci, therefore, are always those situated at the periphery. The behavior of the individual spots is directly the reverse of the ordinary course pursued by chorioiditic patches; the most recent spots are entirely black, and afterward slowly enlarge, and at the same time become decolorized from the center toward the edge, so that at last they are almost entirely white.

3. Chorioiditis anterior deposits its foci of exudation at the periphery of the choroid. These foci are therefore readily overlooked if we neglect to examine the most anterior portions of the fundus with the ophthalmoscope. Chorioiditis anterior occurs most frequently in eyes affected with excessive myopia. In young persons, chorioiditis anterior often occurs in consequence of hereditary syphilis; usually the periphery of the fundus is studded with roundish, ink-black spots (see page 193). In old people, simple pigmentary changes are frequently found in the anterior portions of the choroid.

The variety of chorioiditis which is spread diffusely over the whole choroid is always combined with a coincident affection of the retina, and is therefore ordinarily known as retino-chorioiditis or chorio-retinitis. In the typical fashion in which it was first described by Förster this occurs in syphilis. In recent cases the retina appears clouded, and, furthermore, the entire fundus is veiled by a fine punctate cloudiness of the vitreous; moreover, circumscribed exudates may also be present in the choroid and the retina. These occupy mainly the region of the macula, and usually appear under the guise of large or small irregular patches, which are of a gray or dirty yellow color and are ill defined, so that they are only discovered upon careful examination with the erect image and with the pupil dilated. In the later stages the cloudiness of the retina
A. Ophthalmoscopic Image of the Papilla.—The papilla, b-c, is of the shape of an ellipse with its long axis vertical. In its outer half it shows the large physiological excavation, upon whose floor are visible the gray stipplings of the lamina cribrosa, while the central vessels ascend on the inner wall of the excavation. Adjoining the inner border of the papilla and not sharply separated from it is the bright crescent, a-b. This is of a white color, while the papilla itself is reddish. The crescent is covered with brownish, elongated markings, representing remains of the stroma pigment of the choroid. The temporal border of the crescent is sharply defined, and the choroid adjoining it is somewhat more pigmented than usual. On the other hand, the choroid in the vicinity of the nasal border of the papilla shows a somewhat lighter coloration in the space between c and d, so that a yellowish crescent, which, to be sure, is not much more than a suggestion of one, is formed on the nasal side of the disk (supertraction crescent).

B. Longitudinal Section Through the Head of the Optic Nerve. Magnified 14 × 1.—Here the displacement of the optic nerve with relation to the aperture in the sclera and choroid designed for its passage is obvious. The optic-nerve funiculi, wherever they consist of medullated fibers, are colored black by Weigert's hematoxylin stain; between them can be seen the septa, which remain unstained, and the longitudinal sections of the central artery and central vein. The black staining ceases abruptly at the lamina cribrosa. In front of the lamina cribrosa the head of the optic nerve presents the physiological excavation. This is a depression whose floor at its deepest part is formed by the lamina cribrosa. The temporal wall of the excavation slopes down quite gradually from the retina. The nasal wall declines abruptly, and shows the cross section of the central vessels. The trunk of the optic nerve is inserted obliquely into the eyeball, a fact that is particularly evident when comparison is made with Fig. 9 B. This obliquity affects all parts of the nerve, but is most pronounced in the spot where it traverses the sclera and choroid. The foramen sclerae is properly a short canal, and in the normal eye its walls converge from behind forward (Fig. 9); but here, owing to the displacement of the nerve, they get to have an oblique course running from the nasal toward the temporal side. The temporal wall, therefore, is turned somewhat forward, and hence, since the overlying retina is transparent, comes into view when looked at from in front (with the ophthalmoscope), forming a bright crescent extending from b to the point a, where the pigment epithelium begins. The stroma pigment of the choroid extends somewhat farther inward than does the pigment epithelium, and is consequently seen under the form of brown spots upon the bright disk of the crescent. The nasal wall of the scleral canal is turned partly backward, so that it has to pass in front of the most nasally situated portion of the optic nerve, c-d. As the displacement affects not only the aperture in the sclera but also the choroid, the latter is also drawn up over the nasal border of the optic nerve as far as the point c. Since now this nasal portion of the papilla, being covered by the sclera and choroid, is not distinctly visible with the ophthalmoscope, the papilla appears contracted in its horizontal diameter. Nevertheless, the portion of the optic nerve that is thus concealed glimmers through its covering, so as to be distinguishable under the form of an ill-defined yellowish crescent at the nasal border of the papilla (c-d). The displacement of the optic nerve with reference to the sclera is shared in by the sheaths of the nerve. The dural sheath, d, and the adjoining arachnoid sheath, or, are separated from the nerve, especially at its temporal side, and the intravaginal space, or, is consequently dilated. On the other hand, the pial sheath, p, lies in close apposition to the nerve.
DISEASES OF THE CHORIOID.

343

disappears, to be replaced by atrophy; at the same time a migration of pigment, under the form of numerous black spots takes place into the retina, especially at its periphery, so that there is produced a picture very similar to that of retinitis pigmentosa (see § 97).

The changes in the choroid in myopia consist in an atrophy of the choroid close by the papilla and in foci of disease at other spots of the choroid, particularly in the region of the macula lutea.

(a) Atrophy of the choroid at the border of the optic disk is given the name of staphyloma posticum. This properly denotes a protrusion of the sclera backward; it is, however, used in a wider sense for the atrophy of the choroid, which is the consequence of this protrusion, and which is visible with the ophthalmoscope. First, there appears at the external side of the papilla a narrow, light-colored crescent (ab, Fig. 109 A). This is accounted for by Stilling in the following way: In the myopic eye the head of the optic nerve is pulled toward the temporal side; and the same is true of the scleral canal inclosing the nerve. Especially is it true of the temporal wall of the canal, which consequently gets such a slant that upon ophthalmoscopic examination it comes into view through the transparent tissue of the papilla (Fig. 109 B between a and b), appearing in perspective foreshortening as a white crescent close to the temporal border of the papilla (distraction crescent). When the crescent is narrow it often represents simply an enlargement of the scleral ring, whose visibility, in fact, is accounted for in a similar way (see page 10). But in other cases the bright crescent is the evidence of an atrophy of the choroid, which begins at the temporal border of the optic nerve (Fig. 108).

The crescent afterward enlarges so as to form a surface having the shape of an obtuse-angled triangle—conus (Jäger). Finally, the atrophy passes from the outer side of the optic nerve along its upper and lower margin to its inner side also, so that the papilla is finally surrounded on all sides by atrophic choroid (annular staphyloma, Fig. 110). This is generally broadest on the external side, from which it started. In the atrophic area the fundus is either a pure white, if the choroid there has completely disappeared and the sclera comes into view; or remains of choroidal tissue, such as vessels and pigment, are still present in it in varying quantity.

The beginner in ophthalmoscopy regularly falls into the mistake of regarding as the staphyloma that surrounds the papilla as comprised in it, and of considering the entire disk-shaped, white surface as a specially large papilla. The boundary between papilla and staphyloma, in fact, is not well defined, the papilla being distinguished from the white staphyloma mainly by its red color. Indeed, the papilla often appears so red by contrast with the white surface surrounding it, that one might regard it as hyperemic.

In the larger staphylomata the papilla displays an elliptical shape, the short axis of the ellipse coinciding with the greatest diameter of the staphyloma. When, therefore, the staphyloma is broadest outward, as is commonly the case, the papilla forms an upright ellipse (Fig. 110). This change of shape must in part be referred to the fact that the papilla, being pushed toward one side in consequence of the bulging of the sclera, is seen in perspective foreshortening. But it is also due in part to the fact that the sclera and choroid, which on the outer side have moved away from the border of the papilla, have been drawn up over the border of the latter on its inner side (supertraction crescent of Weiss, cd, Fig. 109 A).
The retinal vessels that emerge from the papilla are thin and are marked by their straight course—looking as if they had been put on the stretch.

Sometimes two or even three contrasting zones exist in the staphyloma, which differ from each other in their pigmentation, and often also lie at different levels, and which bear witness to the fact that the formation and enlargement of the staphyloma have taken place at different periods (Fig. 110). By proliferation of the pigment, brown or even black crescents and staphylomata are formed.

The line separating the staphyloma from the healthy chorioid is often sharply defined, especially if formed by a pigmented margin. In other cases a sharp border line is absent, a circumstance which indicates that the staphyloma is in process of growth, so that an advance in the myopia is to be apprehended.

The size of the staphyloma is, broadly speaking, in direct proportion to the degree of myopia, but variations from this rule very often exist in the individual cases—e. g., great myopia without atrophy of the chorioid, and vice versa. Not infrequently white crescents and staphylomata are also found in emmetropic and even in hypermetropic eyes.

What, ophthalmoscopically speaking, we call a staphyloma—i. e., the white ring that surrounds the papilla—is indeed caused by the protrusion of the sclera, but is not quite coincident with the latter, being, in fact, less extensive. In many cases of extreme myopia, however, it is also possible to recognize with the ophthalmoscope the limits of the actual staphyloma in the sclera under the form of a broad, dark, curved line, which usually runs in the red fundus along the inner side of the white staphyloma and concentric with the latter.
marked cases we can see from the parallactic displacement, or from the bending of the retinal vessels as they pass over the dark curved line, that the latter corresponds to a sudden change of level in the fundus.

White crescents are also observed at the lower border of the papilla (Fig. 111). These resemble in their appearance the acquired crescents due to myopia, but have an altogether different significance. They are congenital (probably being connected with the fetal ocular fissure, which likewise lies on the lower side of the eyeball), and are associated frequently with astigmatism, almost always with incomplete acuity of vision.

With the annular staphylooma of the myopic eye should not be confounded cases of atrophy of the chorioid about the papilla from other causes. Under this latter head belong atrophy after chorioiditis, and also the atrophy in cases of glaucoma, the so-called halo glaucomatosus.

(b) The changes of the chorioid in the region of the macula lutea make their appearance when the myopia has reached a high degree. Both light-colored and pigmented spots are found (Fig. 110), and not infrequently also white branched lines. The spots gradually enlarge, and finally coalesce to form pretty large atrophic patches, which may even ultimately become united with the staphyloma surrounding the papilla. In such cases of extreme myopia, al-

Fig. 111.—Inferior Crescent. Erect Image.

The bright disk which at first glance might be taken for an enlarged papilla consists of two divisions. The upper, which is darker and of reddish hue, is the papilla proper, which has the form of an irregular oval. Its upper border is semicircular, its lower almost rectilinear, while its two ends are somewhat pointed. The orifice of exit of the vessels lies close to the lower border of the oval, and the vessels as they emerge are at first all directed downward. Hence those that are going to supply the upper half of the retina have to make a sharp bend in order to take the proper direction. Thus the whole arrangement of the vessels on the papilla has a peculiar appearance differing from the normal. The lower division of the light-colored area is formed by the crescent, which is separated by a still brighter rim from the lower border of the papilla. The crescent is unusually large in this case, and, in contradistinction to the reddish papilla, is partly gray, partly white. It is lined by a delicate rim of pigment, and a small patch of pigment also lies close to its temporal border. The fundus shows the pigmentation of a tessellated background.
most the entire posterior section of the interior of the eye is converted into a great white patch. Moreover, haemorrhages occur in myopic eyes, and that, too, preferably at the site of the yellow spot. Another, though rare, alteration found in myopic eyes, consists in the formation right in the macula of a coal-black, round spot which gradually grows to about the size of the papilla. It is the changes in the macula lutea that, with the detachment of the retina, represent the greatest danger for the extremely myopic eye. They do not, like detachment, threaten the eye with complete blindness, but they render it unserviceable for any sort of fine work. Besides, they are much more frequent than detachment of the retina, inasmuch as only a few of the excessively myopic attain any considerable age without being affected with these changes.

Bloodletting.—In recent cases of chorioiditis with hyperemia of the retina the abstraction of blood is recommended, and that by the application of leeches behind the mastoid process. While bloodletting has pretty much disappeared from general practice, in ophthalmology it has remained in use up to the present time, and rightly, too, since in suitable cases striking and undeniable advantage is often seen to accrue from it. The abstraction of blood may be made with natural leeches or with Heurteloup’s artificial leech. In the former case, six to ten leeches are applied; in the employment of the Heurteloup, its glass cylinder is filled once or twice with blood. The point of application is either the temple or the skin behind the mastoid process. If we are dealing with inflammations of the conjunctiva, the iris, or the ciliary body, the temple is selected, because the vessels of the conjunctiva empty into the veins of the face, and, moreover, the anterior ciliary veins communicate freely with the veins of the conjunctiva. In deep-seated affections, like chorioiditis, retinitis, neuritis, or inflammation in the orbit, the abstraction of blood is performed behind the mastoid process, because an emissary vein of Santorini (passing through the mastoid foramen), which carries off blood from the transverse sinus, empties here; and the latter is connected with the cavernous sinus, into which the ophthalmic veins pour their contents.

Non-purulent irido-chorioiditis runs either a chronic or an acute course. The chronic cases have already been considered under the head of iritis idiopathica; they are the ones which are known under the name of irido-chorioiditis serosa, and which gradually induce blindness, partly through seclusio pupillae, partly through degeneration of the vitreous (see page 311). The acute cases (irido-chorioiditis plastic) form a transition between the kind just described and irido-chorioiditis suppurativa.

B. Chorioiditis and Irido-Chorioiditis Suppurativa.

78. In suppurative chorioiditis a large exudate containing numerous cells is thrown out, and is deposited beneath the retina and into the vitreous, where it can be seen through the pupil, in case the media are transparent enough, as a deeply situated yellow mass. The inflammation, which is violent, almost always spreads rapidly to the ciliary body and the iris, so that we have then to do with an irido-chorioiditis, which
is associated with correspondingly violent external symptoms of inflammation.

**Symptoms.**—When the irido-chorioiditis is at its height the lids are markedly swollen with edema; the conjunctiva is intensely reddened and likewise very oedematous, so that it often forms a chemotic swelling round the cornea. The latter is dull, and has a slight diffused cloudiness. The aqueous, too, is cloudy, and shows a hypopyon deposited at the bottom of the anterior chamber. In the iris are found signs of a violent inflammation, such as discoloration, swelling, and posterior synechiae. If the cloudiness of the cornea and the aqueous permits, a yellowish glimmer is recognized in the pupil, arising from the exudate behind the lens. Coincidently with these symptoms violent pain is present in the eye and its vicinity, sight is completely lost, and slight fever is often also present.

The course, in the less violent cases, is such that after a few weeks the inflammatory symptoms gradually abate. The eye, whose tension in the beginning was elevated owing to the great amount of exudation, becomes softer and soon smaller also, and at length passes into a state of atrophy. But in the violent cases suppuration of the eyeball—panophthalmitis—ensues. The oedema of the lids increases so much that the eye can scarcely be opened. The eyeball, in addition to the appearances of irido-chorioiditis above described, displays marked protrusion (exophthalmus) combined with abolition of its motility. The pain is almost intolerable, and not infrequently tormenting photopsia are present. High fever exists and vomiting frequently occurs, especially at the beginning of the disease. These symptoms keep on until the purulent exudate in the interior of the eye makes an exit for itself by breaking through the sclera. Perforation takes place in the anterior division of the sclera. The conjunctiva is seen to bulge forward at some spot, showing the yellowish, discolored sclera through it, until finally sclera and conjunctiva are perforated and the purulent contents of the eyeball are slowly extruded. After perforation has occurred the pains soon cease, the eye becomes softer, and ultimately shrinks up to a small stump (phthisis bulbi). It takes at least six to eight weeks for this result to be attained and for the eye to become perfectly free from pain.

From what has just been said, panophthalmitis is distinguished from simple suppurative irido-chorioiditis by the appearance of two additional symptoms—protrusion of the eyeball and purulent perforation of the envelopes of the eye. The protrusion is due to the extension of the inflammation to the retro-bulbar tissues, and particularly to Tenon's capsule; the result is marked inflammatory oedema (but not suppuration) in this spot, and a consequent pushing forward of the eyeball. The violent pains are excited by the traction which the nerves undergo, both in the eyeball itself, which is distended with exudate,
and also within the orbit, where it is due to the protrusion of the eyeball.

**Etiology.**—Chorioiditis suppurativa is produced by the infection of the choroid by pyogenic matter. The infection may originate from the outside or have its source in the body itself.

Infection *from the outside (ectogenous infection)* occurs—

(a) Most frequently from penetrating injuries of all kinds. In this category belong unsuccessful operations.

(b) From the passage of suppuration from without inward, in the case of perforating ulcers of the cornea, and from prolapses of the iris that are covered with pus.

(c) As a process starting from a cicatrix of the cornea with incarceration of the iris, when the cicatrix is thinned. Under this head belong the incarcerations of the periphery of the iris, that not infrequently remain after cataract operations. Infection takes place in these cases from the germs penetrating through the thin cicatrix into the tissue of the incarcerated iris, and then traveling in the latter backward into the eye. The starting point for the infection of the old cicatrix may be afforded by inconsiderable lesions of the epithelium covering the cicatrix, or by sudden stretching or bursting open of the latter.

Infection by carriers of infection, which arise from the *organism itself (endogenous infection)*, takes place—

1. Through embolism, septic substances from a focus of suppuration getting into the circulation and becoming arrested in the vessels of the choroid. In this way metastatic chorioiditis develops. This is one of the symptoms of pyæmia, and most frequently of that form which makes its appearance in the puerperal period as puerperal fever.

2. By transfer of the inflammation from the meninges in meningitis, particularly in cerebro-spinal meningitis. These cases are observed chiefly in children, and are distinguished by their comparatively mild course, so that in rare cases some small degree of sight even is still retained.

3. By transfer of inflammation from behind forward in phlegmons in the orbit and in thrombosis of the orbital veins.

The *prognosis* of suppurative chorioiditis is absolutely unfavorable for the eye itself, inasmuch as the sight, and, for the most part, the shape of the eye as well, are lost. In those cases in which the chorioiditis is simply one of the symptoms of pyæmia or meningitis, there is also, of course, danger for the life of the patient.

*Treatment* is unable to change the course of suppurative chorioiditis. It must confine itself to ameliorating the patient's sufferings. We combat the pain with moist and warm compresses and with narcotics. If we are sure that it is a case of panophthalmitis, we may open the eye by a free incision of the sclera in its anterior division. The tension is thus diminished, the evacuation of the suppurated contents
of the eye is accelerated, and thus the pain and the progress of the disease are cut short. When the eye at last becomes shrunken it usually remains quiescent, and also admits of an artificial eye being worn over it. Should, however, secondary inflammatory phenomena set in, as they may exceptionally do, in the shrunken eye, its enucleation is indicated.

Metastatic ophthalmia occurs both as a unilateral and a bilateral affection. Cases of the former kind generally afford a better prognosis as far as the pyaemia is concerned, and particularly so when no metastases are observable, except the one in the eye. The prognosis that appertains to the bilateral cases on the other hand, is extremely bad, even for life itself.

Many cases of panophthalmitis that develop suddenly, and to all appearances spontaneously, may perhaps be regarded as one of the symptoms of a pyaemia whose point of origin is undiscoverable. In children suppuration of the umbilical cord, and sometimes also vaccination, may give rise to pyaemia with metastatic ophthalmia.

Besides occurring in pyaemia, a purulent chorioiditis, doubtless also of metastatic origin, occurs in rare instances in other acute infectious diseases, such as typhus, variola, scarlet fever, anthrax, influenza, ulcerative endocarditis, diphtheria, erysipelas, pneumonia, and Weil's disease. Moreover, the purulent chorioiditis that sometimes accompanies meningitis, may originate metastatically and not be due simply to transmission of inflammation along the optic nerve sheaths.

Most cases of panophthalmitis are caused by injury. If the latter is of such a character that the eye is extensively opened, the purulent exudate may be discharged through the wound, and does not have to wait till the sclera is perforated, which always requires a long time. Yet not infrequently even in these cases, in which the purulent exudate pushes out through the wound, perforation of the sclera by pus is also seen to take place as usual. Panophthalmitis after severe injuries must, from a certain point of view, be regarded as a more favorable outcome than a plastic irido-cyclitis. The former, to be sure, causes more violent pain and leads to a greater degree of shrinking of the eye; but when it has run its course the patient has a lasting respite. Plastic irido-cyclitis, on the other hand, often for years produces after-attacks of inflammation, and may also give rise to sympathetic disease of the other eye, if the patient does not make up his mind to the performance of enucleation at the proper time.

Apart from simple incision of the sclera, different methods have been attempted for cutting short the course of panophthalmitis, particularly enucleation and the ablation of the anterior section of the eye, with scooping out of the contents of the eyeball. Enucleation is to be rejected, for, devoid of danger as it is under other circumstances, in panophthalmitis it sometimes results in purulent meningitis, with a fatal issue. It must be assumed that by the operation the blood and lymph passages in the orbit are freely opened, and thus made accessible to infection. Whether the scooping out (exenteration or evisceratization) of the suppurating eye is a less dangerous procedure is questionable, since cases of death after this operation have also been observed (Schulek). It must, however, be noted that some cases have been known in which fatal meningitis has succeeded a panophthalmitis without any operative interference.
Differential Diagnosis of Suppurative Chorioiditis.—There are cases of suppurative chorioiditis which might be confounded with neoplasms in the eyeball. This is possible whenever the inflammation runs so sluggishly a course that all external signs of inflammation are wanting. The eye is not discolored, the iris is normal, the aqueous and lens are clear. The lens and iris are pressed forward by the exudation in the vitreous, and the anterior chamber is made shallower. The pupil is dilated, and permits the exudate to be seen deep down in the vitreous. Sometimes the exudate is visible even some distance off as a vivid, light-colored (whitish or yellow) reflex from the pupil (amaurotic cat's-eye [Beer]). Just the same phenomena may be produced by new formations in the vitreous, and particularly by gliomata arising from the retina (see § 90), for which reason many cases of the sort described above have been designated as pseudo-gliomata.

The most important distinctive mark lies in the tension of the eye. This, in genuine glioma, is normal in the beginning, and afterward is increased; in pseudo-glioma, on the contrary, diminution of tension soon sets in, which precedes the shrinking of the eye. Then the subsequent course renders the true state of the case perfectly clear, inasmuch as glioma afterward breaks through the sclera and keeps on growing, while in pseudo-glioma the eye keeps constantly growing smaller. But now in glioma it is requisite to remove the eye as early as possible, and it is therefore not right to wait a long time in doubtful cases until the diagnosis can be determined with certainty. In so doing, we should be putting our patient's life in jeopardy. Hence, in doubtful cases, we perform enucleation. Even if it should then turn out that the case was one of pseudo-glioma, the patient has not lost much by the enucleation, since the eye is already blind and would be much shrunken. In any case, the question of a confusion with glioma would come up only in cases of sluggish suppurative chorioiditis occurring in children, since it is only in the children that glioma of the retina is found. The causes of pseudo-glioma are most frequently meningitis, also the acute exanthemata, and finally injuries, particularly those attended with the presence of a small foreign body in the interior of the eye. One or two cases of pseudo-glioma have turned out on dissection to be tuberculosis of the chorioid; and in some instances a mass of tissue of fetal origin situated behind the lens has been found to be the cause of the yellow reflex in the pupil.

Anatomical Changes in Chorioiditis.—In non-suppurative chorioiditis there is first a cellular infiltration, which originates mainly from the innermost layers of the chorioid (the chorio-capillaries), and spreads less toward the outer layers of the chorioid than it does in the direction of the retina. Within these two membranes, the retina and chorioid, the infiltration is found chiefly along the vessels, which indeed may be said to be sheathed in the cells of the exudate. An exudate, often of considerable size, is deposited between the chorioid and the retina. This exudate is afterward transformed into a connective-tissue membrane (cicatrix), binding the chorioid fast to the retina; and in this situation these two membranes themselves become atrophic. From the chorioid the finer vessels and also the stroma pigment in great part disappear; and the vessels that are left either have their walls thickened and sclerosed, or are obliterated altogether. The retina is converted into a network of connective tissue, in which can be seen the vessels with their walls greatly altered. Wherever the chorioid is adherent to the retina, the layer of rods and cones is absent, and so is the pigment epithelium, except for a few remnants. On the other hand, the pigment epithelium at the border of the scar proliferates; hence the black lining of the
DISEASES OF THE CHORIOID.

chorioiditic patch visible with the ophthalmoscope. In part the proliferating pigment epithelium migrates into the retina, where it is found particularly in the neighborhood of the vessels. The inner surface of the retina is sunken at the site of the cleftrix, and is frequently adherent to the surface of the chorioid (to the hyaloid membrane).

For the changes of the chorioid in myopia, which consist mainly in atrophy with very slight signs of inflammation, see § 144.

In cases of severe plastic chorioiditis, such as develop especially after injuries, ossification frequently takes place in the great hull of exudate that is deposited on the inner surface of the chorioid.

In purulent chorioiditis there is a dense purulent infiltration of the chorioid, which thus has its thickness increased to several times the usual amount. The retina over the affected part of the chorioid is also found infiltrated with pus cells, and consequently thickened; afterward, it is partially or entirely detached from the chorioid by means of the purulent exudation. The vitreous is gradually converted into a homogeneous mass of pus. In case the purulent chorioiditis is of metastatic origin, the infecting plug in the chorioidal vessels may also frequently be demonstrated by microscopical examination (Virchow). Such emboli may also get into the retinal vessels, and then result in suppurative retinitis, which presents the same clinical picture in its course as supplicative chorioiditis. Since in metastatic affections of this sort infected emboli may occur within the blood-vessels in other parts of the eye also, it is best to comprise all these cases under the name of metastatic suppurative ophthalmia. The emboli that are present in this case are mostly of a capillary character. In them is found the micro-organism that caused the suppuration—usually the streptococcus, more rarely the staphylococcus, pneumococcus, or other bacteria.

The final outcome of severe plastic or purulent inflammation of the uvea is either atrophy or phthisis of the eyeball. Both are expressions employed to denote diminution in size of the eyeball due to shrinking. We speak of atrophy when the diminution in size takes place slowly through the shrinking of exudates in the interior of the eye, as occurs chiefly in plastic irido-cyclitis. Under the name of phthisis bulbi we designate the rapid shrinking of the eyeball, due to suppuration of its contents and their evacuation through the perforated sclera, this being the issue of panophthalmitis. In atrophy the diminution in size is kept within moderate bounds, while in phthisis the eyeball may be reduced to the size of a hazelnut, or less. In the atrophic eyeball the individual membranes, being still present, although in a very altered condition, are drawn upon by the shrinking exudate, and thus give rise to repeated attacks of inflammation and also to sympathetic disease of the other eye. In the phthisical eyeball the inner tunics of the eye have, all except some scant remains, been destroyed by suppuration; the small stump usually remains quiescent, and causes no danger to the other eye. An atrophic eyeball must therefore generally be enucleated, while a phthisical stump can usually be permitted to remain. In atrophy and in phthisis alike the optic nerve subsequently becomes completely atrophic, so that it ultimately forms a thin cord consisting simply of connective tissue. This takes place in consequence of the general law that nerve trunks atrophy when their terminal expansions have been destroyed (ascending atrophy).
DETACHMENT OF THE CHORIOID.—This is frequently found in the dissection of enucleated eyes, while in the living eye it but rarely comes under observation. In shrunken eyes the chorioid—and the ciliary body, too—are very frequently found to be detached by the exudates which are present in the interior of the eye, and which exert a centripetal traction in all directions (a, a, Fig. 100). A detachment of the retina, usually total, is never wanting in these cases. Since we are dealing with eyes which are already blind, the detachment of the chorioid has a practical interest only in so far as traction upon the ciliary nerves is produced by it; for this induces conditions of irritation in the blinded eye, and possibly sympathetic disease of the other eye.

It is a rare thing to see with the ophthalmoscope a detachment of the chorioid in an eye still capable of vision and with transparent media. Since the separated chorioid is covered by the retina, the detachment of the former manifests itself under the guise of a detachment of the latter, with the addition that we can recognize through the retina the characteristic branching of the vessels in the chorioid. If this symptom is wanting, the detachment of the chorioid can not be distinguished from a simple detachment of the retina. Separations of this sort may be caused by serous exudation (observed especially after operations for cataract) by hemorrhages beneath the chorioid, or by the development of a sarcoma in its external layers.

RUPTURE OF THE CHORIOID.—This is produced through the action of a blunt instrument upon the eyeball (contusion). Immediately after the injury the blood extravasated into the vitreous usually prevents a clear view of the interior of the eye. After the absorption of the blood the rupture of the chorioid,
which ordinarily lies in the neighborhood of the papilla, and most frequently to the outer side of it, is discovered. Sometimes there is only one, sometimes there are several lacerations. They form long, yellowish-white streaks, as the edges of the laceration in the choroid separate from each other and allow the white sclera to be seen between them (Fig. 112). The streaks generally have a curved shape, with the concavity toward the papilla; they are broadest in the center, and taper off to a sharp point at the ends. Their edges have an irregular black coloration, due to proliferation of the pigment. The retinal vessels run without any change over the streaks, a proof that the retina is unruptured.

II. Tumors of the Choroid.

79. Of malignant tumors the one chiefly occurring in the choroid is sarcoma, which in most cases is pigmented (melano-sarcoma). The clinical symptoms that sarcoma of the choroid presents change so during the development of the tumor that four stages can be distinguished in the course of the disease.

In the first stage the tumor is small, and manifests itself only in ophthalmoscopic examination by detachment of the retina at the site of the tumor. The patient notices a disturbance of vision in the shape of a defect in the visual field, corresponding to the site of the tumor. Afterward the detachment of the retina becomes total (Fig. 113, N), and thus the eye, which externally still looks normal, becomes completely blind. In the further growth of the tumor a time occurs when increase of tension suddenly sets in.

The sarcoma thereupon enters the second stage of its development—that of increased tension. Externally the eye presents the appearances of inflammatory glaucoma (§ 82). Marked injection of the eyeball exists, the cornea is dull and clouded, the anterior chamber shallow, the iris discolored, the pupil dilated and immobile, and the tension of the eye to palpation is considerably elevated. If the media are sufficiently clear, the gray reflex of the detached retina can be seen deep down behind the pupil. Later on, the lens becomes clouded, so that the clinical picture of glaucoma absolutum with cataracta glaucomatosa is produced. From the time when the symptoms of inflammatory glaucoma set in the patient suffers with pain; very frequently it is by this that he has his attention first called to his trouble. Since the picture presented by the affected eye corresponds completely to the complex of
symptoms of inflammatory glaucoma, the correct diagnosis in this stage
is to be made with difficulty, or not at all.

The third stage is that of the growth of the tumor upon the outside.
The symptoms are different, according as the tumor breaks through
the sclera in its anterior or in its posterior division. In the former
case, dark, hard prominences are seen developing in the circumference
of the cornea, and the diagnosis can readily be made. If, however, the
tumor first grows through the sclera posteriorly, the nodules of the
tumor are invisible, and do not give evidence of their existence until
afterward, through the gradually increasing protrusion of the eyeball
(exophthalmus). As soon as the tumor has broken through the en-
velopes of the eyeball to a sufficient extent the pain usually abates,
since the great tension in the eyeball then ceases. But, to make up
for this, the extra-ocular masses of tumor, freed from the intra-ocular
pressure that constrained them, grow so much the quicker. First the
orbit is entirely filled by the tumor, afterward the latter projects from
the orbit, as big as an apple or as the fist. From the orbit the tumor
is continued to the neighboring parts, particularly to the brain. At
its exposed portions the tumor ulcerates and gives rise to frequent
hemorrhages.

The fourth stage is that of the generalization of the tumor by the
development of metastatic nodules in the internal organs, most fre-
cently in the liver.

Years usually pass before the sarcoma has run through the four
stages just pictured. The first and second stages last a long time,
while afterward the growth of the tumor becomes continually more
rapid. The patient dies either from exhaustion, in consequence of the
suppuration and hemorrhage from the tumor, or succumbs to the ex-
tension of the latter into the brain or to the metastases in the internal
organs.

The prognosis of sarcoma of the chorioid is absolutely unfavorable
for the life of the patient if the eye is not removed early. But even
then the prognosis is by no means to be regarded as perfectly favorable.
Apart from the fact that the eye itself in every case is lost, both local
recurrences in the orbit and also metastases may develop even after its
removal, the germs for their development having been already scat-
tered abroad earlier, although, at the time when the eye was removed,
they were too small to be demonstrable. Sarcoma of the chorioid is
hence to be regarded as one of the most malignant of diseases—one
which, in very many cases, ends in death. Sarcomata of the iris and
ciliary body behave, in respect to their course and ultimate outcome,
like sarcomata of the chorioid.

Sarcoma of the chorioid is a rare disease. It is found most fre-
cently between the fortieth and sixtieth year; in childhood it is of
extremely rare occurrence. This gives a means of distinguishing it
from the gliomata which spring from the retina, and which in part present symptoms like those of sarcomata, but which occur in childhood exclusively. A malignant neoplasm developing in the eyeball will, therefore, have to be regarded in all probability as a glioma in a child and as a sarcoma in an adult.

The treatment, as long as the neoplasm is still confined to the eyeball, consists in enucleation, which should be performed as early as possible. In doing it, we cut off the optic nerve as far back as possible, to meet the contingency of the degeneration having already passed over upon it. If the neoplasm has already grown out of the eyeball, everything diseased must be removed according to surgical rules. The surest method in this case is exenteration of the orbit—i.e., the removal of the entire contents of the orbit, together with the periosteum.

Sarcomata of the choroid consist either of round cells or of spindle cells, or are tumors made up of a mixture of both. They are almost always pigmented (melano-sarcomata); non-pigmented sarcomata (leuco-sarcomata) are among the rarities. Very often they contain many and wide blood-vessels. Sarcomata develop from the external layers of the choroid (layer of large and of medium-sized vessels) and grow inward toward the vitreous space, pushing the retina before them. In the beginning the retina lies everywhere in contact with the surface of the tumor, so that with the ophthalmoscope a sharply circumscribed gibbous detachment of the retina is found, beneath which the tumor can be recognized from its color and from its vessels. In this case the diagnosis of sarcoma is easily made. But afterward, in consequence of the disturbance of circulation in the choroid produced by the tumor, an accumulation of fluid takes place between the choroid and the retina. The latter is thus detached over an area greater than that occupied by the tumor, and does not permit the latter to be seen through it any more; ultimately, the detachment becomes total (Fig. 113). In this stage, since the detachment of the retina has lost its characteristic appearance, the diagnosis can not for the most part be made with certainty, although if we find, as we often do, the bulging mass formed by the displaced retina pressed close against the lens, we may be justified in suspecting the existence of a sarcoma. The tension of the eye affords one diagnostic point, being usually diminished early in simple serous detachment of the retina, while in detachment due to a tumor it is at first normal and afterward increased (Von Graefe). It is an additional argument for the existence of sarcoma if the anterior ciliary veins are found markedly dilated upon one side or the other. These dilated veins indicate that the sarcoma is situated in the choroid, and, in the area affected, prevents the blood in the forepart of the uvea from flowing out through the vasa vorticosa, so that it has to make its way through the anterior ciliary veins. At length the increase in tension reaches such a degree as to produce the complex of symptoms of inflammatory glaucoma. If the detachment of the retina is not already total, it gets to be so now, and the eye becomes completely blind. The point of time at which the glaucomatous attack sets in does not depend directly upon the size of the intra-ocular tumor. The increase in tension does not arise from the fact that the tumor occupies a certain space in the interior of the eye, for this call for additional space is compensated for by a corresponding decrease of the vitreous. On the contrary,
the increase in tension is based upon the congestion which the tumor produces in the veins of the chorioid, and by which increased transudation of fluid takes place into the interior of the eye. Elevated tension is, therefore, often seen with quite small tumors, while at another time the tumor may have already filled up a large part of the eye without exciting the symptoms of glaucoma. When the glaucomatous attack has set in, the eye looks as if it had been blinded by primary glaucoma, and the diagnosis can not be made with certainty. The existence of a sarcoma will be suspected if the patient states that the eye was already entirely blind before the outbreak of the inflammation, for in primary glaucoma blindness usually does not precede the attack, but follows it. Besides, we examine the second eye; if one eye is completely blinded by primary glaucoma, the second eye will rarely be found quite normal.

In rare cases the second (inflammatory) stage of formation of the tumor does not present the symptoms of glaucoma, but of a violent plastic irido-cyclitis. As a result of this, the eye becomes softer and shrinks up so far as the tumor contained in it permits. The growth of the latter is thus retarded for some time—a fact which does not prevent metastases from developing.

Perforation of the eye and growth of the mass exteriorly occur before the tumor has yet filled the whole interior of the eyeball, and are effected by the gradual growth of the cells of the tumor through the sclera, the cells usually following out preformed passages. We hence find the tumor growing out along the optic nerve and its sheaths, or utilizing the points where the anterior or posterior ciliary vessels or the vasa vorticosae emerge.

The metastases in remote organs arise through embolism. The blood current detaches cells from the tumor and carries them into other parts of the body, where they develop into independent tumors. Local recurrences are scarcely to be apprehended if the growth was confined to the eyeball at the time of the operation. On the other hand metastases occur even in cases in which enucleation was performed very early. Such metastases remain unobserved at the outset; and sometimes it is years before they cause the patient’s death.

Cavernous angioma, endothelioma, and perithelioma have been known to occur as primary tumors of the chorioid in a few cases.

Carcinomata and also adenomata have been observed as a great rarity in the chorioid, but only as secondary tumors, as metastases from carcinoma in other organs (especially in the thoracic glands).

**Tuberculosis of the Chorioid.**—In the chorioid, as in the iris, tuberculosis occurs under the two forms of disseminated and of solitary nodules. The diagnosis between them is made with the ophthalmoscope.

(a) *Disseminated* or *milky* tuberculosis of the chorioid was first described by Jäger. Small ill-defined patches of yellowish or pale-reddish color are seen in the fundus. These even within a short period of examination—within a few days—grow larger without, however, attaining a size of more than one third of the optic disk; and at the same time new patches may make their appearance in the fundus. By this rapidity of growth the affection is distinguished from chorioiditic spots, which change very slowly; besides, the pigment changes, so frequent in chorioiditis, are wanting in tubercles of the chorioid. The tubercles occupy chiefly the posterior division of the chorioid. Ordinarily only
a small number are present, although sometimes as many as twenty or thirty of them can be counted in the eye. Anatomical examination has proved that the spots seen with the ophthalmoscope correspond to nodules of a mean diameter of one millimetre, which possess the typical structure of tubercle nodules (Manz).

Miliary tuberculosis of the choroid forms one of the symptoms of general miliary tuberculosis (Cohnheim). It has essentially a diagnostic interest; as in doubtful cases of acute miliary tuberculosis, it may assist in establishing the diagnosis. In chronic tuberculosis of the lungs, the intestine, etc., it is not ordinarily observed.

(b) Solitary or conglomerated tubercle of the choroid makes its appearance under the form of a neoplasm. With the ophthalmoscope a rather large, light-colored tumor is seen in the choroid; it is an argument for its tuberculous nature if smaller light spots (tubercle nodules) are found in the choroid in its vicinity. The tumor may afterward grow through the sclera to the outside, and there break down. Anatomical examination shows that it consists of a great number of smaller miliary nodules, which have coalesced to form one pretty large tumor. In the center of the latter caseation takes place. The solitary form of tuberculosis of the choroid is a very rare disease, pre-eminently affecting young people. It runs a chronic course, and accompanies chronic tuberculosis of the internal organs, especially of the brain. There are, however, cases in which, beside the tuberculous nodule in the eye, no focus of tubercle can be clinically demonstrated to exist in the organism.

The prognosis of solitary tubercle of the choroid is bad, since the eye in any case is lost, and in most cases also life is endangered through the presence of tuberculous disease in other parts. The treatment consists in the enucleation of the eye, a procedure which is especially indicated in those cases in which the choroidal tubercle appears to form the only tuberculous focus. Enucleation in this case has as its primary object the prevention of any further diffusion of the tuberculous virus.

III. Congenital Anomalies of the Choroid.

80. Coloboma of the Choroid.—In this affection the ophthalmoscope shows a brilliant white area in the red fundus below the optic-nerve entrance (Fig. 114). This represents a circumscribed defect in the choroid and retina, in the confines of which the sclera lies exposed, and is hence visible as a white surface. Coloboma of the choroid is frequently found along with coloboma of the iris, and also with other anomalies of the eye. Such eyes are often smaller than usual (microphthalmus). Sometimes, indeed, eyeballs are found which are only as large as a pea or a millet seed, and which lie entirely in the back part of the orbit, and are not discovered in an examination made upon the living subject. In this way absence of the eye (anophthalmus) is simulated. Whether a true anophthalmus—i.e., a condition in which, while the orbit is present, there is not even a rudiment of the eyeball—does occur or not, has not so far been determined.

The eyesight suffers in coloboma of the choroid because, in the first place, the coloboma corresponds to a defect in the visual field.
Moreover, even the direct visual acuity is usually defective because the eye, as a whole, has its development deranged. In the higher degrees of microphthalmus the sight is reduced to the mere differentiation of light from darkness.

Coloboma of the choroid is in a marked degree transmissible by inheritance, and that, too, not infrequently in conjunction with other congenital malformations of the body.

Coloboma of the choroid has the shape either of an oval, whose long axis corresponds nearly to the vertical meridian, or of an obtuse-angled triangle whose apex is directed toward the papilla. The peripheral border of the coloboma not infrequently presents a tapering prolongation extending toward the ciliary body. Even the smallest colobomata are much larger than the optic disk; and

![Coloboma of the Optic Nerve and Choroid](image)

FIG. 114.—COLOBOMA OF THE OPTIC NERVE AND CHOROID. FROM THE RIGHT EYE OF A FOURTEEN-YEAR-OLD GIRL. Erect Image. (After Caspar and Krüger.)

The papilla appears about nine times as large as in the normal state, and lies considerably below the level of the adjoining retina. An upper (yellowish) and a lower (gray-colored) portion can be made out in it. From the former rise the central vessels, which are abnormal in sending most of their branches upward. The lower (gray) portion of the papilla shows several light-colored, ridgelike projections and but few blood-vessels, although numerous blood-vessels emerge at its overhanging border and run out into the retina, evading the coloboma. The enlarged papilla is bordered above by a narrow atrophic crescent. The coloboma of the choroid lies below the papilla and somewhat to its temporal side. It lower (anterior) border is not represented in the drawing. The coloboma is of brilliant white hue, is sharply defined, and is placed somewhat deeper than the adjoining portions of the fundus. It shows a few blood-vessels and in spots a fine granular pigmentation.

the large colobomata are so extensive that their anterior border can no longer be seen with the ophthalmoscope, because it lies too far forward. So, too, they may extend so far backward that they involve the papilla. The latter, in that case, is generally changed in shape and appearance—sometimes so much so that we can scarcely tell where it lies except for the intimation of its existence afforded by the place of origin of the retinal vessels.

The edge of the coloboma is sharply defined and commonly bordered by pigment. The coloboma itself is of a pure white or bluish-white hue, and dis-
plays here and there pigment spots and also vessels. The vessels are in part those that arise from the adjoining retina and choroid, in part belong to the sclera, which lies exposed within the area of the coloboma, and in part are seen to originate from the coloboma itself. The latter set must be regarded as posterior ciliary vessels. In eyes of this sort the retinal vessels often display an irregular course; not infrequently it looks as if they were trying to evade the coloboma, since they run along its borders instead of passing over it.

The surface of the coloboma lies deeper than the rest of the fundus, and often presents channeled depressions or prominent ridges, as can be inferred both from the way in which the vessels bend and also from the parallactic displacement.

Cataract, generally of a complicated, inoperable character, frequently develops in eyes affected with coloboma of the choroid. If I may be allowed to judge from one case whose course I myself observed, such a cataract is produced in the following way: The retina, being adherent to the margin of the coloboma, undergoes the same sort of traction that it does when adherent to a scleral cieatrix (see page 241). In consequence of this traction detachment of the retina takes place—at first only at the edge of the coloboma, but afterward over the whole extent of the retina. The clouding of the lens, then taking place, is to be regarded as the result ordinarily following total detachment of the retina.

In rare cases large, white, depressed areas have been observed not below, but to the outside, of the optic nerve, in the region of the yellow spot. These have likewise been looked upon as congenital malformations—colobomata of the macula.

The formation of colobomata occurs also in the optic nerve. Either a deep depression is found in the lower part of the latter or the entire optic-nerve entrance is enlarged to several times its usual size, and the vessels coming out from it are, as it were, forced apart (Fig. 114). Colobomata of the optic disk are met with either alone or in conjunction with colobomata of the choroid.
The congenital crescents on the lower side of the disk, which are commonly associated with congenital amblyopia (see page 345 and Fig. 111), should also probably be regarded as rudimentary colobomata of the optic disk.

Anatomical examination of an eye affected with coloboma of the chorioid shows even upon an external view a protrusion of the sclera, situated below the optic nerve. This is the scleral protrusion first described by Ammon (see page 245). Corresponding to this, in the inner membranes of the eye, is the coloboma visible with the ophthalmoscope (Fig. 115). Within this, microscopical examination reveals, for the most part, only a thin pellicle composed of connective tissue, the remains of the fused chorioid and retina.

The starting point of a coloboma we must regard as located in the fetal ocular cleft. This is found at the lower side of the secondary ocular vesicle—the flask-shaped structure of the embryonic eye—and is designed for the admission of the mesoderm into the interior of this structure (Fig. 87, see page 285). Later on, this cleft ought to close again without leaving any trace of its presence. But if the closure takes place incompletely, a coloboma is formed. The walls of the retinal cleft, in this case, do not grow together directly, but are connected by thin, intermediate tissue. In consequence of the patency of the retinal cleft, the growth of the chorioid over the external surface of the retina is interfered with, so that at the site of the fissure retina and chorioid alike are wanting, or are replaced by connective tissue. Lastly, the development of the sclera, too, fails to take place in normal fashion in the affected spot; it is thin and yielding here, and bulges out beneath the intra-ocular pressure, and in this way the posterior scleral protrusion originates. The original site of the coloboma is hence in the retina, and the disturbance of development in the adjacent chorioid and sclera is consecutive. The fetal ocular cleft is furthermore continued as a furrow upon the pedicle of the ocular vesicle, which is afterward the optic nerve. By incomplete closure of this furrow the colobomata of the optic nerve are formed.

Coloboma of the iris is to be explained as a derivative of coloboma of the chorioid. The iris grows out from the anterior margin of the rudimentary chorioid at a time when the fetal ocular cleft is already closed; hence the iris in no stage of its development has a fissure. But when the optic vesicle and the mesodermal tissue covering it suffer a derangement of development at the site of the retinal cleft, this derangement may be transmitted to the iris, which will hence fail to grow out in normal fashion from the chorioid at the affected spot. Hence the iris here is wanting (coloboma of the iris). This condition may persist, even if the cleft in the retina and chorioid afterward closes completely, so that then a coloboma of the iris is produced without a coexisting coloboma of the chorioid.

In many cases of microphthalmus (and also of apparent anophthalmus) there is found a cyst in the lower (very rarely indeed in the upper) lid. This is filled with a serous liquid, glimmers with a bluish luster through the skin of the lid, and is generally connected by a process with the rudimentary eyeball. In the wall of the cyst retinal elements can frequently be made out with the microscope. Arlt explains these cases as being due to incomplete closure of the ocular cleft. The intermediary tissue closing in the cleft bulges out into quite a large sac, which is appended to the eyeball, while the latter itself is retarded in its development. The tissue connecting the sac and the eyeball elongates and at the same time contracts into a thin cord, so that finally we have a large bladder to-
which the eyeball, reduced to the size of a pea, or even less, is attached by means of a long pedicle. According to others the cause of these cases is that the ocular vesicle grows out below atypically into the orbital tissue, and thus there is formed a cyst, while the embryonic eye proper undergoes atrophy.

The explanations of the origin of colobomata contain much that is yet hypothetical and unaccounted for. Moreover, there is no unanimity of opinion as to the real cause preventing the regular closure of the ocular cleft, some believing that it occurs because the mesodermal tissue entering through the ocular cleft persists too long, while others think that an inflammation in the region of the cleft is accountable for it. Still smaller is our knowledge in regard to the origin of colobomata in the macula lutea.

Albinism consists in the absence of the physiological pigment. Albinos have yellowish-white flaxen hair and also white eyebrows and lashes. The iris is light gray, and appears reddish by transmitted light, while the pupil has a vivid red luster. With the ophthalmoscope the blood-vessels of the retina and choroid are seen with perfect distinctness running upon the almost white fundus, to which the papilla by its dark, grayish-red color offers a striking contrast (Fig. 11). Albinotic eyes are photophobic, and hence see better in the dusk; their visual acuity is always reduced; and nystagmus, frequently combined with a pretty high degree of myopia or with strabismus, is constantly present. Albinism is congenital and often inherited. In albinotic eyes the pigmentiferous cells of the uvea and the retina are present, just the same as in the normal eye, only they contain no pigment. All sorts of transition forms exist between complete albinism and normal pigmentation.
CHAPTER VII.

GLAUCOMA.

GENERAL CONSIDERATIONS.

81. The essence of glaucoma lies in the increase in the intra-ocular pressure, from which all the other essential symptoms of glaucoma can be deduced (Von Graefe). In one series of cases the increase in pressure sets in without our being able to discover any reason for it in an antecedent disease of the eye (primary glaucoma). In other cases, on the contrary, the increase in pressure is the result of some other disease of the eye (secondary glaucoma). Primary glaucoma, accordingly, has increase in tension as its first and most important symptom, from which all the rest of its phenomena arise—it is glaucoma proper, the glaucoma par excellence. In secondary glaucoma, on the contrary, the increase in tension is only a consequence of other pathological conditions—is an accessory, as it were. The clinical picture of secondary glaucoma, therefore, is exceedingly polymorphous, varying according to the different affections which form the basis of it. While genuine or primary glaucoma always affects both eyes, although not always at the same time, secondary glaucoma remains confined to the eye which, through being diseased, has given rise to the increase in tension.

The consequences of increase of tension, inevitably occurring if it lasts a long time, are excavation of the optic nerve, and reduction, with ultimate annihilation, of the sight.

Excavation of the optic nerve is dependent upon the recession of the lamina cribrosa. By the latter we understand that part of the sclera which lies at the point of entrance of the optic nerve into the eye, and which is perforated by numerous foramina designed for the passage of the bundles of fibers of the nerve (Fig. 9). The lamina cribrosa is that part of the fibrous tunic of the eye (corneo-sclera) which has the least tenacity, and hence gives way first to increased ocular pressure, which it does by bulging backward. But at the same time the optic-nerve fibers, set in the foramina of the lamina cribrosa, also recede, so that the surface of the optic nerve itself sinks back (e, Fig. 116 B). Upon ophthalmoscopic examination the papilla appears depressed below the level of the adjacent fundus—slightly at first, afterward a good deal—so that the margins of the papilla dip down steeply, or are even
overhanging. This condition is recognized chiefly by the bending or actual interruption of the blood-vessels at the spot where they pass from the retina over the edge of the papilla and dip down into its depth (Fig. 116 A). The nerve fibers, too, like the blood-vessels, undergo flexion or interruption at the edge of the papilla. This interruption, together with the high pressure to which the nerve fibers are exposed in the interior of the eye, causes them to atrophy. Accordingly, in the later stages, we see that the papilla is not only depressed, but is also bleached out and of a bluish-white color, because the nerve fibers have been destroyed and the clear white lamina cribrosa is exposed.

The atrophy of the optic-nerve fibers is also the most important cause of the decrease of visual power which accompanies the elevation

Fig. 116.—Glaucomatous Excavation of the Optic Nerve. Magnified 14 x 1.

Cf. the normal optic nerve in Fig. 9.

A. Ophthalmoscopic Picture of the Papilla.—The papilla is bounded by a sharp, overhanging edge, at which the arteries, a, and the veins, v, of the retina appear to stop with their ends bent over the edge. This is due to the fact that their continuation on the floor of the excavation is often displaced somewhat laterally as compared with the portion situated in the retina; moreover, the vessels within the excavation are seen but indistinctly. In the outer half of the excavation are seen the gray dots of the lamina cribrosa. The zone, h, of the fundus, adjoining the papilla, is decolorized (hypo glaucomatous).

B. Longitudinal Section Through the Head of the Optic Nerve.—This shows a deep excavation, c, on the floor of which only a few remains of the nerve fibers, b, are visible. The central vessels, c, ascend upon the retina, r, at the nasal margin of the excavation; the innermost layer (fiber layer) of the retina is considerably diminished in size through atrophy. ch, choroid; s, sclera. The volume of the trunk of the optic nerve has been considerably reduced through the atrophy of the bundles of nerve fibers, a. As a result of this, the interspaces between the sheaths of the optic nerve (the pial sheath, p, the arachnoid sheath, or, and the dural sheath, d) are dilated, especially on the temporal side.
of tension. Impairment of both direct and indirect vision occurs. The former finds its expression in the gradual diminution of the acuity of central vision, the latter in the limitation of the field of vision—a limitation which begins, in the majority of cases, on the nasal side, as the temporal side of the retina becomes insensitive first. Finally, complete blindness supervenes.

Primary glaucoma is a common disease, constituting about one per cent of all cases of eye disease. Its accurate recognition is of the greatest importance for the general practitioner, the more so because here prompt and proper therapeutic interference can save everything, but a false diagnosis and improper treatment may destroy everything. Unfortunately, we still constantly get under observation many cases of glaucoma which have not been correctly diagnosed by the general practitioner, and which come to the ophthalmologist only when assistance is no longer possible. Cases of inflammatory glaucoma are often confused with iritis or irido-cyclitis, and are accordingly treated with atropine, which has a particularly injurious action in glaucoma. Cases of glaucoma simplex which present no external symptoms of inflammation are not infrequently regarded as commencing cataract, and the patients are put off in expectation of the cataract's becoming ripe, so that they delay until it is too late for iridectomy.

Glaucosa has been known from antiquity. Of course, it is only the inflammatory variety that has been thus known, since the non-inflammatory variety can be diagnosed by the ophthalmoscope alone. Hence this second variety and the other kinds of blindness, that are produced by diseases of the deeply situated membranes of the eye, and that have no external manifestations, were lumped together under the common name of amaurosis. Inflammatory glaucoma was usually regarded as having a connection with gout, and was hence called ophthalmia arthritica. The first to recognize the increase in tension as the most important symptom of glaucoma were Mackenzie, and particularly Von Graefe. Heinrich Müller, a man deserving the greatest praise in all that relates to the pathological anatomy of the eye, was the first to demonstrate anatomically the pressure excavation of the optic nerve (1856); soon afterward it was accurately diagnosed in the ophthalmoscopic picture by Weber and Förster. Mackenzie, starting from the fact of the increase of tension, had already attempted to effect the cure of glaucoma by repeated puncture of the cornea, without, however, obtaining any lasting result. Such a result was first obtained by Von Graefe, who, in the year 1856, employed iridectomy for the first time in glaucoma, after having found it efficacious in various other diseases of the eye. This was one of the most pregnant discoveries in ophthalmology, and one which will for all time redound to the glory of Von Graefe. We have only to remember that formerly every case of glaucoma inevitably led to blindness, and that now, thanks to iridectomy, the majority of glaucomatous patients can be cured. How many thousands there are who formerly would have been forced to sink year by year irretrievably into the night of blindness, but who now are saved for vision through Von Graefe's discovery!

With reference to excavation of the optic nerve, three varieties are distinguished—the physiological, the atrophic, and the glaucomatous. The physiological excavation (Fig. 117 A) originates from the fact that the bundles of fibers of the optic nerve, when separating from each other so as to curve into the
retina, do so, not in the plane of the retina, but behind it; the lamina cribrosa, however, is in its normal situation. The physiological excavation is always partial—i.e., even if it is very large it never takes up the entire papilla, because a certain space close to the edge of the papilla must always be occupied by the nerve fibers which are passing over into the retina (page 12, and Figs. 8, 9, and 109). The atrophic excavation (Fig. 117 B) is caused by the disappearance of the nerve fibers that form the papilla of the optic nerve and lie in front of the lamina cribrosa—the lamina cribrosa itself remaining in place. The atrophic excavation is total—i.e., extends over the entire papilla, but always remains shallow, for at most it can only attain a depth equal to that at which the lamina cribrosa lies behind the inner surface of the retina. In the atrophic excavation, the papilla is at the same time bleached white on account of the disappearance of the nerve fibers. The physiological and the atrophic excavations have this in common, that the lamina cribrosa remains undisplaced; as the lamina cribrosa forms the floor of the excavation, the depth of the latter is confined within narrow limits. The glaucomatous excavation (Fig. 117 C) is distinguished from the preceding kinds, above all, by the fact that it originates in a recession of the lamina cribrosa; it can hence attain a much more considerable depth than they. The glaucomatous excavation comprises the entire papilla, which, in the beginning, still shows the red coloration of health. Later on, the nerve bundles are destroyed by atrophy, so that the papilla becomes white, and displays exposed upon its floor the lamina cribrosa. With this is associated a still further increase in the excavation, the depth of which is increased by a space equal to the thickness of the destroyed papilla of the optic nerve.

The ophthalmoscopic signs distinguishing the three kinds of excavation are, therefore, as follows: A partial excavation is physiological, a total one is pathological, and either atrophic or glaucomatous. The atrophic excavation is shallow, and the papilla, at the same time, very white. The glaucomatous excavation may be shallow or deep, according as it has existed for a longer or shorter time. In a shallow glaucomatous excavation the papilla is found to have still a good color—a feature which distinguishes it from the atrophic excavation. If the excavation is deep and total, it can only be a glaucomatous one, whatever color the papilla may have. In practice, the distinction between the individual forms of excavation is sometimes very difficult to make.
The ophthalmoscopic picture of a glaucomatous excavation of the optic nerve shows the papilla to be paler, and, in advanced cases, bluish or greenish white. A shadow is seen running along the margin, while the center of the excavation is the part lightest in hue. On the floor of the excavation may be recognized the gray dot marks of the lamina cribrosa (Fig. 116 A, 1). The vessels do not emerge at the center, but, for the most part, close to the inner margin of the papilla. At the spot where they pass over the edge of the papilla to go to the retina they show a bending, or, in deep excavations, an interruption, of their course. If the edge of the excavation is overhanging, the ascending portion of the vessel may be completely concealed behind it, so that the blood-vessels arising from the vascular entrance seem to disappear at the edge of the papilla to emerge again in the retina at some other spot. It is only in the inverted image that the course of the vessel can be seen distinctly in its whole extent at once; in the erect image, the vessels on the papilla and those in the retina are never seen clearly at the same time, since they lie at different depths and hence have a different refraction. That is, if the adjustment is made for the vessels in the retina (Fig. 116 A, a and e), the vessels on the floor of the excavation (e) look quite pale and hazy, and vice versa. The vessels in the excavation have, as compared with those in the retina, a myopic refraction, and hence, to be seen distinctly, require a correspondingly strong concave glass. From the difference in refraction between the margin and the floor of the excavation, the depth of the latter can be estimated (see page 25), and by repeated measurements of this sort we can determine whether, as time goes on, the depth of the excavation is increasing or diminishing. In the inverted image, the difference of level manifests itself only by parallactic displacement (page 25). The caliber of the arteries is contracted, while the veins are distended and tortuous—in fact, sometimes there is a whole convoluted mass of vascular loops lying on the floor of the excavation. These changes of vascular caliber are easily accounted for by the action which the increase of pressure exerts upon the vessels of the vascular entrance, permitting less blood to enter the arteries of the retina, and, on the other hand, obstructing the outflow of blood from the veins. The former, therefore, are filled too little, the latter are filled too much. We very often observe a pulsation in the veins, and not infrequently, also, a pulsation in the arteries within the papilla. (For the explanation of this, see page 13.) When glaucomatous excavation has lasted for a long time, the papilla is usually found to be surrounded by a white or yellowish areola, which is the expression of an atrophy of the choroid about the papilla (halo glaucomatosus, Fig. 116 A, h). The rest of the fundus in the later stages often presents a tesselated appearance (Fig. 119).

The condition of the sight is not always in direct proportion to the depth of the excavation—in fact, it is not the recession of the lamina cribrosa as such that affects the vision, but the atrophy of the optic nerve, which, though produced by it, does not always by any means keep pace with the formation of the excavation. Thus we sometimes see cases with deep excavation and yet with normal visual acuity and a large field of vision. On the other hand, by a very considerable increase in pressure—as in glaucoma fulminans—the sight may be completely extinguished within a few hours by paralysis of the optic-nerve fibers without there being any excavation of the optic nerve, because the time is too short for it to be formed. Accordingly, in forming a judgment as to the acuteness of vision, we must be guided rather by the color of the papilla and the
GLAUCOMA.

367
caliber of the retinal arteries than by the depth of the excavation, since atrophy
of the nerve fibers makes itself known mainly through the pallor of the papilla.
The contraction of the visual field begins most frequently on the nasal side,
although we often also find other forms of contraction present. Thus, a concentric
limitation of the field may occur, especially in glaucoma simplex; and at times there may be central, paracentral, or peripheral scotomata.

I. PRIMARY GLAUCOMA.

82. Primary glaucoma, also called simply glaucoma, sets in with varying symptoms. If the pressure rises suddenly to a considerable height, inflammatory symptoms are excited; on the contrary, these symptoms are wanting when the increase in tension develops gradually and keeps within narrow limits. Accordingly, an inflammatory and a non-inflammatory form of glaucoma (glaucoma inflammatorium and glaucoma simplex) are distinguished.

A. Glaucoma Inflammatorium.

Inflammatory glaucoma runs a typical course, especially in the acute cases (glaucoma inflammatorium acutum), which, therefore, will be first described. In the course of inflammatory glaucoma the following stages are distinguished:

(1) Stage of Proptomes.—The prodromal stage, which in most cases precedes the inflammatory attack, is characterized first of all by attacks of obscuration of vision. The patient declares that during these attacks he does not see as well, having at the same time the feeling as if there was a cloud or smoke concealing objects from him. If there is a light in the room, he sees a ring about it having the colors of the rainbow. During the attack there is frequently a feeling of tension in the eye, or a dull frontal headache. If the physician examines the eye during such an attack, he finds the cornea a little dull and diffusely clouded, like glass that has been breathed upon. The cloudiness is greatest at the center, smallest at the periphery, and, on account of its uniformity of distribution, causes considerable disturbance of vision. It also produces the appearance of a colored ring about a luminous flame—an appearance similar to that which, for instance, we see when, on a misty winter night, we look through the frost-covered window panes at a gas flame in the street. The anterior chamber is somewhat shallower through advancement of the iris; the pupil is more dilated than usual and reacts sluggishly; the tension of the eye is distinctly increased. Frequently, too, slight ciliary injection is present.

Such an attack ordinarily lasts several hours, after which the eye returns once more completely to the normal condition, both as regards its appearance and as regards its function. The attacks at first make
their appearance at pretty long intervals (of months or weeks); later on, they become constantly more frequent. Often specific causes for their existence can be demonstrated, such as hearty meals, late hours, emotional excitement (as at card-playing), etc. In many cases they return, even without cause, periodically, sometimes even every day, so that the patient, for example, declares that he always sees through a cloud in the morning, and commencing with the afternoon begins to see clearly, or vice versa. If the attacks come on in the evening, they always cease when the patient falls asleep; even in the daytime an attack may be cut short by his going to sleep.

In the intervals between the prodromal attacks the sight of the eye is normal; but the patient complains that, to see near by, he has to employ stronger and stronger glasses—rapid increase of presbyopia through diminution of the power of accommodation (see § 142).

The prodromal stage sometimes lasts only a few weeks, sometimes is protracted over months or even years. In the latter case, the eye gradually undergoes definite changes, so that it is no longer normal even in the intervals between the attacks. The eye acquires externally the glaucomatous aspect, and an excavation likewise forms in consequence of the oft-repeated increase of pressure. Consequently the sight itself is no longer perfect even during the time in which no attacks occur. In such a case we can no longer speak of the disease being in the prodromal stage, but must regard it as being now a chronic inflammatory glaucoma into which the prodromal symptoms have been imperceptibly transformed.

(2) The second stage is that of glaucoma evolutum, which is ushered in by an attack of acute glaucoma. This sets in suddenly, after the prodromal stage has lasted a longer or shorter time. The cause of an acute attack—in case such a cause is discoverable at all—is like those which determine the prodromal attacks. Chief among them are to be mentioned states of congestion of the venous system, especially those due to enfeeblement of the heart’s action; also mental emotions, particularly those of a depressing character; and, lastly, dilatation of the pupils. For the last-named reason a drop of atropine in an eye which is predisposed to glaucoma may excite an attack.

The acute attack manifests itself by violent pain radiating from the eye along the first and second branches of the trigeminus. The patient complains of pains in the head, the ears, and the teeth, which may reach an intolerable pitch. They deprive him of appetite and sleep; not infrequently vomiting and fever likewise set in. Simultaneously with the appearance of the pain the visual power falls rapidly away, so that only large objects—such as, for instance, the hand moved to and fro before the eye—can be recognized. The field of vision is considerably narrowed, and mostly on the nasal side. Objective examination shows the appearances of a violent external inflammation—œdema
of the lids, and oedema or even chemosis of the conjunctiva, which is greatly congested. The injection, in accordance with its pre-eminently venous character, has a dusky-red color. The cornea is punctately dotted, has a pronounced smoky cloudiness, and is almost or quite insensitive to touch. The anterior chamber is shallower, the iris is discolored and narrowed. Consequently, the pupil is dilated; very often, too, it is oval and eccentrically situated, the narrowing of the iris being then particularly great in special spots—most frequently above. The reaction of the iris is abolished. From the pupil we get a grayish-green reflex.* Ophthalmoscopic examination is impossible, on account of the marked cloudiness of the cornea. The tension of the eye is considerably elevated.

It may be seen that the symptoms of the acute attack are the same as those belonging to the prodromal attack, except that they are much more pronounced and are accompanied by inflammatory symptoms (injection, oedema of the lids and conjunctiva, and pain). The prodromal attacks may therefore be regarded in the light of abortive attacks of glaucoma, which retrocede before they have developed to their full height. But at length an onset of this sort takes place, that rises to the height of an acute attack, and after this a perfect return to the normal is no longer possible. The tension now remains permanently elevated, and the eye retains the glaucomatous aspect.

The course of the attack of inflammatory glaucoma is that after some days or some weeks—according to the severity of the attack—improvement, or even an apparent cure, sets in. After some days the pain diminishes in violence and afterward disappears altogether. The eye becomes free from discoloration, the cornea clears up, and the sight becomes better again. If the sight was still normal before the attack, it may improve to such an extent that the patient can still read and write; but the more the sight has been injured before the attack by a prodromal stage of long duration, the less is its improvement after the decline of the attack. We may say in general that after an attack has passed off, the vision never again reaches the same height that it had before this occurred. The attack, furthermore, leaves behind it objective changes in the eye, that give at the first glance proof of the sort of disease that is present. The overdistention of the anterior ciliary veins remains; the anterior chamber is shallower and the iris is narrower, is turned to a slate-gray color, and reacts sluggishly or not at all; the tension is permanently increased. We then say that the eye exhibits the glaucomatous aspect (habitus glaucomatosus). Ophthalmoscopic examination, which becomes feasible again after the cornea

* Hence the name “green cataract” (grüner Staar). In Greek, sea-green is called γαλάζιον, whence glaucoma. This reflex, however, is by no means distinctive of glaucoma. It is always found when the pupil is dilated, and at the same time the media are not completely transparent.
has cleared up, shows at the optic-nerve entrance the signs of hyperæmia, which really is only one of the evidences of the general hyperæmia that existed during the inflammatory attack. The excavation of the optic nerve is not present directly after the attack, because for its formation quite a long period of increased tension is requisite; it hence does not develop until later on. It is only in those cases in which there has been a long preceding stage of prodromes that the excavation is present during the attack. After the subsidence of the attack the eye remains quiescent for quite a long time, and the patient entertains the hope of a permanent cure. Then a new attack sets in. This, as far as inflammatory symptoms and pain are concerned, is usually less intense than the first, but results in a still further reduction of the sight. Inasmuch as new attacks now constantly follow each other, at shorter or longer intervals, the sight at length becomes entirely extinct. The disease has then entered upon the

(3) Third stage, that of glaucoma absolutum. The eye is completely blind, and presents the following picture: Contrasting with the porcelain-like, bluish-white sclera are the distended anterior ciliary veins, which unite round the cornea to form a bluish-red circle of dilated vessels. The cornea is shining and transparent, but insensitive; the anterior chamber is very shallow. The iris is reduced to a narrow gray marginal band, which in places is almost entirely concealed by the limbus, and which at its pupillary margin is encircled by a broad black border. The dilated and rigid pupil is greenish, or of a dirty gray. The optic disk is deeply excavated, the eye as hard as stone.

Later on, degenerative changes make their appearance in the blinded eye, which are designated under the name of glaucomatous degeneration. The cornea becomes cloudy and covered with peculiar glassy-looking deposits. Upon the sclera dark ecstatic prominences—most frequently in the region of the equator (equatorial staphylomata)—present themselves to view; the lens becomes cloudy (cataacta glaucomatosa). Although the eye has now been blind for a long time, the patient still constantly believes that he perceives light, especially under the form of a luminous haze, which on some days is more pronounced, on other days less so. These subjective luminous appearances for a long time uphold the patient in the belief that he will be able to regain his sight. Furthermore, attacks of pain keep making their appearance at intervals in the blinded eye.

The final outcome in glaucoma is usually atrophy of the eyeball. After the eye has been hard for years it at length becomes softer, smaller, and atrophic. In other cases, ulcus serpens develops with perforation and consecutive irido-cyclitis, or even panophthalmitis, together with phthisis bulbi. Not till the glaucomatous eye has become shriveled does it allow its unfortunate possessor to have any lasting rest.

The course of glaucoma with a violent attack of inflammation, here
The character of the pupil has a very great influence on the phenomena of glaucoma. Its contraction has a favorable effect, since it generally diminishes the tension in glaucoma, while dilatation of the pupil, on the contrary, increases the tension. Hence miotics have the power of cutting short the prodromal attacks, and of ameliorating the symptoms even in the inflammatory attack. The fact that the prodromal attacks can be cut short by the patient's going to sleep is probably also referable to the marked contraction which the pupil undergoes in sleep. Mydriatics, on the contrary, can excite an inflammatory attack in an eye that is predisposed to it, and that not only the powerful mydriatics, like atropine, but also homatropine and even cocaine. We should always, therefore, take care that there is no suspicion of the existence of glaucoma, before making an instillation of a mydriatic in the case of an elderly man. If, however, we have had the misfortune to set up in this way an attack of inflammatory glaucoma, it may be possible, by the prompt and energetic instillation of eserine, to cause the attack to disappear, and that perhaps permanently.

It is a fact frequently observed that iridectomy, done in a glaucomatous eye, may give rise to an inflammatory attack in the second eye, if it is already predisposed to glaucoma. Nevertheless, it is not the operation as such, but the associated mental and physical depression which, as on other occasions, may here, too, excite a glaucomatous attack. The operation itself is not needed to produce this result. One day a lady came to me with a recent inflammatory attack in both eyes. She had a few days before had her first attack of glaucoma in the right eye, and had consulted Prof. Airt for it. When he explained to her that an operation was necessary, she experienced such a violent fright that she got an inflammatory attack in the second eye while returning from the consultation in her carriage. Probably there are two factors that act together in the case of glaucoma produced by violent emotion—the disturbance of the circulation and the reflex dilatation of the pupil. In an operation upon a glaucomatous eye, pilocarpine or eserine may be instilled into the second eye to prevent the outbreak of glaucoma in it; even this precautionary measure, however, does not afford complete security.

Febrile diseases of various sorts may likewise determine an attack of glaucoma—a fact that has been observed with special frequency in influenza epidemics.

In the acute inflammatory attack the pain radiates from the eye into the whole of one side of the head, so that sometimes the patients are not for a moment aware that the pain is proceeding from the eye, but complain simply of violent "rheumatic" headache. If the attack has been accompanied by marked swelling of the lids, a history of erysipelas may be given. One should not allow himself to be led astray by such declarations as these, but should form his decision in accordance with the results of the objective examination. The principal thing that this shows us is the dull and uniformly cloudy look of the cornea. Some have supposed, especially in former times, that this cloudiness was in part located also in the aqueous humor and in the vitreous. As to the cloudiness of the vitreous, no proof whatever of it has been presented. An argument for the existence of cloudiness in the aqueous is the fact that not infrequently after it has escaped (in the performance of iridectomy), the pupil looks blacker than before. The main cloudiness, however, is situated in the cornea. Another important symptom of glaucoma is the dilatation and rigidity of the pupil, and by
GLAUCOMA.

373

this we are guarded against any confusion with iritis or irido-cyclitis, since in these diseases the pupil is contracted.

In the stage of glaucomatous degeneration various changes are observed in the cornea. (a) Most frequently together with marked cloudiness of the corneal parenchyma there are found gelatinous or hyaline deposits upon the surface of the cornea. (b) Vesicles develop upon the cornea, owing to the fact that the epithelium, either by itself or along with the newly formed deposits, is lifted from its bed by serous exudation—keratitis vesiculosa and bullosa (page 182). (c) Zonular opacity of the cornea (page 209), and (d) ulcers of the cornea, frequently leading to perforation (page 161), are observed. As a result of the latter, violent hemorrhages may take place from the interior of the eye, or severe purulent inflammation succeeded by shriveling of the eyeball. These affections of the cornea, so various in character, are referable in part to the alteration in nutrition produced by the disturbance in the lymphatic circulation, partly to the paralysis of the corneal nerves, manifested in the complete insensitiveness of the surface of the cornea to touch. In consequence of these changes, the cornea becomes less capable of resisting external injuries.

In the course of glaucomatous degeneration the lens always becomes cloudy (cataracta glaucomatosa). From this lenticular cloudiness, produced by the glaucomatous process, is to be distinguished that form which occurs only as an accident in the glaucomatous eye, and which is designated as cataracta in oculo glaucomatoso. Thus, simple senile cataract, traumatic cataract, etc., may be present in a glaucomatous eye. The distinction between cataracta glaucomatosa and cataracta in oculo glaucomatoso is made by observing the appearance of the cataract and by testing the vision. Cataracta glaucomatosa is distinguished by its marked distention, its bluish-white color, and the vivid silky luster of its surface, while cataracta in oculo glaucomatoso has the appearance corresponding to its origin and its nature. In the former kind of cataract the eye, as a result of the glaucomatous process, is completely blind, and hence an operation for cataract is useless. In the second case, if the glaucoma is not too far advanced, such a degree of sight (perception of light) may still exist as promises a good result from the extraction of the cataract. The extraction, however, should in no case be performed immediately; on the contrary, the increase of tension should first be done away with by an iridectomy, and this may be succeeded, say four weeks later, by the cataract operation. If we should extract a lens, without taking any such preliminary precaution, in an eye affected with increase of tension, we would run the risk of losing the eye through severe intra-ocular hemorrhage (see page 192).

B. Glaucoma Simplex.

83. In glaucoma simplex the increase of tension set in very gradually, so that no inflammatory phenomena are produced. The eye either looks quite normal externally, or it gives evidence of the lesion affecting it in the greater prominence of the distended anterior ciliary veins, and also in a somewhat dilated and sluggish state of the pupil. The tension of the eye is shown by palpation to be elevated, but not to any considerable degree. Often on the first examination no increase of tension is found at all; it is not until we examine the eye repeatedly, and es-
pecially at different times of the day, that we succeed in demonstrating that the tension is elevated. At these times a slight, smoky cloudiness of the cornea is also sometimes present, such as appertains to the prodromal attacks of inflammatory glaucoma. Finally, there are cases of glaucoma simplex in which the tension is never found distinctly increased.

In consideration of the fact that in glaucoma simplex marked external symptoms, and sometimes, indeed, any manifest increase of tension are wanting, we are thrown back upon the ophthalmoscopic examination for the establishment of the diagnosis. Such an examination shows the presence of a total excavation of the optic nerve, the depth of which corresponds to the duration of the process.

The subjective symptoms of glaucoma simplex, since the inflammatory attacks and the pain are wanting, consist almost exclusively of the disturbance of vision. This manifests itself by gradual diminution of the sight, and in many cases also by transient slight attacks of obscurcation, like those belonging to the prodromal stage of inflammatory glaucoma. The decrease in vision expresses itself in a contraction of the field of vision, as well as in a diminution of the central visual acuity. The latter often develops late, when the field of vision has already become very small, so that not infrequently the patients are still in a condition to read or carry on fine work, while they are scarcely able to go about any longer alone (see page 28). Before this point is attained, generally a long time (even many years) has elapsed, inasmuch as the reduction of vision takes place very slowly and gradually. For this reason the patient himself often does not become aware of the existence of his disease until late. The blinded eye may either remain always sound externally, or those inflammatory attacks which are characteristic of inflammatory glaucoma may occur—often; indeed, before the blindness has become complete. Glaucoma simplex, accordingly, not infrequently changes into inflammatory glaucoma.

Glaucoma simplex always attacks both eyes. In contradistinction to inflammatory glaucoma, it sometimes occurs in young people, and attacks men as frequently as women. It is also found in myopic eyes, which have a sort of immunity against inflammatory glaucoma.

Hydrophthalmus.—Hydrophthalmus is a disease of childhood. The eye is of unusual size (hence called buphthalmus, ox eye). The thin sclera is bluish, in consequence of the uveal pigment appearing through it; the cornea is larger and more bulging than normal (keratoglobus—see page 224), and either clear and lustrous or, as in inflammatory glaucoma, dull and diffusely clouded. The anterior chamber is unusually deep, the iris is tremulous, and the papilla, after the process has
lasted a pretty long time, is deeply excavated. The tension of the eye is considerably increased.

The disease may come to a stop spontaneously, or may continue until it produces blindness. In the former case, the increase of tension subsides after a time; the enlargement of the eyeball persists, indeed, but does not increase, and the eye retains a moderate amount of sight, the degree of which is mainly dependent upon the condition of the optic nerve. In the second case, the enlargement of the eye keeps on—sometimes until quite extraordinary dimensions are attained—and in the mean time complete blindness ensues.

The disease is either congenital or develops in the first years of infancy, and generally in both eyes. Heredity plays an important part in its production. The nature of the disease has not yet been fully cleared up, but increase of tension is certainly the most important factor in it, leading, on the one hand, to the enlargement of the eye, and, on the other hand, to blindness through excavation of the optic nerve. For this reason hydrophthalmus is also called the glaucoma of childhood. Its difference in external appearance from the glaucoma of adults is accounted for in the main by the physiological properties of the eye in childhood. The extensibility of the sclera in childhood renders it possible for the heightened pressure to result in enlargement of the eye as a whole. In the eye of the adult, however, the rigidity of the sclera permits of its expansion through increase of pressure only at its weakest spot—namely, at the lamina cribrosa.

In hydrophthalmus the expansion of the membranes of the eye is due to the fact that an increased pressure is acting upon their inner surface. Hence we can comprehend that the lens does not share in this enlargement, since it has to bear the pressure upon its external surface. The lens, therefore, is the only part of the hydrophthalmic eyeball that retains its normal dimensions—in fact, it not infrequently falls behind them. Hence the lens is too small in comparison with the surrounding parts, and the space between the margin of the lens and the ciliary processes keeps growing larger and larger. Thus the zonule of Zinn undergoes an elongation which leads to its partial atrophy. Hence in hydrophthalmus of pretty high degree we always find defective fixation of the lens manifested in tremulousness of the latter and of the iris, and not infrequently inducing subsequent changes of position (luxation) of the lens, with their disastrous consequences.

The relation of glaucoma simplex to glaucoma inflammatorium has been the subject of manifold discussions. Since glaucoma simplex, on account of the absence of inflammatory symptoms, is entirely different externally from glaucoma inflammatorium, it was not recognized as glaucoma at all until the discovery of the ophthalmoscope. Even Von Graefe did not originally place glaucoma simplex under the head of glaucoma, but designated it as amaurosis with excavation of the optic nerve. Jäger held to this view until the last, looking
DISEASES OF THE EYE.

upon glaucoma simplex as an optic-nerve lesion sui generis—a "glaucomatous" optic-nerve lesion. At the present time, however, the majority of ophthalmologists place glaucoma simplex under the head of glaucoma proper, since it has in common with it its most essential symptom, the increase in tension. The interconnection of simple and inflammatory glaucoma is also proved by the numerous intermediate varieties which form a continuous transition from simple to inflammatory glaucoma, so that no sharp line of distinction can be drawn between the two.

To these transition forms belong, for example, the cases of glaucoma simplex with periodical obscuration of vision, and which are accompanied by transient cloudiness of the cornea, and often also by dull headache. Even in pure cases of glaucoma simplex, a constant headache sometimes exists, the dependence of which upon the glaucomatous process is proved by the fact that it disappears after iridectomy. A glaucoma simplex, later on in its course, often passes into acute or chronic inflammatory glaucoma, and cases also not infrequently occur in which, after inflammatory glaucoma has developed in the eye first affected, glaucoma simplex is present in the one which is affected afterward.

The interconnection of the two forms of glaucoma, shown from the above-mentioned facts, has been doubted because in many cases of glaucoma simplex no evident increase of tension is demonstrable. In these cases we must assume that the lamina cribrosa is particularly yielding, so that it is forced backward by a pressure which does not perceptibly rise above the normal limits. Such cases, to be sure, are not always clearly distinguishable from simple atrophy of the optic nerve with unusually deep atrophic excavation. In doubtful cases the testing of the color perception may furnish a diagnostic guide. In atrophy of the optic nerve, color blindness makes its appearance early, while in glaucoma the ability to distinguish colors is retained for a comparatively long time.

Theories of Glaucoma.

84. All the essential symptoms of glaucoma can be accounted for as being the results of the increase in pressure. The recognition of this fact by Mackenzie, and particularly by Von Graefe, was the most important step made in establishing the theory of glaucoma.

The elevated intra-ocular pressure has, as its first result, a disturbance of the circulation of blood in the eye, the essential character of which is that of a venous stasis. The heightened tension, that is, brings about a compression of the veins in the interior of the eye, and especially in the vasa vorticosa, which, on account of their oblique course through the sclera, are particularly exposed to the influence of the intra-ocular pressure. The blood flowing away from the uvea is hence compelled, in great part, to travel through the anterior ciliary veins; these are consequently dilated, and, in old cases of glaucoma, form a dense venous network encircling the cornea. In glaucoma simplex the symptoms of obstructed circulation are confined to this dilatation of the anterior ciliary veins and to the ophthalmoscopically visible distention of the retinal veins. But in inflammatory glaucoma, in which the increase in tension and with it the disturbance of circulation set in suddenly,
GLAUCOMA.

these changes induce the phenomena of inflammatory edema in the same way as the incarceration of a hernia, for example, results in inflammatory edema of the incarcerated coils of intestine. Inflammatory edema is characterized by hyperemia of the tissues and marked swelling, due to their serous infiltration, while—in contradistinction to plastic inflammation—exudates and the adhesions produced by them are wanting. Accordingly, the symptoms of acute inflammatory glaucoma, so far as they affect the uvea, for example, differ greatly from the clinical picture of an irido-cyclitis; posterior synechiae are only exceptionally observed in it, and exudations of greater degree, such as hypopyon, pupillary membrane, etc., are never observed. This absence of exudation, in spite of the violent external symptoms of inflammation, is, in fact, just the characteristic feature of inflammatory edema. This edema finds different expression in the different portions of the eye:

1. The corneal cloudiness of glaucoma is an edema of the cornea, as has been proved by anatomical investigation. From this can be understood the suddenness of development of the corneal cloudiness, and also the promptness of its recession upon reduction of the pressure—e.g., after puncture of the cornea, or iridectomy. If we were dealing with an inflammatory infiltration of the cornea—i.e., with a keratitis—it could not possibly disappear again within a few hours.

2. Inflammatory edema of the iris manifests itself mainly by discoloration and by the obliteration of the details of its structure. The anterior chamber becomes shallower, because the lens is pressed forward, together with the iris, in consequence of the elevation of pressure in the vitreous chamber. Added to this there is a displacement forward of the attachment of the iris—that is, the greatly swollen ciliary processes press the root of the iris forward, so that it is applied to the most anterior portion of the sclera and to the margin of the cornea (Fig. 118). Consequently, the iris appears to take its origin farther forward (Figs. 118 and 119). The ciliary nerves are compressed and paralyzed by the high intra-ocular pressure; hence the insensitiveness of the cornea and the paralysis of the iris (iridoplegia) with which is
associated dilatation and loss of reaction of the pupil. The dilatation afterward increases in consequence of the atrophy of the iris, that develops as a result of the pressure exerted upon the latter.

3. The redness and clouded appearance of the papilla of the optic nerve during the inflammatory attack are caused by hyperemia combined with some oedema; the excavation which subsequently takes place is the direct result of the elevation of pressure.

4. The violent pain in inflammatory glaucoma is excited by the compression of the extremely numerous sensory nerves of the ciliary body and the iris.

Thus all the symptoms of glaucoma are accounted for by the one fact of the increase in tension. The disturbance of vision, too, is the result of the heightened intra-ocular pressure, which causes it in different ways, according as we are dealing with inflammatory glaucoma or glaucoma simplex. In inflammatory glaucoma the disturbance of vision is brought about by—

(a) The glaucomatous opacity of the cornea, which affects chiefly central vision, and that, too, to a marked degree, on account of the uniformity of its diffusion.

(b) The ischaemia of the retina, due to the compression of the retinal arteries, by which is caused the contraction of the field of vision. This compression makes itself felt first in those sections of the arterial channel in which the blood pressure is lowest. But, since the blood pressure in the vessels is less the farther we get away from the heart, the terminal expansions of the arteries lying in the periphery of the retina are first affected by the compression. Hence the periphery of the retina first becomes insensitive to light, a thing which manifests itself by contraction of the field of vision. Moreover, the ischaemia does not become apparent in all parts of the retina at once or in equally high degree. Since the papilla of the optic nerve, and with it the point of entrance of the retinal vessels, lie to the nasal side of the posterior pole
of the eye, these vessels have a greater distance to travel in going to the temporal margin of the retina than to the nasal margin. The former is therefore first affected by the ischaemia, so that the limitation of the field of vision begins generally at its nasal margin.

Both the opacity of the cornea and the acute ischaemia of the retina belong solely to inflammatory glaucoma, and it is they which are the principal cause of the very great reduction of sight during the acute attack of glaucoma. They are of transitory nature, disappearing again as the elevated tension abates, and at the same time with their disappearance an improvement of the acuteness of central vision and an enlargement of the field of vision set in.

(c) In the third place, the acuteness of vision is diminished by direct pressure upon the optic-nerve fibers and their consequent atrophy—atrophy which takes place during the formation of the glaucomatous excavation. The disorder of vision thus produced is permanent, since the atrophy of the optic-nerve fibers is irreparable.

In glaucoma simplex the two first-named factors are wanting. The disorder of vision is here caused solely by the excavation and simultaneous atrophy of the papilla of the optic nerve.

Explanation of the Increase of Tension.—Easy as it is to deduce the symptoms of glaucoma from the elevation of tension, it is quite as difficult to account for the origin of the latter, and thus explain the essential nature of glaucoma. Of the many theories which have hitherto been propounded upon this subject, no single one is satisfactory in every respect. Only the most important of them will be adduced here, and that mainly with the object of showing upon what circumstances increase of tension in general depends.

The intra-ocular pressure is determined by the relation between the internal capacity of the envelopes of the eyeball and the quantity of its contents. If the latter increases or the former diminishes, the pressure is elevated. An alteration of the internal capacity of the envelopes of the eyeball can not be brought in to account for the increase of pressure, since the volume of the envelopes of the eyeball, as a whole, is unalterable. In advanced life, to be sure, the sclera is not only more rigid, but also a little contracted; but the diminution in volume so caused is extremely slight. We must, therefore, look for the cause of the elevation of tension in an increase in the amount of the contents of the eyeball, the envelopes of the eyeball being at the same time not sufficiently elastic to adapt themselves to their increased contents without marked heightening of the pressure. Now the amount of matter contained in the eyeball depends, on the one hand, upon the quantity of ocular fluids which are constantly being secreted by the blood-vessels, and, on the other hand, upon the quantity of fluid which leaves the eye again through the lymph passages; it corresponds, that is, to the relation between inflow and outflow, between secretion and excretion. A disturb-
ance of this relation must exist for a permanent increase to take place in the amount of matter contained in the eyeball. The inflow may be increased without a corresponding increase of the outflow, or the outflow may be diminished without a corresponding reduction in the inflow; and increased inflow and diminished outflow might also exist simultaneously.

Most of the older theories of glaucoma were based upon the idea of an increase of the inflow:

(1) Von Graefe assumed the existence of an increased excretion of fluid by the vessels of the chorioid as a result of inflammation of the latter. Since the ophthalmoscopic symptoms of chorioiditis are generally wanting in glaucoma, Von Graefe, to get over this difficulty, assumed the existence of what he called a serous chorioiditis, the nature of which was supposed to consist in a serous transudation without any coarser anatomical changes.

(2) Donders ascribed the increased secretion on the part of the chorioid to the influence of the ciliary nerves. He looked upon glaucoma simplex as the typical form of glaucoma because it was not complicated with inflammation. Hence he could not consistently look for the cause of the increased excretion of fluid in an inflammation of the chorioid. Rather, he supposed it to originate in an irritation of the chorioidal nerves, as a sort of neurosis of secretion, just as, for example, increased secretion takes place in glands upon irritation of certain nerves.

(3) Stellwag referred the elevation of tension not to increased excretion of fluid, but directly to the increase of blood pressure in the vessels of the interior of the eye. The pressure which the blood exerts on the vessel walls is transmitted to the structures adjacent—that is, to the refracting media (particularly the vitreous), on the one hand, and to the sclera, on the other. It thus forms an important item of the total sum constituting the intra-ocular pressure, so that its elevation has as its direct result an increase in the ocular tension as a whole. The interior vessels that come under consideration in this connection belong principally to the uvea, that being the most vascular portion of the eye. The elevation of the blood pressure in the vessels of this part is therefore, according to Stellwag, the direct cause of glaucoma. It makes its appearance in consequence of obstructions to the circulation, which affect mainly the region of the vasa vorticosa, and are brought about by diminished elasticity and by shrinkage of the sclera; for those sections of the vasa vorticosa which pass with a very oblique course through the sclera are liable to compression whenever the latter shrinks.

Against these theories the objection must be made, primarily, that an increase in the inflow or an over distention of the vessels can not by themselves account for the elevation of tension, since, if the conditions are otherwise normal, an increase in the contents of the eyeball is immediately compensated for by the increased outflow. If a few drops of
liquid are injected into a healthy living eye, and the intra-ocular pressure is thus heightened, it returns to the normal again after a short time, since a correspondingly greater amount of liquid flows off through the lymph channels. Hence, to account for the elevation of tension we must, in the first place, look for some obstruction to secretion, by which an increased amount of liquid is retained in the eye.

The most important of the glaucoma theories that are based upon the idea of a diminution in the outflow of liquids is that of—

(4) Knies and Weber. Knies had attempted to explain the increase of tension by attributing it to the adhesion between the root of the iris and the sclera, the existence of which he was able to demonstrate anatomically in many cases of glaucoma. He assumed that this adhesion is produced by an adhesive inflammation that takes place in the tissues lining the sinus of the anterior chamber. Weber, almost simultaneously with Knies, discovered the alteration that occurs in the sinus of the chamber, and perceived that the cause of it was the swelling of the ciliary processes. Owing to this swelling the root of the iris is pushed forward, so that the normal sinus disappears (obliteration of the sinus, Fig. 118); and the iris becomes applied to the inner surface of the ligamentum pectinatum, and compresses its loose meshwork into a solid fibrous tissue. Thus the most important exit for the ocular fluids— that which leads through the ligamentum pectinatum into Schlemm’s canal (see page 369)—is closed, and consequently an excess of fluid is retained in the eye.

Such a retention of the ocular fluids, however, would concern mainly the aqueous, and we should hence expect the anterior chamber to be deeper, whereas, on the contrary, in glaucoma it is shallower. This Priestley Smith accounts for in the following way: The lymph that is poured out into the vitreous from the ciliary body and the choroid makes its way, like the aqueous, mainly through the anterior chamber and the ligamentum pectinatum. To do this it must first get into the posterior chamber by passing through the circumventral space, which separates the ciliary processes from the border of the lens and across which the zonula stretches. Now this space is contracted in eyes affected with glaucoma. Priestley Smith was the first to show that after the growth of the body as a whole has been completed the lens keeps on enlarging, so that in the sixty-fifth year of life it is a third larger on the average than in the twenty-fifth year. Consequently, the distance between the border of the lens and the ciliary processes grows smaller with increasing age. But the contraction that this circumventral space undergoes is specially great when growth of the lens takes place in eyes that are intrinsically of small dimensions. And, in fact, Priestley Smith has proved by numerous measurements that eyes affected with glaucoma are somewhat inferior in size to the average of normal eyes. Consequently, the predisposition of an eye to glaucoma would consist
in this, that the eye as a whole is smaller, while its lens is of a size equaling or even surpassing the normal, and grows with increasing age to such an extent that it gets to be too big for the eye. The predisposition of hypermetropic eyes to glaucoma would depend upon the fact that such eyes are rather smaller than usual, and at the same time have a specially developed ciliary body (see § 144 and Fig. 225), so that the circumventral space is comparatively narrow. The contraction of this space hinders the outflow of lymph from the vitreous into the posterior chamber. Hence the vitreous increases in volume and pushes the lens and ciliary processes forward, so that the anterior chamber becomes shallower. In an eye thus predisposed a venous stasis would necessarily determine an attack of glaucoma, since the ciliary processes, owing to the overdistention of their veins, would swell up until they came in contact with the edge of the lens, and would interrupt completely the communication between the vitreous and aqueous chambers. The ciliary processes, jammed in between the sclera and the edge of the lens and pressed forward by the vitreous, would be displaced anteriorly and push the root of the iris against the sclera.

Even these theories are not free from objections. The most important of these is that in many cases of glaucoma simplex, and, very rarely, in cases of inflammatory glaucoma also, the anterior chamber is deep and the apposition of the iris to the sclera and cornea is not present at all, but, on the contrary, the sinus of the chamber presents its normal relations. So far, therefore, no explanation of glaucoma has yet been propounded which is satisfactory in every respect. The reason for this is perhaps to be found in the statement that all cases of primary glaucoma probably do not develop in the same way, so that one explanation could not possibly fit all cases. And, in particular, it might be possible that glaucoma simplex and inflammatory glaucoma would have to be referred to different causes.

Among the causes that determine an attack of glaucoma, dilatation of the pupil plays an important part. In dilatation of the pupil the iris, in proportion as it diminishes in breadth, becomes thicker, and if this process occurs in an eye with a shallow anterior chamber, as is the case in eyes predisposed to glaucoma,
the thickening of the iris may cause closure of the sinus of the chamber. According to Czermak it is not the root of the iris that in this case is pushed against the cornea, for the root of the iris is very thin. But directly to the inner side of the root the iris attains its full thickness, so that here its anterior surface turns up and passes abruptly forward; and it is this point (a in Fig. 120) that in the case of thickening of the iris first comes into contact with the posterior surface of the cornea. In this way the sinus is closed off so as to form a ring shaped space which no longer communicates with the posterior chamber. In this space, and also in the posterior chamber, the pressure rises and then forces the root of the most peripheral portion of the iris, the root proper, against the sclera. The return to normal conditions, such as occurs in the case of the prodromal attacks, Czermak accounts for upon the supposition that owing to the increase of tension a state of irritation sets in, which by reflex action causes contraction of the pupil, so that the iris is again drawn away from the cornea. But, in order for this to take place, it is necessary that the sphincter pupillae should be strong enough, and, moreover, no adhesion must have formed between the iris and the cornea.

Anatomy of Glaucoma.—In the cornea the cause of the cloudiness is found to be edema. The most anterior of the lamellae of the corneal stroma are pushed apart by fluid; but the fluid is especially apt to be found under the form of minute drops, between Bowman’s membrane and the epithelium, and also between the epithelial cells themselves (Fig. 121). These cells are hence pushed apart and lifted up, so that the surface of the cornea becomes slightly uneven and dull, often looking like shagreen. When the elevation of the epithelium takes place over a pretty large area, small vesicles are formed upon the surface of the cornea.

In the sclera an increase in density has been demonstrated, and also a fatty degeneration of the fibers, which look as if sprinkled with minute drops of oil.

The aqueous is more albuminous, and coagulates readily in the air and in hardening fluids.

The most important changes affect the uvea. In recent inflammatory cases it presents the appearances of inflammatory edema—i.e., infiltration with an abundant, readily coagulable liquid, while white blood corpuscles that have emi-
grated from the vessels are present in but scanty numbers; but what strikes one most of all is the marked distention of the venous vessels, in consequence of which extravasations of blood are produced in many spots. The ciliary processes in particular, which of all the structures of the eye possess the most veins, are greatly swollen through the turpitude and distention of the vessels, and press the root of the iris against the sclera and the cornea. These structures become agglutinated, so that the periphery of the iris remains permanently connected with the sclera and cornea (peripheral anterior synechiae), and even when later on the ciliary processes retract again away from the iris (Fig. 119). This retraction takes place in consequence of the atrophy which, after the subsidence of the early inflammatory symptoms, sets in in all parts of the uvea. In the iris, the atrophy finds expression in its becoming narrower and thinner. Rigid connective tissue, from which the blood-vessels have for the most part disappeared, takes the place of the delicate network of anastomosing cells. In the vessels which are still present the walls are thickened, and the lumen is thus contracted or even entirely obliterated (Ulrich). The muscular bundles of the sphincter pupillae, too, become atrophied. The part which is best preserved is the retinal pigment layer, which, by the great shrinking of the anterior layers of the iris, is drawn continually farther and farther forward over the edge of the pupil (ectropion of the pigment layer; Fig. 119, c.) Hence, in looking from in front we find the margin of the pupil encircled by an uncommonly broad black rim, which sometimes covers half the breadth, or even more, of the surface of the iris. The atrophy attains its greatest height at the root of the iris—i.e., at that part which is adherent to the sclera and cornea (Fig. 119, b). In old cases nothing of the iris is left in this spot but the retinal pigment layer and one or two of the larger vascular trunks. These remains of the iris are intimately adherent to the wall of the eyeball; the ligamentum pectinatum is condensed into a tough, fibrous tissue; and, finally, even Schlemm's canal disappears.

The ciliary body diminishes in size through atrophy, so that it draws away again from its contact with the iris, and afterward becomes flatter and flatter, until at length it scarcely forms any projection at all (Fig. 119, c). The atrophy affects the ciliary muscle as well as the ciliary processes. In the choroid the atrophy finds expression in the obliteration of the blood-vessels and the rarefaction of the pigment, so that the choroid is finally in some spots reduced to a thin, transparent pellicle. This sort of atrophy of the choroid takes place above all in the neighborhood of the papilla, and by it there is formed the halo glaucomatosus visible with the ophthalmoscope (h, Fig. 116 A). The atrophy also reaches a high degree in the spots where the vasa vorticosa pass from the choroid into the sclera. The choroid here grows fast to the sclera, which becomes thinned, and, together with the choroid, bulges out to form an equatorial staphyloma. In the vasa vorticosa themselves is found proliferation of the vascular endothelium, leading to contraction, or even obliteration, of the lumen of the veins (Czernak and Birnbacher).

At the optic-nerve entrance the particularly striking feature is the displacement of the lamina cribrosa. This is condensed by the compression of its layers, and is displaced backward, so that it infrequently it even gets to lie behind the outer surface of the sclera (Fig. 116 B, e). The excavation of the papilla thus produced contains upon its floor atrophic nerve fibers and also connective tissue (Fig. 116 B, b). Large excavations get to have overhanging edges (become ampulliform), because the short canal in the sclera, which is
GLACOMA.

designed for the optic nerve, and which is laid bare by the excavation, is wider behind than in front (see Fig. 9 B). In consequence of the destruction of the head of the optic nerve, the retina and the trunk of the optic nerve also atrophy; the latter becomes thinner, as a whole, and shows that its connective-tissue trabeculae have been enlarged at the expense of its nerve fibers (Fig. 116 B, n).

Precise as is our information in regard to the anatomical changes above described, and many others, too, in glaucoma, we must be correspondingly cautious in the interpretation of their significance, if we are bent upon finding out the anatomical cause of glaucoma. Most of these changes, if not all, are simply the result of the increase of pressure—as is, without any doubt, the case with regard to the atrophy of the tissue and the excavation of the optic nerve. To find those changes which precede the increase of tension and cause it, we should have to examine the eye in the earliest stages of glaucoma. The opportunity for making such an examination has hitherto been but very rarely offered us. Indeed, most of the glaucomatous eyes that have been examined are those which have been enucleated in the stage of glaucoma absolutum because they were painful.

Treatment of Primary Glaucoma.

(a) Operative Treatment.

85. Glaucoma passed for an incurable disease until Von Graefe discovered the curative action of iridectomy. Afterward still other methods of operating in glaucoma were devised, none of which, however, have been able to displace iridectomy.

1. Iridectomy, the technique of which will be described in the section on Operations (§ 155), must satisfy certain conditions, if it is to be efficient in combating glaucoma. The wound should lie in the sclera, not in the cornea; and the excision of the iris should be carried to the ciliary margin, and be made as broad as possible. Incarceration of the iris in the wound after the operation should be avoided by careful reposition. If possible, the iridectomy is made upward, so that the coloboma may be covered by the upper lid, and not cause trouble through the dazzling due to irregular refraction. But frequently it is precisely in the upward direction that the iris is very atrophic, in which case its excision is not only difficult, but also, as experience shows, is less efficacious; we are then compelled to choose another place for forming the coloboma. In glaucoma simplex iridectomy is easily performed, while in inflammatory glaucoma it often presents considerable difficulties on account of the cloudiness of the cornea, the shallowness of the anterior chamber, the rottenness of the iris, and also on account of the great painfulness of the parts.

As regards the time for performing the operation, it is best to operate as early as possible. In inflammatory glaucoma the operation should be done in the prodromal stage, in case the patient can make up his mind to it. If he wait until the inflammatory attack, we can
not tell how severe it is going to be, and, in any case, we operate then under less favorable conditions. Under all circumstances the operation is demanded in the prodromal stage when the other eye is already rendered blind by glaucoma; in this case, too, the patient will more readily comprehend the necessity of the operation. When an eye has already been rendered blind by glaucoma, the restoration of sight is no longer possible by an operation; but yet one is often performed to relieve the painfulness of the eye, or to prevent the development of glaucomatous degeneration.

In glaucoma simplex it is not a question of interfering within a few days or weeks, as is often the case in inflammatory glaucoma, but even here the operation should not be long deferred; the earlier we operate, the better results we obtain.

The success of an operation in respect to vision can be estimated approximately beforehand, if account is taken of what morbid changes can and what cannot be removed by the operation. Iridectomy reduces the intra-ocular pressure to the normal amount. By it the glaucomatous cloudiness of the cornea and the disturbance of vision produced by it, as well as the disturbance of vision caused by the compression of the retinal vessels, are removed. But the excavation and the atrophy of the optic-nerve fibers associated with it either do not abate at all or do so in but very slight degree, so that the disturbance of sight, so far as it is dependent upon them, persists. From these facts is deduced the effect of iridectomy in the separate forms of glaucoma:

(a) In inflammatory glaucoma the result of the operation in recent acute cases is extremely favorable. The pain accompanying the glaucomatous attack ceases a few hours after the operation, the cornea in the next few hours or days becomes clear and sensitive once more, and the other inflammatory symptoms likewise speedily disappear. The sight, which during the attack was very much reduced through the cloudiness of the cornea and the compression of the retinal vessels, increases very considerably after the disappearance of these factors. If it was still normal before the attack, it becomes almost normal again after the operation. But if a long prodromal stage with the formation of an excavation has preceded the attack, both the acuteness of direct vision and the visual field have already ceased to be normal some time before the attack, and will then be more imperfect still after the operation. We may accordingly put it down as a rule in acute inflammatory glaucoma that a degree of sight is secured by iridectomy, which is somewhat, but not much, smaller than it was before the last inflammatory attack. In a few cases, to be sure, the result of the operation is not so favorable, since, in spite of the operations being correctly performed, the increase of tension keeps up or sets in again anew. In these cases it is generally possible to attain our end by a second operation (iridectomy or sclerotomy).
Finally, there are cases in which, in spite of all attempts at operative interference, complete blindness supervenes. These unfavorable cases, however, are rare in acute glaucoma; so that, as a rule, one may count upon a good result for the operation, and one, too, which is lasting.

In chronic inflammatory glaucoma in determining the prognosis of the operation we must estimate how much of the disturbance of vision present is to be charged to the cloudiness of the media, and how much is due to the excavation and atrophy of the papilla of the optic nerve. The former portion is removed by the operation, the latter not.

(b) In glaucoma simplex the result of the iridectomy is less pronounced and also less permanent than in inflammatory glaucoma. The visual disturbance in the variety of glaucoma simplex, in which the media are clear, is caused solely by the changes in the papilla of the optic nerve. Since the operation can not remove these changes, it is impossible to restore by means of it the normal acuity of vision. The operation can only do away with the increase in tension, and thus put a stop to the progress of the process; it accordingly gives greater promise of a permanent good result the more pronounced the increase in tension is. The rule is that the sight is maintained in status quo by the operation, or, at midst, is slightly improved. In many cases a repetition of the operation is necessary in order to obtain even this result, or the failure of sight goes on unchecked in spite of the operation. This may even take place when, in consequence of the iridectomy, the intra-ocular pressure has become permanently normal. We then assume that an atrophy of the optic-nerve fibers, when once initiated, keeps on progressing in spite of the reduction of the intra-ocular pressure. Particularly unfavorable are those cases in which the iridectomy actually exerts a bad effect upon the sight, the latter falling away very rapidly after the operation, so that blindness sets in earlier than it would have done without the iridectomy. Sometimes inflammatory symptoms and pain make their appearance just after the operation, when they were not present before. The eye feels hard directly after the operation, the anterior chamber fails to re-form, and the eye becomes blind rapidly and with symptoms of violent pain. These cases, which, to be sure, are rare, are known as glaucoma malignum.

The prognosis of iridectomy in glaucoma, then, is as follows: In inflammatory glaucoma the operation acts favorably upon the inflammation and upon the eyesight, and its good results are permanent; it is hence unconditionally indicated. In glaucoma simplex only the maintenance of the status quo is to be counted upon. In a certain number of cases the operation is unsuccessful or actually does harm. Nevertheless, as without an operation the eye will certainly grow blind, iridectomy is indicated in glaucoma simplex too—as soon as an increase of tension can be distinctly made out. We endeavor to perform the iridectomy as early
as possible, for the more advanced the disease is, the more uncertain is the result of the operation.

The reason why iridectomy diminishes the tension has so far not been discovered, since, indeed, the cause of the increase of tension itself is still unknown to us. In an eye the tension of which is normal, the latter is not diminished by an iridectomy; for instance, if an iridectomy is made on account of an opacity of the cornea, the eye does not therefore become permanently softer. It is only a pathologically heightened tension that iridectomy reduces. Of the many reasons that have been given for this action in reducing tension, one only will be here adduced, because it has given rise to a new operative procedure. De Wecker was the first to express the opinion that in iridectomy the section in the sclera was of greater importance than the excision of the iris. He considered the significance of the scleral incision to lie in the fact that by means of it a cicatrix was introduced into the sclera, which allowed fluid to filter through it, as the normal sclera does not do. This filtration cicatrix, in his opinion, afforded a substitute for the obliterated ligamentum pectinatum. From the view that iridectomy owes its efficacy to the section in the sclera, sclerotomy has taken its origin.

2. Sclerotomy consists in making in the sclera an incision, which is placed as far as possible in the periphery of the anterior chamber, and in which no iris is excised (for the technique, see § 154). There is no doubt that sclerotomy, too, which for a time was very much practiced, has permanently cured many cases. For the most part, however, the cure has not been definitive, so that an iridectomy has had to be resorted to subsequently. At the present time, therefore, most operators perform sclerotomy only in those cases in which iridectomy can not be performed for technical reasons, or in which in spite of an iridectomy the increase of tension has returned.

3. Enucleation is indicated when an eye which has been rendered perfectly blind by glaucoma is continually painful, and an iridectomy is either impossible of performance on technical grounds or has been already performed without success. In this case enucleation is done simply with the object of relieving the pain, and may, in suitable cases, be replaced by optico-ciliary neurotomy (see § 166).

(b) MEDICINAL TREATMENT.

The miotics, eserine and pilocarpine, are powerful agents in combating increase in tension. They act only when the iris is capable of contracting satisfactorily; hence, in old cases of glaucoma with a completely atrophic iris they are useless. Their action is accounted for upon the supposition that by the contraction of the pupil the iris is stretched in a radial direction, and so is drawn away from the wall of the eyeball to which it has been applied, so that the sinus of the chamber again becomes free. Unfortunately, the effect of miotics upon
the ocular tension is not lasting, inasmuch as it vanishes with the disappearance of the miosis. The miotics can not, therefore, cure glaucoma permanently, and thus enable us to dispense with iridectomy; they are, however, valuable auxiliary remedies in the treatment of glaucoma.

In the prodromal stage of glaucoma miotics are employed to cut short the prodromal attacks. If the patient instills a miotic at the commencement of the attack, the latter comes to an end in about half an hour. Thus we can for a long time prevent the prodromal attack from rising into an acute inflammatory attack. Nevertheless, we should not protract the prodromal stage in this way until excavation of the optic nerve with permanent impairment of sight sets in. As soon as this threatens, we must proceed to iridectomy.

During the acute inflammatory attack also miotics reduce somewhat the elevated tension, and thus ameliorate the pain and contribute to the disappearance of the glaucomatous cloudiness of the cornea. In this way it becomes more feasible to put off the operation for a few days, if circumstances require it. Moreover, the operation is rendered easier of performance, since the iris, very narrow before, becomes broader through the contraction of the pupil.

In glaucoma simplex the action of miotics is dubious, and the more so the less pronounced the increase of tension is.

The mydriatics are as prejudicial in glaucoma as the miotics are useful. The other methods of medicinal treatment in glaucoma, which formerly were very numerous, are now obsolete. Care should be taken to restrain the emotions and avoid constipation.

Iridectomy is often difficult to perform in inflammatory glaucoma, so that the excision of the iris does not always turn out to have been done correctly. Luckily it is precisely in inflammatory glaucoma that even a less successfully performed iridectomy is usually followed by the effect desired. Above all, we must avoid injuring the capsule of the lens, an event which might easily happen from the narrowness of the iris and the shallowness of the anterior chamber. Such an eye would be almost certainly lost, since the injured lens swells up, and thus gives rise anew to increase of tension.

Favorable as is the action of iridectomy in inflammatory glaucoma, we ought not to conceal the fact that in many cases which have remained for years apparently cured blindness nevertheless ultimately develops. This takes place without any renewal of the increase of tension, being due simply to a gradually advancing atrophy of the optic nerve, just as is the case in glaucoma simplex. But as this outcome does not usually set in until after years have elapsed, and as furthermore glaucoma is a disease of advanced life, most of the patients do not survive to experience this melancholy sequel, so that in general the prognosis of iridectomy in inflammatory glaucoma may be regarded as favorable.

Iridectomy in inflammatory glaucoma is usually followed by hemorrhage into the anterior chamber and into the retina. The sudden diminution of the pressure, the fact that we are operating in a very hyperemic eye, and the de-
generation of the vessel walls are all accountable for this. The blood in the
anterior chamber is sometimes uncommonly slow in being absorbed, because the
normal channels of outflow are stopped up. The retinal hemorrhages cause no
special harm, except when one of them happens to involve the region of the
yellow spot.

On account of the great tension of the glaucomatous eye, the edges of the
wound after iridectomy do not close up as well as in the case of other iridecto-
mies—e.g., those made for optical purposes. Hence, more frequently than is
otherwise the case, we get, instead of direct union of the edges of the wound,
healing with the interposition of an interstitial tissue, as a consequence of which
ectasis of the cicatrix or cystoid cicatrization is readily produced.

In glaucoma simplex it sometimes happens that iridectomy has for its im-
mediate result a marked reduction in the sight. This is to be apprehended
when the field of vision was so very much contracted before the operation that
its limits at one spot reached nearly up to the point of fixation. Then a slight
intussusception of the confines of the visual field carries them beyond the point
of fixation, so that central vision is lost. Hence the rule is to do iridectomy as
early as possible, while the field of vision is still large.

Views differ in regard to the efficacy of iridectomy in glaucoma simplex.
Von Graefe estimated the number of definite cures produced by the operation
at rather more than half the cases; in one quarter of the cases relapses
occurred, which were cured only by a second iridectomy, while in the rest of
the cases blindness gradually set in in spite of the operation. Only in two per
cent of all the cases did the operation have actually a bad effect. Since then
reports in regard to the curative effects of iridectomy in glaucoma simplex
have been published by different authors, as by Hirschberg, Sulzer, Nettleship,
Charles Stedman Bull, Gruening, etc. Most of these statistics prove, in har-
mony with the statements of Von Graefe, that in about half the cases the operation
has put a stop to the progress of the disease. Dr. Laska has collected my
own observations upon this point, and from them the following results have
been obtained; Out of thirty-nine cases, iridectomy had a favorable result in
nineteen—that is, in about one half, the sight either being kept stationary or
actually improving; but in twenty cases the eyesight failed in spite of the
operation, either from the subsequent reappearance of the elevation of tension,
or even without this taking place. The value of these statistics, small as they
are, lies in the fact that only cases that had been under observation a pretty
long time were accepted in making them up. The mean period of observation
amounted to five years in the nineteen cases that were cured; several of these
had been followed up for more than ten years.

In hydrophthalmus, iridectomy is associated with greater danger than in the
glaucoma of adults, and that mainly because of the defective condition of the
zonula. By reason of this, when, after the escape of the extremely abundant
aqueous, the lens is driven forward, rupture of the zonula, and hence escape of
vitreous through the wound, may take place. Another source of danger con-
sists in the fact that we are dealing with children, of whom quiet behavior
after the operation is not to be expected. Nevertheless, a series of favorable
results have been recorded, the hydrophthalmus having been arrested by the
iridectomy.
II. Secondary Glaucoma.

86. By secondary glaucoma we understand an increase of tension which appears in the course of other diseases of the eye, and as a consequence of them. Accordingly, the increase of tension here forms the complication of an already existing affection, although, all the same, it entails the results peculiar to itself, just as in the case of primary glaucoma. If it is associated with inflammatory symptoms, it produces in the cornea, the iris, etc., the changes belonging to inflammatory glaucoma. In other cases it manifests itself merely through the increase in tension perceptible to the touch, and also through the pressure evaporation of the optic nerve with the disturbance of sight that is caused by it—namely, the contraction of the visual field and the diminution in central vision. Moreover, its termination in blindness and in degeneration of the eyeball is the same as in primary glaucoma.

The clinical picture of secondary glaucoma varies according to the disease which it accompanies. The affections of the eye leading to increase of tension are as follows:

1. Ectasia of the cornea and the sclera. Of the former, it is above all those connected with incarceration of the iris—i.e., the staphylomata—that almost universally lead to secondary glaucoma. It is only the exception that ectasia without incarceration of the iris, such as keratectasia ex ulcere or keratectasia after pannus or after keratitis parenchymatos, give rise to increase of tension. Of scleral staphylomata, those which occur after rupture of the sclera may entail increase of tension, and so also may the ectasie that develop after scleritis. Most ectasie of the sclera, however, are the result, not the cause, of the increase in tension.

2. Incarceration of the iris in a cicatrix of the cornea or sclera, and also the partial apposition of the iris against the posterior surface of the cornea may lead to increase of tension even without any ectasis being present. In this way a part of the cases of glaucoma can be accounted for that occur after an operation for cataract.

3. Fistula of the cornea, if it closes after existing a long time.

4. Irido-cyclitis, especially in those cases in which, except the deposits on the cornea, no exudates worth mentioning are found. The increase of tension in these cases is often only transitory.

5. Seclusio pupillae, whether originating in adhesion of the entire pupillary margin to the capsule of the lens or in the inclusion of the former in a cicatrix of the cornea. Seclusio pupillae leads to the accumulation of aqueous in the posterior chamber and to consequent protrusion of the iris, which is accompanied by increase of tension.

6. The lens becomes a cause of secondary glaucoma in two ways—by being luxated and by being swollen. All forms of luxation are of
significance in this regard; but the most dangerous cases are those in which the lens is wedged into the pupil or lies wholly in the anterior chamber. Sudden swelling of the lens after injury or operation may likewise cause increase of tension, especially in the case of elderly people, whose sclerae are rigid. Increase of tension also occurs at times after cataract extraction.

6. *Intra-ocular tumors*, such as sarcomata and gliomata, in a certain stage of their development excite the symptoms of secondary glaucoma.

7. *Hæmorrhages into the retina* are the expression of changes in the vessels or disturbances of circulation, which sometimes lead to elevation of tension. This is most frequently the case in old people with arterio-sclerosis; the elevation here usually makes its appearance under the form of inflammatory glaucoma—glaucoma hæmorrhagicum.

8. *Chorioiditis* and *myopia* of a high degree often give rise to an increase of tension under the form of glaucoma simplex.

The treatment of secondary glaucoma must above all endeavor to remove the cause lying at the foundation of the elevation of tension. For instance, in seclusio pupillae the communication between the two chambers should be restored by means of an iridectomy, a dislocated or swollen lens should be removed, if possible, and so on. For the symptomatic treatment of the increase of tension itself, the means at our command are paracentesis of the cornea and iridectomy. The former diminishes the pressure by causing evacuation of the aqueous, but does so only temporarily, so that it is suited simply to those cases in which the increase in tension is foreseen to be of short duration—e. g., in swelling of the lens and in irido-cyclitis. The paracentesis may be repeated several times, according to the demands of the case. A lasting elevation of tension can be combated only by iridectomy. Glaucoma hæmorrhagicum gives the most unfavorable prognosis. Here we can not count with certainty upon the effect of the iridectomy, since sometimes the latter is immediately succeeded by blindness coming on rapidly and with violent pain. Eyes which contain a new growth, or which are both blind and painful, require enucleation.

**Diminution of the Intra-ocular Pressure (hypotony)** is found in very diverse affections of the eyeball. It is always a sign that the contents of the eyeball have diminished in volume. Hence a high degree of diminution of tension is observed when, after the perforation of the eyeball, either the aqueous has flowed away or the lens or vitreous has escaped. This may be the result of an injury or of the spontaneous perforation of an ulcer. If the perforation in healing leaves a fistula or a cystoid cicatrix, through which aqueous continually escapes, the softness of the eye may persist for a long time (even many years). After the use of a bandage which has been too tightly applied, we find the eye softer for a short time, because, under the increased pressure due to the bandage, an increase in the outflow of fluids from the eye has taken place. So, too, the
eye becomes very soft when the volume of the vitreous is diminished by shrink-
ing of exudates—that is, in those cases in which atrophy of the eyeball occurs
after irido-cyclitis. Hence a progressively increasing softness of the eyeball in
the course of an irido-cyclitis is an ominous symptom. Slight degrees of de-
crease of tension accompany many cases of inflammation of the cornea, both
suppurative and non-suppurative, and also occur not infrequently after slight
injuries (erosions) of the cornea, especially if these were associated with a con-
tusion. Of the affections of the deep parts, detachment of the retina is par-
ticularly associated with diminution of tension. Finally, slight degrees of the
latter are found in paralysis of the sympathetic, and also after the instillation
of cocaine.

Cases occur which are known as ophthalmomalia, or essential phthisis, in
which diminution of tension appears spontaneously, without known cause. The
eye suddenly becomes very soft, smaller, and injected, and not infrequently
there are marked photophobia and neuralgic pain associated with the condition.
This state of things may last for hours or days, when it gives place to the nor-
mal condition. In many instances such attacks recur at intervals (intermitting
ophthalmomalia). The cause of this rare disease in many cases remains
unknown; in other cases there has been an injury preceding it. The prognosis
is good, as the ophthalmomalia usually leaves no ill results behind.
CHAPTER VIII.

DISEASES OF THE LENS.

ANATOMY.

87. The lens (crystalline body, lens crystallina) lies between the iris and vitreous, and, together with the zonula, divides the eye into a smaller anterior and a larger posterior section—the cavity of the aqueous and the cavity of the vitreous. It is a transparent and colorless structure of lenticular shape, the anterior surface of which is less, the posterior surface more curved. In the lens we distinguish an anterior and a posterior pole, and the rounded edge, or equator, at which the anterior and posterior surfaces of the lens come together. The sagittal diameter (thickness of the lens) amounts in the adult man to five millimetres, the equatorial diameter to nine millimetres.

The lens lies within the circle formed by the ciliary processes, but in such a way that its equator is distant about one half millimetre from the apices of the processes. The interspace between the ciliary body and the equator of the lens is called the circumlental space. The posterior surface of the lens is imbedded in the fossa patellaris of the vitreous. The lens is kept in position by the suspensory ligament, or zonula ciliaris.*

If after rupturing the zonula we take the lens out of the eye, we find it, in the first place, inclosed in a transparent capsule—the capsule of the lens. If after removing the capsule we try to crush the lens of an elderly man between the fingers, the softer peripheral masses separate, while the harder central portion remains uncrushed between the fingers. The former form the cortex, the latter the nucleus of the lens (see Fig. 97, r and k). These are distinguished not only by their consistence, but also by their color. The cortex is colorless, while the nucleus has a yellowish or brownish hue. The nuclear layers owe their greater consistence and also their coloration to a process which is known as sclerosis, and which consists mainly in a loss of water. The sclerosis begins even in childhood, but advances so slowly that it is not until the age of twenty-five that a distinct, although still small, nucleus is present. Since sclerosis of the lens fibers is a change due to advancing age,

* Synonyms: Zonula Zinnii, ligamentum suspensorium lentis.
it affects the oldest fibers—i.e., those that lie in the center of the lens—first. By a continuous progress of the sclerosis from the center to the periphery of the lens, the nucleus steadily increases in size as the years go on, and the cortex diminishes in like proportion, so that at length, at a very advanced age, almost the entire lens is converted into nucleus, or is sclerosed. There are many individual differences in this regard, so that persons of the same age have lenticular nuclei of different size. The size of the nucleus is of practical importance in the operation for cataract.

The sclerosed portion of the lens is hard and rigid, incapable of changing its shape. Hence, the further advanced the sclerosis of the lens is, the less able is the latter to make that alternating change in its shape which is requisite for the act of accommodation. For this reason the faculty of accommodation diminishes with advancing age (presbyopia; see § 141).

The nucleus reflects more light than the non-sclerosed part of the lens. Hence, the pupil in elderly people, whose lens has a large nucleus, is no longer of such a pure black as in youth. It gives a gray or grayish-green reflex (the senile reflex), which by the inexperienced is easily confounded with beginning cataract.

**Histology of the Lens.**—The lens consists of fibers having the form of long, prismatic, six-sided cords. They are closely applied to each other, and are held together by a cement substance. The fibers begin and end upon the anterior and posterior surfaces of the lens, along lines which radiate from the anterior and posterior poles (Fig. 122). Here they form a Y-shaped figure—the stellate figure of the lens—which can be recognized in the living eye in adults by means of lateral illumination. The three rays of the stellate figure branch, and thus divide the lens into a number of sectors whose apices meet in the region of the anterior and posterior poles of the lens. In pathological cases—i.e., in opacity of the lens—the sectors often stand out very distinctly. The fibers of the nucleus are distinguished from those of the cortex by their being slenderer and having edges that, owing to the shrinking of the fibers, are finely crenated. The transition from nucleus to cortex is quite gradual, no sharp line of distinction existing between the two.

The capsule of the lens (I, Fig. 123) is a homogeneous membrane, which is thicker upon the anterior than it is upon the posterior surface of the lens. The anterior capsule of the lens is further distinguished by
having a single layer of cubical epithelial cells, the epithelium of the lens (e, Fig. 123). This plays an important part in the growth of the lens, as the fibers of the latter originate from the cells of the capsular epithelium. If we follow the epithelium of the anterior capsule toward the equator, we see that the epithelial cells become taller and taller, until finally they are converted into long fibers, the fibers of the lens (Fig. 123, f). As the cells become elongated their nuclei recede from the capsule into the interior of the lens, so that a zone is found along the equator, in which there are numerous nuclei lying in the lens substance itself. This nuclear zone, as it is called (k, Fig. 123; cf. also Fig. 71, k), represents that district of the lens in which the growth of the latter takes place. This growth occurs by a process of apposition, new epithelial cells constantly growing out into lens fibers, which are placed outside of and next to the older lens fibers. The fibers lying in the center of the lens are thus the oldest, and the most exterior fibers are the youngest. The reason for nuclei not being present outside of the nuclear zone in the interior of the lens is that the nuclei disappear from the older lens fibers.

The structure of the lens is easy to understand, when we know its development. The lens springs from the ectoderm, which becomes invaginated so as to form a vesicle (L, Fig. 87). Since the coating of cells upon the posterior wall of the vesicle grows out and is used up in the formation of lens fibers (Fig. 88), no such coating is found in this situation later on; hence, the posterior capsule of the lens has no epithelium. By the outgrowth of cells and their transformation into long fibers the vesicle is filled up so as to form a solid sphere. In this sphere each of the newly formed fibers extends from the anterior to the posterior lens capsule (Fig. 88). Similarly in the adult lens each individual fiber stretches from a ray of the posterior to a ray of the anterior lens star. The subsequent growth of the lens by apposition continues, as in the case of other epithelial structures, during the entire life. But while in the other epithelial structures (e.g., the epidermis, hair, and nails) the exfoliation of the oldest cells serves to maintain a state of equilibrium,
no such exfoliation is possible in the lens, which is completely shut off; and in this case compensation takes place by a diminution in volume of the oldest fibers through a process of shrinking (formation of the lens nucleus). This diminution in volume, however, does not fully offset the appositional growth, so that the lens keeps on enlarging even in advanced life (see page 381).

The zonula ciliaris consists of delicate, homogeneous fibers, which take their origin from the inner surface of the ciliary body, beginning at the ora serrata. The fibers at first keep in contact with the surface of the ciliary body (z, Fig. 71), but leave it at the apices of the ciliary processes, and, becoming free, pass over to the edge of the lens (free portion of the zonula; z₂, Fig. 71). As they do this, they diverge so as to go partly to the equator of the lens itself, and partly in front of and behind the equator to the capsule of the lens, with which they become fused. The space, triangular on cross section, included between the fibers of the zonula and the equator of the lens, is called the canal of Petit (t₁, Fig. 71). It is connected with the posterior chamber by means of slitlike gaps between the separate fibers of the zonula.

The optical function of the lens consists in its bringing the rays that have been already made convergent by the cornea still closer together, so that they unite upon the retina. For this purpose the refractive power of the lens has to be less or greater, according as the rays are parallel or divergent when they fall upon the eye. This alteration in the refractive power (accommodation) is produced by a change of shape of the lens (see § 139).

In regard to the metabolism of the lens, see page 371.

I. OPACITIES OF THE LENS.

A. General Considerations.

88. Opacities of the lens, called cataract,*, may be situated in the lens itself or in the capsule. Accordingly, we distinguish between lenticular and capsular cataracts; by the combination of the two is produced capsulo-lenticular cataract.

The objective symptoms of lenticular opacity vary according to its extent and its intensity—partial opacities often requiring for their recognition lateral illumination or the use of the opthalmoscope, and, if the opacities lie far in the periphery, artificial dilatation of the pupil as well. By reflected light (with focal illumination) the lenticular opacities present themselves under the form of gray or white spots or striæ. These often exhibit shapes which have a connection with the structure of the lens—e. g., the shape of sectors or radii. By lateral

* Waterfall, from καταρρέωμαι, I pour down.
illumination it can be determined at what depth the opacities are situated in the lens. Opacities of the anterior capsule are distinguished by their brilliant white hue and very superficial situation; sometimes they form a distinct prominence upon the anterior surface of the lens. When seen with the ophthalmoscope—that is, by transmitted light—the lenticular opacities do not appear white, but dark, like black dots or strie, which stand out in contrast with the red hue of the pupil (see page 9). Commencing, slight opacities of the lens can only be recognized by means of the ophthalmoscope. Far-advanced opacity of the lens can be recognized at a glance with the naked eye by the change of color of the pupil, which is white or a gray of varying degrees of brightness.

The *subjective symptoms* of opacity of the lens consist in a disturbance of vision, the degree of which depends upon the situation and the nature of the opacity. Patches of cloudiness that are small, sharply circumscribed, and at the same time as opaque as possible—as, for example, anterior polar cataract—cause little or no impairment of the sight. Larger opacities disturb the sight to a considerable degree, and, moreover, alarm the patient by the production of peculiar phenomena, such as muscae volitantes and polyopia. The seeing of *muscae volitantes* (monches volantes) consists in the patient’s noticing black specks in the field of vision, which, however, if caused by opacities of the lens, change their place only with the movements of the eye, and hence (in contradistinction to opacities of the vitreous) always occupy the same spot in the field of vision. They become objects of cognition by casting a shadow upon the retina, which is perceived by the latter. Multiple vision (*polyopia monocularis*) causes the patient to see the same object double and multiple. It may sometimes have a very disturbing effect, as a case related by Becker shows. A lamplighter in the castle of a prince, when he lighted the candelabra and chandeliers in the salons the evening before a soirée saw thousands of lights, which confused and frightened him to such a degree that he got the idea that he was dealing with a ghost. The reason for the polyopia is found in the optical irregularities which develop in the lens as it grows opaque (irregular lenticular astigmatism), so that the lens throws upon the retina not one but several images of the same object. These phenomena often bring the patient to a physician at a time when as yet no considerable diminution of the sight exists.

The diminution in *visual acuity* depends, with regard to its degree, upon various circumstances. It is greater when the opacity is diffuse, less when it is sharply circumscribed, so that quite clear interspaces are found between very opaque spots. The case is the same as with a windowpane, through which nothing can be distinguished when it is uniformly covered with watery vapor; although, if a wire screen is placed in front of the otherwise clear pane, we can still see pretty well
through it. The interference with vision is also greater when the opacity is situated in the central portions of the lens than when it occupies the periphery. In the latter case, in fact, the sight may be perfectly normal; this being particularly the case as long as the opacities continue to lie completely behind the iris. Upon the situation of the opacities furthermore depends the sort of illumination that will be required in order for the patient to see the best. With a central opacity the sight is better when the pupil is dilated, because the still transparent, peripheral portions of the lens are then used for seeing. Persons thus affected, therefore, see better when the illumination is reduced, as in the evening twilight; they have nyctalopia. In such a case the vision can also be improved by the artificial dilatation of the pupil by means of atropine. The reverse occurs when the opacities occupy the periphery of the lens. Then vision is better when the pupil is contracted, so that the opacities are covered by the iris. Such patients try to get a bright light, and see better by day than by night—hemeralopia.

Later on, as the opacity increases, the sight becomes more and more reduced, the muscae volitantes and the polypia disappear, and the patient grows blind. But, even when he has lost the ability to distinguish objects (qualitative vision), he has still always left him the perception of light—the distinction between light and darkness or quantitative vision. The examination of the perception of light (see § 155) is of great importance with regard to the prognosis of a complete opacity of the lens. If the perception of light is deficient or entirely wanting, this proves the existence of a complication on the part of the retina or the optic nerve, in which case an operation for cataract would have little or no result.

In former times when focal illumination and the ophthalmoscope were unknown, one, in making diagnosis of commencing cataract, was thrown back chiefly upon the subjective symptoms, especially myodesopsia (the seeing of muscae volitantes), which was therefore much more exactly studied and worked up than at present. At that time it was quite possible for pupillary membranes, which made the pupil appear gray or white, to be regarded as opacity of the lens, and they were therefore called cataracta spuria. We shall not fall into this mistake if we observe the connection which a pupillary membrane almost always has with the margin of the pupil, and which is particularly marked when we call in the aid of atropine. But, even with all our present auxiliaries, it is often impossible to say whether the lens behind a dense pupillary membrane is transparent or opaque.

Myopia often develops in the beginning of senile cataract. In this case we are dealing with elderly people, who formerly saw well at a distance and used convex glasses for reading; and who then began to notice that they could read fine print again without glasses, and are perhaps very much pleased at this so-called "second sight." That, as an off-set to this, they do not see as well at a distance as formerly, often escapes their notice. Examination of the eye with glasses shows that it has become myopic, so that the near point has got back
again to the reading distance. This myopia is ascribable to an increase in the density of the lens that takes place while the cataract is beginning to form, an increase by which the refractive power of the lens is heightened.

An opacity of the same character causes more disturbance of vision when it is situated at the posterior than at the anterior pole of the lens; for the nodal point of the eye—i.e., the point through which all rays must pass that enter the eye without undergoing refraction (principal rays)—lies close to the posterior pole of the lens.

The *anatomical changes* forming the basis of lenticular opacity have been chiefly studied in senile cataract. Becker is the one who by his profound researches has done the most to advance our knowledge of the development of cataract.

*Catarract* begins by the separation of the lens-fibers from each other at certain spots, so that fissures are produced filled with liquid (Fig. 124, $k$). These are formed first at the boundary line between the nucleus and the cortex, and particularly in the region of the equator of the nucleus. It is assumed that these dehiscences are caused by the shrinking of the nucleus, that is associated with sclerosis, when this shrinking proceeds too rapidly for the cortex to adapt itself to the diminished volume of the nucleus. The liquid contained in the fissures coagulates into drops or spheroidal bodies (spheres of Morgagni; $M$, Fig. 124). The lens fibers themselves, which bound the fissures, are at first still normal and hence transparent. The fluid which collects between them may at first be transparent too, and nevertheless the spots look cloudy, because the fluid in

---

![Diagram](https://via.placeholder.com/150)

**Fig. 124.—Catarracta Capsulo-lenticularis.** Enlarged 170 x 1.

$k$, anterior capsule of the lens; $e$, epithelium, occurring at $e$, in several layers because of proliferation; $l$, normal lens fibers; $v$, light-colored vacuoles (drops of Liquor Morgagni) between $l$ and the epithelium. The fissures originating through the separation of the lens fibers are filled with a granular mass (coagulated fluid), $s$, which in places forms the spheres of Morgagni, $M$. The lens fibers themselves are swollen up ($g$), or transformed into vesicular cells ($b$), or entirely disintegrated ($s$).

the fissures has a different refractivity from that of the lens substance itself. So, too, a white opaque foam is produced when we mix transparent air with equally transparent water by agitation. Afterward the lens fibers themselves become cloudy. They look at first as if sprinkled with fine dust, owing to the accumulation in their interior of a fatty substance in extremely minute drops,
At the same time that the lens fibers get cloudy, their caliber becomes uneven, because they swell up in spots (q, Fig. 124). In this way bodies that are large, vesicular, and frequently nucleated (vesicular cells; k, Fig. 124) are produced. Finally, the lens fibers break down completely, so that from the lens tissue is formed a pultaceous mass consisting of drops of fat, spheres of Morgagni, remains of lens fibers, and an albuminous liquid (Fig. 124, r). As the lens fibers break down, the connection between them and the capsule, which is a very intimate one in the normal lens, is loosened, and a liquid (the liquor Morgagni) col-

![Figure 125](image)

**Fig. 125.**—Anterior Capsular Cataract. Magnified 40 x 1.

The capsular cataract forms a projection upon the anterior surface of the lens, covered by the capsule, k, which is unchanged and simply thrown into folds. The capsular epithelium, e, loses its regularity at the border of the cataract, its cells being increased in number and separated by the cataract from the capsule, so as to form for a short distance the posterior boundary of the cataract. The cataract consists of a fibrous tissue, with cells lying in the spindle-shaped gaps between the fibers. Succeeding the cataract posteriorly is liquor Morgagni, M, which is esculantized into a pulvulent mass, separating the capsule from the cataractulous layers of the lenticular cortex (which are not represented in the drawing).

lects in open spaces between the lens and capsule (at r in Fig. 124, appearing under the form of separate vacuoles, but at r, Fig. 97, accumulated in greater amount and separating the capsule from the cortex). By this process the removal of the lens from the capsule, as has to be done in a cataract operation, is facilitated.

The nucleus of the lens is transformed by the sclerosis of the lens fibers into such a resistant mass that generally it remains unchanged in the midst of the disintegrating cortex (k, Fig. 97). Hence the nucleus of a cataractulous lens is usually not essentially different from the nucleus of a healthy lens of the same period of life (Becker). But, if there is no hard nucleus present yet, the disintegration of the lens is complete (Fig. 98).

The subsequent changes in the opaque and disintegrated lens consist in the first place in a gradual resorption of the pultaceous lens masses. In this way lenticular opacities may clear up again; not, to be sure, in the proper sense of the word, by the opaque lens fibers becoming once more transparent, but by the disappearance of the opaque parts. The sclerosed nucleus resists resorption as it does disintegration. Cholesterol is not infrequently excreted in the cortex in tabular crystals, which are sometimes large enough to be visible to the naked eye as glistening points. Lime salts may be deposited in the pultaceous lens masses.

Capsular opacity is not situated in the capsule itself, which never becomes opaque, but is deposited upon the capsule. Opacities of the anterior capsule are caused by an opaque tissue which is found on the inner surface of the capsule, between it and the lens (Fig. 125). This tissue takes its origin from a proliferation of the capsular epithelium. The cells of this latter increase in number so that a multiple layer of them is formed (Fig. 124, e). From this layer
there is formed by the growth of the epithelial cells into elongated fibers a sort of fibrous tissue which looks like connective tissue, but still is not true connective tissue, since it has originated from epithelium. By the interposition of this tissue between the capsule and the lens a distinct elevation is formed upon the anterior surface of the lens.

The opacities of the posterior capsule lie, as a rule, upon its posterior surface.

Inflammation of the lens—phakitis*—does not exist. Inflammatory elements, such as round cells, occurring in the lens, do not originate in it, but enter the lens from the outside through an opening in the capsule.

B. Clinical Forms of Cataract.

89. Every opacity begins at first at some special spot in the lens (partial cataract). It may remain permanently limited to this spot (partial stationary cataract), or it may gradually spread over the whole lens and lead to total cataract (progressive cataract.)

(a) Partial Stationary Cataract.

1. Cataracta Polaris Anterior.—A small white dot is seen at the anterior pole of the lens. Anatomical examination has proved that it represents an opaque tissue lying beneath the anterior capsule and between it and the lens—that is, that we are dealing with a capsular cataract (Fig. 123). Hence this form of opacity is also called anterior central capsular cataract.

Anterior polar cataract may be either congenital or acquired. Congenital anterior polar cataract is bilateral, and consists of a minute faint dot upon the anterior pole of the lens. It is caused by some interference with the development of the lens, the precise nature of which has not been determined. The acquired form originates from a central ulcer of the cornea. When such an ulcer perforates and the aqueous escapes, the lens pushes forward so that its umbo is applied to the posterior aperture of the perforation. Thus, partly by mechanical means, partly through the direct contiguity of the inflamed cornea, an irritation is set up in the epithelium of the anterior capsule, so that it proliferates and forms an opaque tissue beneath the capsule. Afterward the ulcer heals, the anterior chamber is reconstituted, and we then have a central opacity of the cornea and a central capsular cataract. This apposition of the lens to a perforation in the cornea leads to anterior polar cataract only in the case of small children, never in adults. The most frequent cause of perforation of the cornea in early childhood is blennorrhea neonatorum, and hence this latter is to be looked upon as the ordinary cause of anterior polar cataract.

Acquired anterior polar cataract is bigger and more densely white than is the congenital form. Sometimes the layer of opaque tissue

* From φακίτις, lentil.
that lies beneath the capsule and corresponds to the cataract is so extensive as to produce a distinct visible conical protrusion of the anterior pole of the lens. This is called a pyramidal cataract (Fig. 59, p).

Anterior polar cataracts of small area may exist without giving rise to any essential disturbance of vision, this generally being caused more by the opacity of the cornea than by that of the capsule. Treatment, therefore, is generally not acquired except in those rare cases in which the cataract is so large as to occupy almost the whole of the pupil when the latter is contracted. Then an iridectomy would be indicated.

3. Cataracta Polaris Posterior.—This consists of a small white dot at the posterior pole of the lens, which, on account of its deep location, is generally to be discovered only with the ophthalmoscope. It belongs to the posterior capsule, upon the posterior surface of which it is deposited (hence also called posterior central capsular cataract). Posterior polar cataract is congenital, and dates from the time when the hyaloid artery passed through the vitreous to the posterior pole of the lens (see page 286 and Fig. 88). When this disappears incompletely, some of its tissue remains upon the posterior capsule. Hence, we sometimes find posterior polar cataract simultaneously with persistence of the hyaloid artery. The interference with vision is inconsiderable when the cataract is small. Treatment, none.

The anterior and posterior polar cataracts are capsular, while the partial stationary cataracts about to be mentioned are all lenticular.

3. Circumscribed Opacities of Various Kinds in the Lens itself.—In this category belongs central cataract, a small spherical opacity directly in the center of the lens. The cataracta fusiformis, or spindle-shaped cataract, consists of an opaque line which runs in the axis of the lens from the anterior to the posterior pole, and presents a spindle-shaped swelling at a point corresponding to the center of the lens. In cataracta punctata, extremely minute white dots are found, either distributed uniformly through the whole lens or united in a group in the anterior cortical layer. Besides these here mentioned, numerous other forms of circumscribed stationary lenticular opacities are known, all of which, however, occur so rarely that they do not need to be minutely described here. All these opacities are sharply circumscribed, and are sometimes of very regular and graceful shape; they are congenital, and are mostly found in both eyes. They are often inherited, although the same forms of cataract are not always met with in the different members of the same family. Eyes affected with cataracts of this sort not infrequently present other congenital malformations too, or are found in individuals whose whole development, mental or physical, is imperfect. Most of these opacities in themselves cause little impairment of the sight, which, however, is often defective for other reasons.
DISEASES OF THE LENS.

chitic changes in the skull (craniotabes). At the same time other residua of rickets are also found, particularly in the bones and teeth. Lamellar cataract, therefore, stands in etiological connection with rickets (Horner). Inheritance of lamellar cataract is of not infrequent occurrence.

Perinuclear cataract is stationary as a rule, although there are cases in which it gradually develops into a total opacity of the lens.

The degree of interference with vision, due to lamellar cataract, does not depend upon the diameter of the opacity, for lamellar cataracts of even small diameter are always large enough to occupy the whole pupillary area of the lens, so that the transparent peripheral zone is always entirely concealed behind the iris when the pupil is not dilated. Hence, as far as vision is concerned, the denseness of the opacity is the only thing that has to be considered. As this latter varies greatly, all gradations are found between almost normal sight and considerable impairment of vision.

Treatment is required for lamellar cataract only when the interference with vision is considerable. In these cases there are two ways to choose from for improving the sight by operative means. The transparent periphery may be exposed and rendered available for vision by means of an iridectomy, or the lens may be removed altogether. The latter is accomplished in young people by discussion; in older ones, in whom a hard nucleus is already present in the lens, by extraction. Each of these procedures has its definite indications, its advantages, and its disadvantages.

Iridectomy is proper only when the peripheral, transparent zone of the lens is pretty broad. It retains for the patients the possibility of seeing at a distance and near by without glasses, but causes disfigurement by depriving the pupil of its round shape, and also gives rise to dazzling. It is only of transient benefit in those cases in which the lamellar cataract passes into total opacity of the lens. On the other hand, removal of the lens produces a radical cure, and, if done by dissection, leaves a round and mobile pupil; but it renders the patient exceedingly hypermetropic, and deprives him of the power of accommodation, so that he is compelled always to make use of glasses. Hence, in the choice of operative methods, we usually proceed as follows: If signs of the progress of the cataract are present (a demonstrable gradual diminution in visual power), the removal of the cataract is unconditionally indicated. If a stationary condition of the cataract is to be expected, we perform iridectomy when the transparent periphery of the lens is broad enough to make distinct vision possible; otherwise, we remove the lens. In order to establish the availability of the periphery of the lens for vision, the visual acuity is determined, first, with the pupil contracted, and then after its artificial dilatation by means of atropine. If the visual acuity is considerably increased
in the latter case, iridectomy is indicated; otherwise, removal of the
lens.

5. Cataracta Corticalis Anterior et Posterior.—In this there is
found in the anterior or posterior cortical layer of the lens a stellate or
rosette-shaped figure, the center of which corresponds to the pole of
the lens, while its rays are directed radially toward the periphery (Fig.
129). Anterior cortical cataract is much rarer than the posterior va-

FIG. 128.—Posterior Polar Cataract.
Magnified 2 x 1.

FIG. 129.—Posterior Cortical Cataract.
Magnified 2 x 1.

riety; sometimes both are found together. The two forms of cataract
occur generally in those eyes which suffer from affections of the deep
parts, like chorioiditis, retinitis pigmentosa, fluidity of the vitreous,
etc.; the disturbance in the nutrition of the lens, thus produced, in-
duces the formation of an opacity in it. The interference with vision is
usually considerable, since it is caused not only by the opacity of the
lens, but also by the involvement of the fundus. Anterior and poste-
rior cortical cataracts remain stationary for many years and then at
length pass into total opacity of the lens. They accordingly constitute
a transition between the stationary and the progressive forms of cata-
rant. When they have induced total cataract, they afford a bad prog-
nosis for the operation on account of their being complicated with a
lesion of the fundus.

Posterior polar and posterior cortical cataracts are frequently confounded.
Accordingly, I present a drawing of the two kinds of cataract side by side to
show the differences. Polar cataract is a round dot (Fig. 128), and represents
a tissue that is deposited upon the posterior surface of the posterior capsule
of the lens. Anatomically, therefore, this form of cataract does not belong to
the cataracts at all, since the opaque tissue lies outside of the lens system. It
hence shows no indication whatever of a radial structure, which is the very
feature that is characteristic of a posterior cataract. The latter, in fact, is not
only much larger than a posterior polar cataract, but also has always, in con-
formity with the radiating arrangement of the lens fibers at its posterior pole,
the shape of a star or a rosette, with coarse or fine radial striation (Fig. 129).

An anterior polar cataract is sometimes joined by a filament of connective
tissue with a central cicatrix of the cornea. This takes its origin from the time
when the lens was applied to the cornea after the perforation of the ulcer. The
lens and cornea were then glued together by a mass of exudation, which may
afterward become organized and be drawn out into a long filament when the
anterior chamber is reconstituted. Generally the filament ends by rupturing,
but exceptionally it may persist all through life and connect the corneal cicatrix
with the anterior pole of the lens.
DISEASES OF THE LENS.

There are cases of anterior polar cataract in which the corneal cicatrix that is left by the ulcer does not lie in the pupillary area, but in the periphery of the cornea. Hence, it follows that the perforation must have occurred at some point not directly in the center of the cornea. In fact, to produce the cataract, it is enough that the lens as it pushes forward after perforation has taken place should apply itself by its umbo to the posterior surface of the cornea, even though the latter itself is sound.

Corneal opacities acquired in very early childhood often clear up to an extraordinary degree, so that in anterior polar cataract it is not always a dense cicatrix, but often only a slight cloudiness of the cornea, that is found. If this latter is overlooked, the method of development of the cataract might become a matter of doubt.

Anterior polar cataract, through subsequent contraction of the newly formed tissue sometimes causes a wrinkling of the adjacent portions of the anterior capsule, visible upon examination with a magnifying glass. This wrinkling may afterward lead to an opacity of the lens itself (total cataract); in some cases I have seen a unilateral lamellar cataract develop in this way.

Perinuclear cataract is found in individuals who, in childhood, have suffered from rachitis and from convulsions due to it. For this reason Horner has promulgated the view that the rhachitic interference with nutrition, besides affecting the bones, affects epithelial structures too, especially the teeth and the lens. The teeth, especially the incisor teeth, in the slight cases display horizontal rows of small depressions or horizontal furrows in the enamel. When these defects are still more strongly marked, the tooth gets to have a sort of terraced shape, and is tapered down toward the incisor surface. Sometimes the teeth are so abortive in development that they are represented by small, cubical or irregular stumps. In the more serious cases the enamel coating is absent on the incisor surface or is even absent altogether; the dentin lies bare, and upon its rough surface a thick layer of yellow tartar is deposited. Owing to this deficiency in the enamel coating, the teeth become rapidly carious and break off, so that it is not unusual to find, especially in peasants, nothing of the incisor teeth except the broken-off stumps. The lens, which in its development has much in common with the teeth, is affected in that those layers of the lens become opaque that are present at the period when the nutrition is being disturbed by rachitis, while at a later period, after the disappearance of the rachitis, normal transparent layers of lens substance are again deposited. We do not, as a rule, possess means for determining with certainty the point of time at which the lamellar cataract develops. An undoubted case of congenital lamellar cataract is known (Becker), and as undoubtedly the development of a lamellar cataract in a child of nine has been observed (De Wecker). In most cases, probably, the formation of the cataract occurs in the fetal period or within the first years of life; generally, though, the cataract is not discovered until later. For the persons affected with it are not blind, but are simply weak-sighted; hence the affection from which they suffer does not generally make itself apparent until the time when greater demands are made upon the eyes—that is, in the first years of instruction at school.

Deutschmann, Beselin, Lawford, and Schirmer have made anatomical examinations of lamellar cataracts. These showed that within the opaque layer numerous small gaps, or vacuoles filled with liquid are present between the lens fibers; while within the nucleus itself only one or two such vacuoles are to be
found. In addition, larger fissures occur surrounding the nucleus like a shell. These represent the riders (Fig. 130).

Lamellar cataract does not always present a uniformly gray disk, but frequently exhibits a complicated structure. Densely opaque dots or graceful figures are often noticed in the anterior or posterior opaque layers, or markedly opaque sectors are contrasted with the less opaque matter in their vicinity. Again, while the riders correspond to partial opacities of a neighboring layer, the latter may also be opaque through its entire extent so as to surround the inner opaque layer like a cloak, while at the same time separated from it by a thin transparent stratum. Thus there originate double or even triple lamellar cataracts.

People suffering from lamellar cataract are often myopic; for, on account of the indistinctness of the retinal images, they are compelled to bring objects closer to the eye in order to make up in size of the retinal image what it lacks in clearness. From this apparent myopia a real one usually develops subsequently, because, through the habit of constantly looking at objects near by, the posterior wall of the eyeball becomes stretched and the axis of the eyeball elongated.

Cataracta corticalis anterior and posterior are sometimes observed after injury of the lens, and that both when the lens capsule is opened and also in simple contusion of the lens without opening of the capsule. The stellate opacity in the cortex develops in the days immediately succeeding the injury, and may either rapidly pass over into complete opacity of the lens, or may remain stationary, or may even disappear again. The rapid development of these opacities, as well as the fact that they can disappear, indicate that they do not consist in a clouding of the lens fibers themselves. Probably what occurs is a distention of the preformed cavities (lymph spaces; Schlösser; see page 271) in the lens with fluid, which may disappear from them again.

**(b)** PROGRESSIVE CATARACTS.

90. Progressive cataracts begin as partial opacities, which steadily extend until at length they occupy the entire lens. This is true, with the qualification that the portions of the lens already sclerosed—that
is, the nucleus—ordinarily remain exempt from opacity. Hence, opacity of the lens in all its parts occurs only in young persons whose lens as yet has no hard nucleus; in older people the nucleus generally remains transparent. The time required for a lenticular opacity to involve all the parts that are capable of becoming opaque at all, varies very greatly. There are cases in which a transparent lens becomes completely opaque within a few hours, while other cataracts require many years before they can become total.

We distinguish in the course of a progressive cataract four stages, which are best marked in the most frequent form of cataract, senile cataract. To this form, therefore, the following description mainly applies:

First Stage. *Cataracta Incipiens.*—Opacities occur in the lens, between which are found spots that are still transparent. The shape of the opacity is most frequently that of sectors (so-called spokes), the base of which looks toward the margin, and their apex toward the poles of the lens.

Second Stage. *Cataracta In tumescens.*—In proportion as the lens becomes more opaque, it contains more and more water, and hence

---

**Fig. 131 A.**

The crescentic shadow appears at that side of the pupillary margin that is turned toward the source of light, L.

**Fig. 131 B.**

The inner layers of the lens are supposed to be opaque, the peripheral ones transparent. The source of light, L, throws upon the surface of the opacity a shadow from the iris, whose central border is at b. An observer, looking from a point straight in front of the eye, sees a portion of this shadow, of the width a b, running alongside of the pupillary margin of the iris.

swells up. This increase in volume of the lens is recognized by the increasing shallowness of the anterior chamber. As long as the opacity has not reached to the anterior capsule, the iris throws a shadow upon the lens. To see this, a light is held near the eye and to one side of it. Then a black shadow is seen at that side of the pupillary margin that is turned toward the light (Fig. 131 A). This arises from the fact that the opaque layer of the lens upon which the iris casts its shadow lies some distance behind the iris. This opaque layer acts like a screen which receives the shadow of the iris. An observer, looking at the eye
from in front, sees then that portion of the shadow which does not lie behind the iris itself (a b, Fig. 131 B). This portion of the shadow becomes narrower the nearer the opacity approaches the iris, and finally disappears altogether when the opacity reaches the anterior capsule. The distended lens has a bluish-white color and a marked silky luster of the surface, and shows very clearly the stellate markings of the lens.

During the stage of intumesceence the opacity of the lens becomes total. As soon as this has taken place the lens begins gradually to lose water, so that it returns once more to its former normal volume. The lens then enters upon the—

Third Stage (Stage of Maturity). Cataracta Matura.—The anterior chamber is once more of normal depth, and the iris no longer casts a shadow—a proof that the opacity of the lens has become total. The lens has lost its bluish-white, iridescent look, and has a dull-gray or brownish color; the radial markings of the stellate figure of the lens are still for the most part recognizable. A mature cataract has the property of separating readily from its connection with the capsule. This is partly because the disintegration of the lens fibers has proceeded right up to the capsule, partly because the lens, formerly enlarged, has diminished again in volume, and thus the connection between the surface of the lens and the capsule is loosened. The lens then lies in its capsule like a ripe fruit in its rind (Arlt); and thus it has become ripe for operation, since it is of great importance that the cataract should be capable of removal from its capsule without any portions of the lens remaining behind. These would form a new opacity in the pupil—a secondary cataract—and thus render the result of the operation doubtful.

Fourth Stage. Cataracta Hypermatura.—The further metamorphosis of a mature cataract consists in the complete disintegration of the opaque lenticular mass. This becomes converted into a pultaceous substance, which no longer shows any trace of the original structure of the lens, its formation out of sectors, etc. Hence, in a hypermature cataract we either see no markings at all, or nothing but irregular spots—no radii nor sectors. The consistence possessed by a hypermature cataract depends upon whether the gradual loss of water, which began after the intumesceence of the cataract and reduced the latter to its normal volume, keeps on or not. If the loss of water continues, the pultaceous mass which is produced by the disintegration of the lens fibers becomes more and more inspissated. It dries up along with the nucleus of the lens into a flat, cakelike mass; the anterior chamber consequently becomes deeper and deeper. This is the ordinary form of hypermature senile cataract.

If the loss of water ceases after the lens becomes entirely opaque, the lenticular mass grows more fluid in proportion as it keeps on break-
ing up into smaller and smaller parts. If this process goes on in a young person, in whom there is no hard nucleus in the lens, the latter becomes liquefied through and through, so that the lens consists of a milky fluid (*cataracta fluida sive lactea*). If this metamorphosis affects an old lens, the nucleus, which has failed to become opaque, also escapes disintegration, and sinks under the form of a heavy compact mass to the bottom of the liquefied cortex. The cataract has then a homogeneous white appearance, corresponding to the milky cortex, and in its lower portion presents a brownish shading, which is bounded above by a semicircular line, and which represents the upper half of the dark nucleus. As the latter alters its position with the movements of the head, the brownish shadow can also be seen to change its place. This form of cataract is known as Morgagnian cataract (*cataracta Morgagni*).

A liquefied lens, however, does not remain permanently unaltered, but inspissation of the fluid occurs later on through the gradual loss of water, the disintegrated lens masses being at the same time in part resorbed. In this way the lens constantly diminishes in volume until, in cases in which no nucleus has been present, it is transformed into a thin, transparent membrane (*cataracta membranacea*). In children, in whom resorption is carried especially far, the opaque lenticular masses disappear altogether in places. The two layers of the lens capsule, which has remained transparent, come into apposition, and thus there are formed perfectly transparent spots in the opaque lens, recognizable by reflected light as black gaps in the white pupil. The child begins to see again, a sort of spontaneous cure of the cataract having occurred.

When a hypermature cataract has lasted a long time, changes set in which lead to complications: (a) Cholesterol, or lime salts, are deposited in the lens mass. The former is recognizable with the naked eye under the form of glistening points in the opaque lens. Calcification of the lens (*cataracta calcaria sive gypsea*) takes place chiefly in complicated cataracts. It is characterized by a peculiar coloration, varying from chalk-white to yellow. (b) The anterior capsule becomes

---

**Fig. 132.—Capsular Cataract in a Case of Hypermature Cataract.**

The center of the dilated pupil is occupied by an irregular, brilliantly white capsular thickening, upon which can be recognized the fine wrinklings of the capsule. In the vicinity of the large capsular opacity are found thickenings of the capsule, which have just developed, and which form white dots contrasting strongly with the subjacent brownish and radially striate, opaque lens.
thickened by proliferation of the capsule cells, so that out of a simple lenticular cataract there is formed a cataracta capsulo-lenticularis. The capsular opacity presents itself under the form of a dense, white, irregular spot upon the gray or brownish surface of the lens, usually occupying the central part of the anterior capsule, over an area about corresponding to the pupil (Fig. 133). (c) The lens becomes tremulous. The shrinking of the hypermature cataract affects not only its thickness, but also its equatorial diameter. In proportion as the latter diminishes in size, the zonula of Zinn is stretched, and thereupon undergoes a corresponding atrophy of its fibers. Consequently, the attachment of the lens becomes imperfect, so that the lens shakes with the movements of the eye (cataracta tremula). Spontaneous luxation of the lens may even take place through partial or total rupture of the zonula. In consequence of these changes an operation for hypermature cataracts is often more difficult, and gives rather less favorable results than the operation in the stage of maturity.

As the diagnosis of the stage of a cataract is what determines the question of the performance of an operation, and hence is of great practical importance, the distinguishing signs of the separate stages will be summed up in the following words:

1. Cataracta incipiens. Anterior chamber of normal depth; transparent spots still to be found in the lens between isolated opacities.

2. Cataracta intumescens. Anterior chamber shallower; iris usually casting a shadow; lens bluish-white and having a silky luster; markings of the stellate figure of the lens very distinct.

3. Cataracta matura. Chamber of normal depth; no shadow cast by the iris; markings of the stellate figure of the lens still recognizable.

4. Cataracta hypermatura. Anterior chamber of a normal depth; no shadow cast by the iris; surface of the lens appearing quite homogeneous (in the case of liquefaction), or showing irregular dots and spots in place of the radial markings of the lens star.

According to their consistence, total cataracts are distinguished into hard and soft (cataracta dura et mollis). This has reference to the nucleus of the cataract. By soft cataract, therefore, we understand one having no distinct hard nucleus (Fig. 98), while those cataracts are known as hard which inclose a hard nucleus, although the cortex is soft (Fig. 97). The nucleus, in fact, does not usually become subject to cataractous changes, and therefore retains its natural consistence. The distinction between hard and soft cataract is made chiefly from a practical point of view. For the extraction of cataract from an eye a section must be made, the dimensions of which depend mainly upon the size of the nucleus. The wound must be large enough for the nucleus to pass easily through it, as otherwise the nucleus either
DISEASES OF THE LENS.

413

can not be removed from the eye at all, or, if it is squeezed forcibly through the wound, it crushes the lips of the latter. The soft cortex is stripped off from the nucleus, as the latter passes through the wound, and can subsequently be readily removed from the eye by stroking; it is unnecessary, therefore, to pay any regard to it in making the section. Hence, in soft cataracts a small wound (simple linear extraction) suffices, while in hard cataracts the wound must be longer, in proportion to the size of the nucleus.

For these reasons it is of importance before undertaking an operation to diagnosticate whether the cataract contains a hard nucleus, and if so, about how large it is. For this purpose we must take into account the age of the patient and the appearance of the cataract. The age is to be considered, inasmuch as the development of the nucleus is in direct proportion to it in healthy, and hence also in cataractous lenses. Cataracts of children and young people have no nucleus; in older persons the nucleus is in the main larger the more advanced the age is. Nevertheless, it is not to be forgotten that very considerable individual variations occur with regard to the size of the nucleus. A careful inspection of the cataract, however, enables us to see the nucleus directly. It can be recognized upon lateral illumination as a dark reflex emanating from the depth of the lens. From this we can estimate its size, and from its color estimate its consistence also. The darker—reddish or brownish—the nucleus is, the harder (and usually, too, the larger) is it.

It may happen that the sclerosis of the lens has advanced so far that it has been entirely, or all except a small residue, transformed into a nucleus. It is then converted into a hard, dark-brown, transparent mass. The pupil looks black, and it is only on careful inspection—especially with the aid of lateral illumination—that we recognize that it is of a peculiar dark brown. This condition is known under the name of cataracta nigra. Properly speaking, it is not a cataract in the true sense of the term, but a far-advanced senile alteration of the lens—a total sclerosis of it. Such lenses are always large and hard, and require a large section for their removal.

One of the precursors of cataract is the unequal refractivity that ophthalmoscopic examination frequently shows in the separate portions of the lens. In that case, when the pupil is illuminated with the ophthalmoscope, spots are seen here and there which first shine more vividly red than the rest, then upon a slight turn of the mirror appear as dark shadows in the red of the pupil. These are comparable to the striae that are found in defective glass.

Often the nucleus of the lens is distinguished by its specially great reflective power, so that, without being really opaque, it becomes visible upon ophthalmoscopic examination as a dark-red globular body in the center of the brightly illuminated pupil. In conjunction with the marked difference in refractivity between the cortex and nucleus that exists in these cases, a fairly high degree
of shortsightedness (lenticular myopia) develops.* Such eyes show even to the unaided view a specially strong senile reflex; the pupil looks so gray that one might think himself justified in assuming the existence of a commencing cataract. The diagnosis of cataract, however, should be made only when the ophthalmoscope actually shows circumscribed opacities in the lens.

Such opacities appear most frequently under the following forms:

1. Opaque sectors (radii) which look grayish-white by reflected light, black by transmitted light, and whose apices converge toward the pole of the lens (Fig. 133 A). They correspond to the natural grouping of the lens fibers into sectors. Sometimes they are broad and triangular, sometimes narrow, and are occasionally represented by nothing but slender radiating lines. That form of cataract in which the lens is traversed by numerous, very slender radiating lines

![Fig. 133 A. — Incipient Cataract under the form of opaque sectors, which look black when seen by transmitted light with the ophthalmoscope.](image)

![Fig. 133 B. — Incipient Cataract under the form of an irregular disk, which is more markedly opaque at its edges, and which is situated in the posterior layer of the cortex.](image)

is found chiefly in myopic eyes. The clouding of the sectors begins in their periphery, where they are visible with the ophthalmoscope long before their apices project into the region of the pupil and impair vision.

2. A diffuse, smokelike cloudiness occupies the central portion of the lens. It belongs to those layers which directly inclose the nucleus. This sort of opacity disturbs the sight much earlier and to a much greater extent than do the opaque radii, because, in the first place, they are from the start found in the pupillary area; and, secondly, because they are diffuse and do not leave any places that are quite transparent.

3. A disk-shaped opacity which is situated in the posterior layers of the cortex, but which, in contradistinction to the typical posterior cortical cataract (Fig. 138), presents an irregular and ill-defined contour and a cobweblike structure. (Fig. 133 B). This sort of opacity, too, causes from the outset very great disturbance of the sight.

4. We find, as an extremely frequent occurrence, in the eyes of old people, an opaque ring which lies near the equator of the lens, and which, on account of its resemblance to the arcus senilis of the cornea, was named by Ammon the arcus senilis (sive gerontoxon) lentis. This opacity is composed of two parallel opaque rings, one of which lies in front of the equator of the lens, the other behind it. It does not impair vision, since it lies wholly behind the iris, and shows little tendency to spread.

* [To the alteration in the nucleus, producing this increased refractivity of the lens as a whole, the name nuclear sclerosis is applied by some, although the term properly denotes any progressive hardening of the nucleus. The full amount of lenticular myopia produced by nuclear sclerosis (in this restricted sense) amounts regularly to 3 or 4 D.—D.]
Generally, in commencing senile cataract, several or even all of the above-mentioned forms of opacity are met with.

5. In young people, cataract often begins in the form of irregular, macular or cloud-like opacities.

Opacities of the lens, especially when examined with a magnifying glass and focal illumination conjointly, often present quite clearly the appearance of being formed of minute drops. Such opacities are most frequently found in cataracts of young persons and in complicated cataracts.

How long a time does it take for a cataract to become ripe? The progress of a cataract is sometimes rapid, sometimes slow, the latter especially in senile cataract which not infrequently remains in an almost unchanged condition for years.

Hence, if we find in an elderly patient the first stages of a cataract which as yet produces no interference with vision worth mentioning, the indication is, in the interest of the patient, not to frighten him by communicating his condition to him, as he perhaps may enjoy sufficiently good vision for several years yet to come. For our own security we may communicate the discovery to some near relative of the patient's. Sometimes, again, the lenticular opacity progresses by fits and starts—a cataract which has remained unchanged for quite a long time becoming almost completely mature within a few months or even weeks.

For these reasons it is for the most part impossible to answer with precision the patient's question as to when the cataract will become ripe. The following diagnostic points may serve for an approximate determination: The lenticular opacity develops the more rapidly the younger the person is. Light-colored cataracts become matured more rapidly than dark ones, and those with broad radii more rapidly than those with slender radii. A cataract nigra can never become matured in the ordinary sense of the word, since it is not a cataract proper but a sclerosis of the entire lens which may be said to have been converted in toto into a nucleus, and hence always preserves a certain degree of transparency.

For the laity a criterion of the ripeness of a cataract—in e., of its readiness for operation—is the fact that the eye is no longer in a condition to count fingers. This does not hold good for dark cataracts, which generally do not become so opaque that the patients can not perceive the larger-sized objects. Nevertheless, these can be operated upon with good results, since the lens has been transformed into a hard, horny, translucent mass which can readily be shelled out cleanly from its capsule.

The rapidity of ripening is also influenced by the etiology of the cataract. Certain cataracts, such as diabetic, traumatic, and glaucomatous cataracts, furthermore complicated cataracts, particularly those resulting from detachment of the retina, are distinguished by their rapid rate of progress. The time required for ripening can be most readily determined, at least in the case of senile cataract, when the other eye already contains a ripe cataract and the time that this has taken to develop is known, since presumably the rate of advance of the cataract is the same in both eyes.

The intumescence of the maturing cataract is caused by the swelling of the cortex. It is, therefore, more distinctly pronounced the softer the cataract is, since then there is much cortex; on the other hand, it is altogether wanting in the dark, hard cataracts which consist of scarcely anything but nucleus. For the same reason, too, the ordinary phenomena of hypermaturity do not occur in the latter; instead of undergoing further disintegration, the horny lens remains unchanged, or, at most, thickening of the capsule is added.
By a combination of thickening of the capsule with various degrees of consistence of the lens, special varieties of cataract are produced. A liquefied lens in a thickened sac-like capsule is called cystic cataract (cataracta cystica). By the term cataracta arida siliqueata is understood a shriveled cataract within a thickened capsule; deriving its name (dry, slique-shaped or pod-like cataract) from its similarity to a dried pod (slique).

By the shriveling of the cataract in the stage of hypermaturity the anterior chamber becomes deeper, until finally the iris, instead of projecting forward in the shape of a cone, lies in a plane. If the diminution in the size of the cataract keeps on, the iris is not drawn backward so as to form a funnel, except when it is joined to the lens capsule by posterior synechiae. Otherwise the iris remains stretched in a plane, and the shriveling lens becomes farther and farther removed from the iris, so that the latter, deprived of its support, becomes tremulous. A dark interspace is then seen between the iris and the lens, and the iris again throws a shadow upon the latter. This shadow must not, of course, be confounded with that which is found in immature cataract. Nor should the black rim of pigment on the margin of the pupil, seen in every case of cataract, be regarded as the shadow cast upon the iris. It is easily distinguished from a shadow by its appearance, and also by the fact that it is visible not only at the side toward the light, but all round the iris.

In the stage of hypermaturity in which the opaque layers become thinner through resorption, the sight often increases a little, so that, for example, the fingers can be again distinguished. Really serviceable vision sometimes comes on in young people, when the resorption goes on so far that spots are formed which are perfectly transparent. In senile cataract, in which a hard nucleus is present, it is extremely rare for a spontaneous restoration of sight to occur, although it may take place in the following ways: (a) By the resorption, in exceptional cases, not only of the cortex but also of the nucleus to such an extent that nothing but slight opacities remain. (b) By the formation of a Morgagnian cataract, and the subsequent transformation of the fluid portion of the cataract into a clear, transparent liquid. Then the upper part of the pupil is transparent and black, while the brown nucleus is seen lying in its lower part. These cases are not so very rare, only they were not formerly correctly diagnosed. I myself, since I have begun to pay attention to the subject, have seen six such cases which formerly I would probably have looked upon as cataracts that had become diminished in size and luxated downward. Afterward the transparent liquid, and even the nucleus itself, may be resorbed, so that only a thin membrane is left. (c) By spontaneous dislocation of the lens, so that the pupil again becomes partly or entirely black.

Operations upon hypermaturity cataracts give rather less favorable results than those performed at the time of maturity. The chief disadvantages of operating in the stage of hypermaturity are: 1. Prolapse of the vitreous during the operation, on account of the defective condition of the zonula. 2. Retention of the thickened and opaque capsule. Since this can not disappear by subsequent absorption, as the opaque lenticular masses may do, it forms a permanent secondary cataract. 3. The possibility of the products of the disintegration of the lens substance, especially cholesterol, coming into direct contact with the iris, and exerting such an irritating action upon it that iritis develops. I once operated by discussion upon a shriveled cataract which contained scarcely anything else between the two layers of capsule but a large amount of cholesterol crys-
DISEASES OF THE LENS.

After the anterior capsule had been opened, the crystals poured into the anterior chamber, where they could be seen floating about like glistening points in the aqueous and afterward sinking to the bottom after the fashion of a hypopyon. Although the operation itself was done without the iris receiving any mechanical injury, a severe irido-cyclitis nevertheless ensued, in consequence, I suppose, of the irritation of the iris due to the action of these disintegration products of the lens substances.

To what has been said in regard to the nucleus of the lens and its behavior in cases of cataract, exceptions occur. There are cases of cataract in children, in which the lens, instead of being soft, has quite a hard nucleus or even has a waxylike consistence throughout. On the other hand, cases of senile cataract have been observed without nucleus. In exceptional cases, the nucleus and not the cortex may be the first part to become opaque in the lenses of adults (cataracta nuculiris).

C. Etiology of Cataract.

91. 1. Cataracta Congenita.—The cause of this is either a disturbance of development or an intra-uterine inflammation of the eye. Both the stationary partial cataracts (particularly anterior and posterior polar cataract) and the progressive forms of cataract may be congenital. Congenital cataracts are usually bilateral and often inherited. Heredity, however, makes its influence felt in non-congenital cataracts also, and, in fact, even in senile cataract; there are families many of whose members become blind from senile cataract, and that, too, for the most part at an unusually early age.

2. Cataracta senilis is by far the most frequent form of cataract. Indeed, it occurs very frequently in old people, but not so regularly as to be regarded as a physiological attribute of age—as the turning gray of the hair is, for example—but rather as a pathological process. It usually does not make its appearance until after the fiftieth year of life, but is exceptionally observed in the years between forty and fifty. The fact of a cataract occurring in an elderly person does not of itself justify the diagnosis of senile cataract. An old man may get a cataract in consequence of traumatism, etc. Hence, to establish this diagnosis, it must be demonstrated that neither in the eye nor in the body in general are there diseases which might account for the development of the cataract, so that the latter can only be attributed to the effect of age. Senile cataract always affects both eyes, but rarely at the same time, so that generally one eye is in advance of the other in respect to the development of its cataract.

3. Cataract due to General Diseases.—The most frequent of these is diabetic cataract. This mainly develops when the amount of sugar in the urine is high, and usually matures rapidly. It is always bilateral. In this category are also to be set down perinuclear cataract depending upon rickets and cataract due to nephritis.

4. Cataracta Traumatica.—All injuries which make an opening in the lens capsule result in opacity of the lens. If a fresh, transparent
lens is taken out of its capsule and laid in water, it absorbs water abundantly, and in so doing becomes opaque, swells, and finally breaks up into layers through a process of cleavage. Precisely the same thing takes place in the living eye through the imbibition of aqueous by the lens, when the capsule has been opened by traumatism, so that the aqueous comes into direct contact with the lens substance. When the traumatism affects the posterior capsule, the vitreous acts in the same way as does the aqueous.

The opening of the capsule usually occurs through direct injury inflicted by means of a punctured or incised wound, through the penetration of a foreign body, and also designedly through an operation (discission). Contusions of the eyeball also, which do not perforate its tunics, may cause opacity of the lens. In many of these cases it is likely that rupture of the capsule, probably in the region of the equator of the lens, is caused by the contusion. But it is also a fact that lenticular opacity is caused by simple concussion without the capsule being opened—the opacity in this case evidently not depending upon imbibition of aqueous.

The development of cataract after injury of the capsule proceeds in the following way: As early as a few hours after the injury the lens is found to be clouded in the vicinity of the capsular wound. Soon swollen lens fibers protrude through the capsular wound, so as to project under the form of gray flocculi into the anterior chamber. Later on these break off and fall to the bottom of the chamber. Sometimes the entire chamber is found to be filled with the swelling and disintegrating fragments of the lens. While these prolapsed masses of lens substance are becoming gradually smaller through resorption and finally disappear, new flocculi keep protruding through the capsular wound. At the same time the opacity spreads farther and farther in the lens itself, so that usually within a few days the lens is opaque throughout. In favorable cases the lens may disappear completely by gradual absorption, so that the pupil becomes clear and black, and thus a spontaneous cure of the cataract takes place. In most cases, however, resorption comes to a stop earlier from reclosure of the capsular wound. Then opaque portions of the lens still remain in the shrunken capsular sac and form a shriveled cataract, which requires an operation for the restoration of sight.

The course of traumatic cataract is unfavorable when either inflammation or increase of tension is associated with the process. Inflammation is, for the most part, like the cataract itself, to be regarded as the direct consequence of the traumatism, by which the membranes of the eye (particularly the uvea) either suffer a severe mechanical injury or undergo infection. Then the clouding of the lens and the inflammation (irido-cyclitis) go on at the same time. The inflammation leads to the adhesion of the opaque lens to the neighboring parts,
especially the iris and ciliary body (cataracta accreta), and by this ad-
hesion the operation for the cataract is rendered difficult. In the sev-
erest cases the inflammation is so violent that alone it suffices to
destroy the eye, either through panophthalmitis or through plastic irido-
cyclitis terminating in atrophy of the eyeball.

Slight inflammations of the iris may also, it is likely, occur second-
arily as a result of the swelling of the traumatic cataract, owing to
which the iris is subjected to pressure or to traction.

_Increase of tension_ may also be caused by a swelling traumatic cata-
rant. These cases are less dangerous if they come under the observa-
tion of a physician, since the increase of tension can be done away with
by timely interference (by paracentesis of the cornea, by removal of
the lens, or by iridectomy). But if such a case is not treated properly,
the sight is usually destroyed through excavation of the optic nerve.

5. _Cataracta Complicata._—By this term we mean cataracts occur-
ring as the result of other diseases of the eyeball. As the lens draws its
nutrient material from the surrounding tissues, it is easy to understand
how in disease of the latter the transparency of the lens may suffer.
The affections of the eyeball most frequently leading to the formation
of cataract are: (a) violent inflammations in the anterior sections of
the eye, such as extensive suppuration of the cornea (particularly that
produced by ulcus serpens) and irido-cyclitis; (b) sluggish inflamma-
tions in the posterior sections of the eye, such as chorioiditis (particu-
larly irido-chorioiditis chronica), myopia of high degree, retinitis pig-
mentosa, detachment of the retina; (c) glaucoma in the stage of glau-
coma absolutum (cataracta glaucomatosa).

The diagnosis that a cataract is complicated may be made in those
cases where there is a disease of the anterior section of the eye, simply
by the external examination of the eye. Morbid changes can be made
out in the cornea or iris, and also adhesions between these organs and
the cataract. But if the pathological changes which have led to the
production of opacity in the lens appertain to the deeper portions of
the eye, they may not be visible from the outside. Even in such cases,
however, the cataract often, by its peculiar appearance, shows itself to
be complicated. Thus in chorioiditis and retinitis pigmentosa, stellate
anterior and posterior cortical cataracts are found (see page 406); and if
the cataract is total, it is often distinguished by being liquefied or cal-
cified, by the thickening of the capsule, by the presence of a yellow or
green discoloration, by tremulousness of the lens, etc. If the cataract
presents nothing exteriorly that points to its being complicated, the
only way in which the diagnosis can be made is by examining the per-
ception of light, a thing which should be done in every case. Such
examination will often demonstrate the perception of light to be defi-
cient or altogether wanting in complicated cataract.

It is of practical importance to recognize the fact that a cataract is
complicated, because by this fact the prognosis and treatment are influenced. The prognosis is less favorable than in uncomplicated cataracts, both because the operation is more difficult to perform, and because the result, as far as sight is concerned, is less successful. Moreover, complicated cataracts often require special methods of operation. Many complicated cataracts can not be operated upon at all.

It is only in exceptional cases that congenital cataracts are discovered immediately after birth, the rule being that they are not made out until the child is some weeks or months old; for newborn children have very narrow pupils, and moreover, because they sleep so much, keep their eyes shut most of the time, so that no notice is taken of the fact that their pupils are not black. Then, too, as such young children do not fix their eyes steadily upon objects, the fact that they do not see is not obvious. Partial congenital cataracts, if they do not cause any notable impairment of sight, are often not noticed until the patient is of quite a mature age, or perhaps are never discovered at all. Many congenital cataracts are complicated, as can be seen from the changes found at the same time in the iris, especially posterior synechiae. They are hence the result of a feotal iritis. The formation of the cataract must in many cases be dated pretty far back in intra-uterine life, since children sometimes come into the world with cataracts that have already become shriveled. Here, therefore, the entire process of ripening and of shriveled has been evolved in utero.

Endeavors have been made, hitherto in vain, to discover some general disturbance of nutrition as the cause of senile cataract. Deutschmann thought that in a number of cases a simultaneously existing albuminuria, Michel an-atheromatous degeneration of the carotid, should be regarded as the cause of the opacity of the lens. Larger statistics have not confirmed these conjectures. Both albuminuria and atheromas of the larger vessels have been found to be very frequent in old people generally, and quite as frequent in those who do not suffer from cataract as in cataractous patients. As little are we justified in believing that senile cataract occurs especially in decrepit old men. On the contrary, it is very often found in perfectly robust persons; and, moreover, those individuals who are affected with senile cataract remarkably early (in the years between forty and fifty) are by no means prematurely aged in other respects. It hence seems as if senile cataract must be ascribed to purely local causes. In the process of transformation of the inner layers of the lens into nucleus (sclerosis) these layers diminish somewhat in volume. Under normal conditions this process of shrinking is conducted so slowly and gradually that the cortical layers are able to adapt themselves to the diminished volume of the nucleus. But, if the shrinking goes on with exceptional speed or irregularly, there may be produced undue traction and subsequent separation of those layers of the lens which lie between nucleus and cortex. In this situation fine fissures are formed in which fluid accumulates; afterward the adjacent lens fibers themselves become opaque, and thus afford the initial impulse which leads to the opacity of the entire lens (Förster).

It was formerly believed that the cause of diabetic cataract was to be looked for in the abstraction of water; for if a fresh, transparent lens with uninjured capsule is laid in a solution of sugar (or even a solution of salt), the lens becomes clouded, owing to the fact that the solution absorbs water from the lens with avidity. If the opaque lens is then put back in plain water, it again becomes
DISEASES OF THE LENS.

The same experiment can also be performed upon living animals. The blood in the vessels of a frog is replaced by a solution of sugar or salt, whereupon the lenses become opaque. Then, if the frog is put back again into water, the lenses clear up once more. Upon the basis of these experiments it was assumed that in diabetes the fluids of the eye, and particularly the aqueous, on account of the amount of sugar they contain, act by withdrawing water from the lens, so that the latter becomes opaque. This view appeared to be confirmed by the fact that diabetic cataract occurs only when the amount of sugar in the urine is great. More recent analyses of the aqueous in diabetics have, however, shown that the amount of sugar contained in it is very small, much smaller than the amount required to produce opacity of the lens in the experiments cited. Hence, although it is not to be denied that the altered composition of the fluids of the eye is accountable for diabetic cataract, nevertheless, the action of this factor is not to be conceived of simply as an abstraction of water, but as being due to more complicated disturbances in the nutrition of the lens, the nature of which is not yet exactly known.

Not every cataract that is seen in a diabetic patient is a diabetic cataract. Diabetes being of common occurrence in advanced life, it often happens that opacities of the lens are found in patients affected with it. Such opacities must be regarded as senile cataract, if they exhibit the ordinary appearance of the latter and the slow development characteristic of it.

A form of cataract which really depends upon the abstraction of water is probably that which sometimes makes it appearance in the last stage of cholera.

The prognosis of diabetic cataract, as far as the operation upon it is concerned, is less favorable than in senile cataracts, because in diabetes wounds show less tendency to heal, and, moreover, diabetes predisposes to iritis. Hence, if we have to operate upon a diabetic cataract, we wait until by suitable treatment the amount of sugar in the urine has been reduced to the lowest possible point. It is said that in diabetic cataracts which have not advanced too far a partial disappearance of the opacities has sometimes been observed, after a successful treatment of the diabetes (by the Carlsbad water cure). Such cataracts, therefore, would be the only ones—and they only in exceptional cases—that can be improved by medicinal treatment.

The retinal pigment of the iris in diabetics is often found to present a marked degree of edematous swelling, even when the iris during life did not exhibit any symptoms of inflammation (Kamocki). Since this state of things has been observed only in diabetes, it must be attributed to this disease, and is perhaps explainable as due to the action of the altered aqueous upon the retinal pigment of the iris. It is probably in a similar way that the altered nutrient fluids which enter the lens lead to its opacification.

An interesting example of opacity of the lens, due to an altered composition of the nutrient fluids, is naphthalinic cataract. This is produced when naphthalin is administered to rabbits. Retinitis develops first with opacities of the vitreous, and subsequently a cataract forms (Bouchard). Other forms of cataract following the ingestion of poisons are those that appear in ergotism, rhaphania, and pellagra. In these diseases convulsions are present, and the question must be raised whether the cataract is not possibly dependent upon them; for it is a fact that the formation of cataract is observed after convulsions of the most diverse kinds. Under this head belong the convulsions of epilepsy, hysteria, eclampsia, and tetany; moreover, children with lamellar cataract are almost in-
variably such as have suffered from convulsions. The etiological connection between the convulsions and the cataract has not yet been discovered.

After a stroke of lightning a development of cataract is observed which is variously referred to the concussion, to the evolution of heat, and lastly to the chemical (electrolytic) action of the electric spark. According to experimental investigations by Hess, electric shocks produce in animals the death of the cells of the capsular epithelium—a fact which would supply the reason of the formation of cataract in these cases.

In traumatic cataract it is the rule that the opacity of the lens becomes total, spreading rapidly from the site of the wound in the capsule to the rest of the lens. Exceptionally, however, cases are observed in which the opacity of the lens remains partial or indeed actually disappears again. For this to occur, the capsule wound must be very small, so that it closes quickly and the aqueous has no longer access to the lens fibers. Most favorably situated in this regard are those capsular wounds that lie behind the iris, by the adhesion of which to the wound the latter is very soon closed up. In such cases it may happen that a circumscribed opacity remains confined to the site of injury, or, if a foreign body, has penetrated the lens, is found only along the track of the wound. By resorption of the opaque portions the opacity itself may even in part clear up again. Sometimes, too, as a consequence of injury, stellate anterior or posterior cortical cataracts develop which may likewise remain stationary or may even retrogress (see page 408).

D. Treatment of Cataract.

92. No kind of medicinal treatment is effectual against cataract. An improvement of the sight may be obtained by means of atropine in those cases in which the opacity occupies principally the pupillary area of the lens. In that case, after dilatation of the pupil, the peripheral transparent portion of the lens can be employed for vision.

The popular remedies and quack medicines which are alleged to have been of assistance in cataract are mostly such as contain belladonna, and act favorably upon the sight in the way just mentioned. The improvement thus obtained, however, is transient, disappearing as soon as the peripheral layers are implicated in the opacity by the progress of the cataract. A cure of cataract can be secured only by operative means. The indispensable prerequisite for this is that the light-perceiving parts (retina and optic nerves) should be healthy, a matter which is determined by careful testing of the light perception (see § 155).

The methods of operation in vogue are mainly discission and extraction. Discussion is chiefly adapted for the cataracts of young people which do not yet contain a solid nucleus. It can be performed in every stage of the growth of the cataract, and hence, too, in partial opacities of the lens. Moreover, discission is indicated in membranous cataract, not to effect their absorption, which would be impossible, but to tear a hole in them (dilaceration). The indications for extraction will be given at the same time with the description of the methods
for performing it (§§ 160, 161). Extraction gives the best results when the cataract is ripe. Hence we should put off the operation until this occurs; provided always that the other eye retains sufficiently good sight in the meantime. But if the other eye also becomes so clouded that the patient is incapacitated from work, the cataract may be extracted even before it is fully ripe. Healing then takes place with a good result as in ripe cataract, except that layers of transparent cortex are more apt to remain adherent to the capsule during the operation. These afterward become opaque, so that a secondary cataract is formed which requires a secondary operation (discission). Different operative methods have been proposed to accelerate the process of ripening, among which Förster's (iridectomy with massage of the lens, § 156) is the most employed.

Cataracts which are congenital or which develop in childhood should be operated upon as early as possible. Children can be subjected to the operation of discission with good results at the age of a few weeks. If the cataract is not operated upon, the development of the retina is arrested and amblyopia ex anopsia is produced. Consequently, the good result of a cataract operation that is performed at a later date is comparatively small as far as vision is concerned.

In traumatic cataract our first thought should be to combat the inflammation which usually follows the injury. Iced compresses are of the most service against this impending inflammation, and also against the great swelling of the wounded lens. Removal of the opaque lens should not be performed at once except when owing to its own great swelling it is itself the cause of inflammation or of increase of tension. Otherwise, it is better to put off the operation until later, lest the inflammatory symptoms be aggravated or brought on anew by it. If we wait a long time, often a great part of the cataract is absorbed spontaneously, so that instead of extraction a simpler operation (discission) can be performed. So, too, in complicated cataract associated with inflammatory symptoms we had better await the decline of the inflammation before operating, unless imperative indications compel us to an earlier performance of the operation.

An eye which has been operated upon for cataract is, in consequence of the loss of the lens (aphakia), hypermetropic to a marked degree, and has, moreover, lost its power of accommodation, so that distinct vision can be obtained only by suitable convex glasses.

Shall we operate upon an eye affected with a mature cataract if the other still sees well? In the case when a beginning development of a cataract is already present in the second eye this question is evidently to be answered in the affirmative. To know whether we shall also operate when the second eye is perfectly healthy and gives us no reason to anticipate the formation of a cataract, we must ask what gain the patient would derive from a unilateral cataract operation. How is vision performed with two eyes, one of which has its lens
surgeon, had the opportunity of performing an autopsy upon the body of a
soldier who had a mature cataract in his eye. Brisseau performed depression
of the cataract upon the cadaver and then opened the eye, when he found that
the opacity which he had depressed into the vitreous was the lens. He laid his
observations, together with the conclusions drawn from them, before the French
Academy, but obtained no credence. The Academy confuted him by holding
up the doctrines of Galen in regard to cataract. It was not till three years
later, when new proofs had been brought, that the Academy recognized the
new doctrine, which soon found general acceptance.

II. Changes of Position of the Lens.

93. Changes of position of the lens always have their anatomical
cause in changes of the zonula of Zinn. This in the normal eye is
tightly stretched, and holds the lens so firmly that the latter remains
perfectly immovable even with the most violent motions of the head.
Hence, any tremor of the lens, and still more any displacement of it
from its natural position, presuppose a relaxation of the firmness of
this attachment. Such a relaxation can take place either from a simple
elongation and loosening of the fibers of the zonula, or else from their
rupture or complete destruction. Changes of this sort may affect either
single portions or the entire circumference of the zonula.

The objective symptoms of a change of position differ according as
the lens is only displaced a little (subluxation), or has left its place in
the fossa patellaris altogether (luxation).

(a) Subluxation may consist in the lens being a little tilted, so that
one edge of it looks somewhat forward, the opposite one somewhat
backward. This is recognized from the unequal depth of the anterior
chamber. Another sort of subluxation is produced by lateral displace-
ment of the lens, so that it no longer lies in the center of the fossa
patellaris. In this case, too, the anterior chamber is unequally deep.
If, for example, the lens is somewhat depressed, the anterior chamber
would be found to be deeper in its upper half, shallower below (Fig.
134). Furthermore, when the pupil is dilated (and, if the displace-
ment is marked, without this) we can see the edge of the lens. This,
in the example above selected of depression of the lens, would run
transversely across the pupil forming an arch, which is convex upward.
That part of the pupil which is situated above it and which has no lens
(Fig. 134, a) would be a deep black, while the lower part (l) which con-
tains the lens would be faintly gray. This arises from the fact that
even the most transparent lens reflects some light. Really, therefore,
the normal pupil is not perfectly black, but of a very dark gray—a fact
which one can convince himself of in those cases in which, through dis-
placement of the lens, one part of the pupil is aphakic, and therefore is
of a pure black.

In both cases—that is, when the lens is tilted and when it is later-
ally displaced, conditions which are often combined—there occurs in movements of the eye tremor of the inadequately attached lens and with the lens of the iris also (iridodonesis).

(b) Luxation of the lens consists in its leaving the fossa patellaris altogether, either by prolapsing into the anterior chamber or by receding into the vitreous.

A lens luxated into the anterior chamber is readily recognizable from its shape. This is more convex than usual because the lens is no longer kept flat by the tense zonula. It therefore assumes its maximum convexity, as it does upon the strongest effort of accommodation. If the lens is transparent, its edge appears like a curved line of golden luster, so that it looks as if a great drop of oil were lying in the anterior chamber. The anterior chamber is deeper, especially below, where the iris is pressed backward by the lens.

Luxation of the lens into the vitreous occurs more frequently than luxation into the anterior chamber. The anterior chamber then is deep because of the recession of the iris, which is tremulous. The pupil is of a pure black. The lens, itself, if opaque, may sometimes be recognized deep down even with the naked eye; in most cases, however, the
ophthalmoscope is required in order to discover it. It is either attached to some spot of the fundus by means of exudate, or it floats about freely in the vitreous (cataracta natans).

Every dislocation of the lens entails a considerable disturbance of vision. If the lens still lies within the pupillary area, the eye becomes very myopic, because owing to the relaxation of the zonula the lens assumes its maximum convexity. Added to this is a considerable degree of astigmatism, arising from the fact that the lens, either from being tilted or being laterally displaced, refracts the light with unequal strength in the different meridians (regular astigmatism); or the refractive power may even vary in different sections of the same meridian (irregular astigmatism). The astigmatism attains its maximum when the lens is so greatly displaced that its edge is visible in the pupil, the latter thus consisting of a portion which does, and of one which does not, contain the lens. In such a case, moreover, double vision—monocular diplopia—is present; for the marginal portions of the lens act like a prism, whose refracting edge corresponds to the equator of the lens. By reason of this, the rays passing through the lens are deviated, so that two images (β and β₁, Fig. 134) of one object (α) are formed upon the retina. Neither of these is distinct. The image (β) produced by the aphyakic portion of the pupil corresponds to that formed by a very hypermetropic eye, and would require a convex lens to make it distinct. The image (β₁) appertaining to that part of the pupil which contains the lens is that of a myopic eye, and could be made distinct by means of a concave lens. Furthermore, disturbance of vision may be produced by the development of opacity in the subluxated lens.

In luxation of the lens into the vitreous the eye acts like an aphyakic one, and, if no further complications are present, see well with the correcting convex glasses. Indeed, in the old method of cataract operation by depression, a luxation of the lens into the vitreous was produced designedly in order to increase the sight.

Dislocations of the lens usually entail secondary consequences which may be extremely disastrous to the eye. Subluxations often in time change into complete luxations, the vibrating lens constantly pulling upon the zonula and gradually causing it to atrophy. While subluxated lenses often remain transparent for a long time, luxated lenses usually soon become opaque. Often, to be sure, dislocated lenses are opaque to start with, this being particularly the case in spontaneous luxations. The worst complications are those arising from the implication of the uvea. The latter is so irritated by the dislocated lens pushing and striking against it that irido-cyclitis develops, and this may even give rise to a

* [Or from being unequally relaxed (in cases of partial rupture of the zonula).—D.]
sympathetic affection of the other eye. Increase of tension (secondary glaucoma) also frequently makes its appearance in consequence of dislocation of the lens. The most dangerous form of luxation of the lens is that into the anterior chamber. In this case the cornea becomes opaque wherever the lens is applied to its posterior surface, and the eye, for the most part, undergoes speedy destruction through irido-cyclitis or increase of tension. On the other hand, luxation of the lens into the vitreous is the form best tolerated, especially if the lens, as time goes on, becomes smaller through resorption. In fact, in the depression of cataract, one used to count upon this tolerance of the eye toward the lens when depressed into the vitreous.

With respect to etiology a distinction is made between congenital and acquired dislocations of the lens.

(a) Congenital dislocations consist in a lateral displacement (subsition) of the lens, which is known as ectopia lentis. The displacement is caused by the fact that the zonula is of unequal width in different directions. Most frequently the lens is found to be displaced upward, the fibers of the zonula being shortest above, longest below. For the most part, too, the volume of the lens is somewhat smaller. In after years the ectopia usually increases, and even passes over into a condition of total luxation. Ectopia of the lens is ordinarily present in both eyes and symmetrically in both. Very often it is of hereditary origin.

(b) The acquired dislocations of the lens develop either as the result of trauma or spontaneously. Traumatic dislocations are principally caused by contusion of the eyeball (for the mechanism of the luxation, see page 325). Every variety of subluxation and luxation may be thus produced, according as the zonula is simply torn into or is entirely torn through. If the tunics of the eye are ruptured, the lens may even be expelled entirely from the eye. Among traumatic luxations in the more extended sense of the word may be reckoned those which develop when perforation of a corneal ulcer takes place very rapidly; in this case if the perforation is only large enough, the lens may even be discharged through it externally. Spontaneous dislocations take their origin from a gradual softening and disintegration of the zonula. The lens then owing to its weight sinks gradually deeper and deeper, and at length undergoes complete prolapse into the vitreous. The atrophy of the zonula develops as a result of liquefaction of the vitreous, and hence occurs especially in myopia of high degree, in chorioiditis, and in detachment of the retina. Again, the shrinking of a hypermature cataract may cause stretching of the zonula with consequent atrophy of it, and thus give rise to spontaneous dislocation of the lens, so that the sight which has been abrogated by the cataract is restored without an operation. If for any reason the zonula is already atrophic, the final impulse leading to total luxation is fre-
DISEASES OF THE LENS.

quently afforded by a very insignificant traumatism—in fact, even by bending over, sneezing, etc.

Treatm_t in those cases in which the dislocation of the lens entails no further injurious consequences besides the disturbance of vision, consists in the prescribing of suitable glasses. In those cases in which the symptoms of irido-cyclitis or of secondary glaucoma are caused by the displacement of the lens, extraction of the latter, if feasible, is indicated. Extraction is most readily performed in luxation of the lens into the anterior chamber; in this case, too, it is absolutely necessary, since otherwise the eye is lost. In subluxation, the removal of the lens is often difficult or even miscarries altogether, because prolapse of the vitreous occurs on account of the defective structure of the zonula. The extraction of a lens floating in the vitreous is impossible. In cases in which the removal of the lens is difficult or impossible, we may try to combat the inflammation or the increase in tension by means of an iridectomy. If an eye which is already blind is the seat of inflammation and pain due to luxation of the lens, enucleation is the best means of relieving the pain and averting the danger of sympathetic affection of the other eye.

A transparent, luxated lens looks differently, according as we regard it by reflected or transmitted light. By reflected light the lens appears faintly gray, and its edge has a golden luster, almost as if it were a self-luminous body. This is so because the rays of light that come from in front and enter the marginal portions of the lens undergo total reflection at the posterior surface of the latter; for at this spot they pass from a denser medium (the lens) into a rarer medium (the vitreous), and hence are refracted away from the normal of incidence; but as, in consequence of this, they fall very obliquely upon the posterior lenticular surface at the edge of the lens, they undergo total reflection. They accordingly do not continue their course into the interior of the eye, but return to the observer, who therefore sees the edge of the lens shine. By transmitted light—in examining with the ophthalmoscope—the edge of the lens for the same reason appears black, because the light that is reflected from the fundus, wherever it traverses the lens near its edge, is so greatly deflected by the strong prismatic action of the latter toward the opposite side of the lens, that it fails to reach the eye of the observer, in case he is stationed straight in front of the eye. Hence the border of the lens appears unillumined. But if the observer's eye is made to pass slowly toward the side of the lens opposite the unillumined edge, a point is finally reached where the rays pass that are transmitted through this edge; and then the latter appears of a shining red, while the rest of the lens appears unillumined (Dimmer).

In making an examination with the inverted image, we may often, in case of dislocation of the lens, see some portion of the fundus—e.g., the pupilla—double, and for the same reason that the affected eye itself sees external objects double.

If the lens has prolapsed into the anterior chamber, it produces through irritation of the iris a spasm of the sphincter iridis. The pupil consequently contracts, so that the return of the lens into the posterior chamber is cut off. It may even happen that on account of this spasm the lens is held tight at the moment when
it is endeavoring to make its way through the pupil into the anterior chamber. The lens is then jammed in the pupil, and consequently violent symptoms of irritation are at once set up; but there are also cases in which the lens can slip through the pupil so easily that it is found sometimes in front of, sometimes behind, the iris. Sometimes the patient is able to produce this change of place voluntarily. He can bring the lens into the anterior chamber by bending his head forward and shaking it, while to bring the lens back again behind the iris he has to lie upon his back. In this case, of course, we are always dealing with lenses of diminished diameter, which can pass through the pupil without difficulty. In some instances such movable lenses are still attached to the zonula, which is then greatly elongated. If in such a case we were obliged to extract the lens, we would first bring it into the anterior chamber by the appropriate manœuvre. Then if we cause the pupil to contract behind the lens by employing a miotic, we have, as it were, imprisoned the lens in the anterior chamber, and will be able under ordinary circumstances to remove it with ease. To be sure, these cases in which the lens shows such a great capacity for making excursions belong to the rare exceptions. The rule is, that a lens luxated into the anterior chamber stays there, and, in consequence of the violent inflammation which it excites, becomes attached by exudates to the cornea and iris.

The disturbance of vision which develops in subluxation of the lens, so far as it consists of myopia and regular astigmatism, can be corrected by glasses, but the irregular astigmatism can not be. If the dislocation of the lens is so great that a part of the pupil is aphakic, we have the choice of correcting either the aphakic portion of the pupil with a convex glass or the portion of the pupil that contains the lens with a concave glass. We recommend to the patient the form of correction which gives the better sight. Sometimes, for the sake of better correction, it is indicated to enlarge the aphakic portion of the pupil by an iridectomy, and so make the eye like one destitute of a lens.

Spontaneous dislocation of the lens not infrequently occurs in ectasia either of the eyeball as a whole or of its anterior segments—hence in hydrophthalmus, in staphylomata of the cornea, and in anterior staphylomata of the sclera. The luxation takes place because, as a result of the bulging out of the wall of the eyeball, the space between the edge of the lens and the ciliary body becomes enlarged, so that the zonula is stretched and finally atrophies. It may even happen that the lens has become adherent to a corneal cicatrix, so as to become more and more tilted as the cicatrix expands. So, too, the lens is sometimes drawn out of its place by exudates in the vitreous, which attach themselves to its posterior surface and afterward shrink. Lastly, the dislocation of the lens due to tumors (gliomata and sarcomata) pressing upon it (Fig. 105) may be also mentioned in this connection.

By lenticonus is meant a rare, usually congenital, anomaly of the lens, which presents a conical prominence upon its anterior or posterior surface.
CHAPTER IX.

DISEASES OF THE VITREOUS.

ANATOMY.

94. The vitreous (corpus vitreum) is a transparent, colorless, gelatinous mass which fills the posterior cavity of the eye. On its anterior aspect it has a depression (the fossa patellaris), in which rests the posterior surface of the lens. By its other aspects the vitreous is applied to the ciliary body, the retina, and the optic nerve.

The vitreous consists of a clear liquid substance inclosed in the meshes of an equally transparent reticulum—the framework of the vitreous. It is traversed from behind forward by a canal, its central canal (canalis hyaloideus, canalis Cloqueti), which begins at the papilla of the optic nerve and extends to the posterior pole of the lens. During fetal life the hyaloid artery runs in this canal; in the fully developed eye it probably serves as a lymph channel (see page 269). The vitreous contains cells, the cells of the vitreous, which have a varying (round or branched) shape, and are found particularly in its outer layers. They are to be regarded as emigrated white blood-corpuscles which have traveled into the vitreous (Schwalbe). The external envelope of the vitreous is formed by the structureless hyaloid membrane. Considered from the point of view of its development, the vitreous is to be regarded as a sort of watery—so to speak, dropsical—connective tissue. It is only in the fœtus that it has vessels, which are found in its outer layer (see page 286). In the fully developed eye the vitreous is destitute of vessels, and hence is dependent for its nutrition upon the surrounding tissues, principally the uvea. Accordingly, affections of the inner membranes of the eye, such as retinitis and chorioiditis, always result in an implication of the vitreous.

DISEASES OF THE VITREOUS.

1. Opacities.—These are sometimes small and sharply circumscribed, sometimes of large size. The former, which make their appearance under the form of dots, flocculi, threads, or membranes, are what are called opacities of the vitreous in the narrower sense (opacitates corporis vitrei). The patient himself perceives them entoptically,
seeing black specks of various shape (muscae volitantes) floating before his eyes (myodesopsia).* In addition, there is a diminution of the visual acuity, which is the more pronounced the more marked the opacities are.

The cause of opacities of the vitreous are generally exudates deposited there in the course of inflammations of the uvea or retina; but haemorrhages, taking place from the vessels of these membranes into the vitreous, either spontaneously or as the result of injuries, may also give rise to opacities of the latter.

The prognosis depends upon the size and the age of the opacities. Recent opacities of the vitreous may be absorbed, so that the vitreous becomes perfectly clear again. Old opacities, on the contrary, usually resist all treatment. As regards extravasations of blood, the smaller ones may be completely absorbed, but large-sized ones always leave considerable and permanent opacities.

The treatment, which is successful only in recent cases, consists in the employment of remedies which accelerate absorption. Among these are potassium iodide or other remedies containing iodine, mercury, diaphoretics, and mild purgatives. Of the last named, saline purgatives, especially the saline mineral waters—e.g., of the Kreuzbrunnen of Marienbad—are particularly employed. Repeated paracentesis of the anterior chamber may also be of service by stimulating the tissue metabolism of the eye; and subconjunctival injections of a five-per-cent salt solution (one half or a whole syringeful) are said to act in the same way.

Large-sized exudates which sometimes fill the vitreous are either of plastic or purulent nature, and are found in irido-cyclitis, chorioiditis, and panophthalmitis. They may be seen, if the media are otherwise clear enough, by lateral illumination under the form of gray or yellowish masses situated behind the lens. The plastic exudates become organized, shrink up, and thus lead to atrophy of the eyeball, while the purulent exudates are for the most part evacuated externally, after perforating the sclera, and terminate in phthisis bulbi.

2. Liquefaction of the Vitreous (Synchisis Corpus Vitrei).—When observing opacities of the vitreous with the ophthalmoscope, we see that most of them float about freely in the vitreous. It follows from this that the framework of the vitreous must have been destroyed, so that this body itself is converted into a perfectly liquid mass. In operations we often have an opportunity of directly convincing ourselves of the liquefaction of the vitreous, which we see flowing out under the form of a viscid, usually yellow-colored liquid. Instead of the vitreous being liquefied itself, it may have simply an accumulation

* From μυίδα, a fly, and οἷς, vision; hence properly written myodesopsia.
† From σύν, together, and χέω, I pour.
of fluid upon its surface by which it is forced away from the retina. This is most frequently the case in the most anterior and posterior divisions of the vitreous (anterior and posterior detachment of the vitreous; see e and h, Fig. 221). Liquefaction and detachment of the vitreous, like opacities, are always the result of disease of the adjacent membranes, which are concerned in maintaining the nutrition of the vitreous—that is, they are found in retinitis, chorioiditis, myopia of high degree, ectatic eyes, etc.

The most important consequence of liquefaction of the vitreous consists in the gradual diminution in volume, which the altered vitreous may undergo, an occurrence which manifests itself in a diminished tension of the eye. In such cases, detachment of the retina and afterward even atrophy of the eyeball may supervene. Another consequence of the liquefaction is one that affects the zonula, which becomes softened and atrophic. By this a tremulous condition of the lens, and later on even its spontaneous dislocation are produced.

3. Foreign Bodies in the Vitreous.—These usually excite violent inflammation—irido-cyclitis or panophthalmitis—by which the eye is destroyed. In exceptional cases it happens that a foreign body is tolerated, so that it may be seen for years, either free or enveloped in an exudate, within the otherwise clear vitreous. To be sure, even in these cases inflammation may set in, even after a long time has elapsed, and destroy the eye. Foreign bodies which have but recently entered the vitreous we try to remove as soon as possible. The chief ones that afford a prospect of doing this successfully are chips of iron, since magnets may be employed for their removal (see page 243), while the removal of other foreign bodies is usually effected only by a happy accident. If violent inflammation has already set in, there is usually nothing left to do but to perform enucleation to avert a sympathetic affection.

Among foreign bodies in the broader sense may also be reckoned lenses luxated into the vitreous and also the cysticercus, both of which, like foreign bodies in the proper meaning of the word, give rise to severe inflammation. The cysticercus may be removed by a section made in the sclera. If this is not done in season, or not done successfully, the eye is gradually destroyed by irido-cyclitis, and eventually has to be enucleated on account of the constantly occurring inflammatory attacks and of the danger of sympathetic inflammation.

Of the hyaloid artery normally the only thing that is left in the newborn infant is a short and slender cord, which, moreover, disappears during the first year of life. Exceptionally, however, larger remnants of the artery remain for life. A persistent hyaloid artery ordinarily appears under the form of a gray filament that stretches from the papilla out into the vitreous, and may even reach to the posterior pole of the lens. In typical cases it may be possible to demonstrate the connection between the filament and the central vessels that dip down
into the papilla, and in this demonstration is found the surest means of distinguishing between this remnant of fetal life and pathological opacities of the vitreous, which may in other respects have a similar shape and position. Sometimes instead of a filament a wider tubular structure is observed, extending out from behind forward in the axis of the vitreous. This represents the hyaloid canal (also called Cloquet’s canal), whose walls, owing to some abnormality in their structure, are visible with the ophthalmoscope. This congenital anomaly, as well as the persistent hyaloid artery, is frequently associated with opacities in the posterior portions of the lens (posterior polar and cortical cataract). In many animals—e.g., in the frog and in many snakes and fishes—the vessels of the vitreous persist during life.

The embryonic vitreous contains a great abundance of cells, and is hence opaque. The cells afterward disappear, but opaque remnants of them remain in the vitreous, and may be perceived entoptically as musca volitantes. These physiological opacities of the vitreous appear under the form of transparent filaments or of strings of pearls or of small flocculi, which move not only with the eye, but also spontaneously. We see this very readily if we look suddenly upward and then hold the eye still, when the opacities sink slowly down. They are thus distinguished from the entoptic images which are produced by opacities in the lens, as these always remain in the same place in the field of view. Physiological musca volitantes are not at all obvious, so that most men are not aware of their existence in their eyes. To perceive them we look at a uniformly illuminated surface—for instance, the sky—through a stenopeic aperture (a minute hole made by sticking a needle through a piece of black paper). They are usually better perceived by myopic eyes. As soon as such musca volitantes become so distinct as to continually force themselves upon the attention and to become troublesome to the patient, they excite the suspicion of their being pathological opacities of the vitreous. To discover them the ophthalmoscope is used. If we are dealing with faint opacities, we have to employ a plane mirror, and also often artificial dilatation of the pupil. Seen with the ophthalmoscope, opacities of the vitreous appear like dark dots or filaments or membranes floating about in the vitreous. Very minute opacities afford the picture of an extremely fine stippling of the vitreous ("vitreous dust"). If the opacities are still more minute, they can no longer be perceived as discrete points; nothing but a uniform obscuration of the fundus is observed (diffuse opacity of the vitreous). The more numerous the opacities are the more hazy the fundus appears, the pupil at the same time looking redder than usual (as any bright background appears red behind a cloudy medium—e.g., the rising sun on a cloudy morning). With very dense opacities, nothing is got with the ophthalmoscope but a feeble red reflection from the pupil, or the latter may even be perfectly dark.

In synchisio scintillans particles are seen that look like golden spangles floating about in the vitreous, and which fall like a shower of gold to the bottom of the eye when the eye is held still. These are formed of crystals whose surfaces being smooth reflect the light strongly. They usually consist of cholesterol, sometimes also of tyrosin, margarin, and phosphates. These crystals are sometimes found in eyes that are otherwise healthy (especially in elderly people), without causing any essential disturbance of vision.

Opacities of the vitreous are exudates which, so far as they do not undergo resorption, become organized into membranes, cords, or even pretty large masses of connective tissue. In this way a new formation of blood-vessels may even
take place, which run from the retinal vessels into the vitreous, and can be appreciated there by means of the ophthalmoscope. Exudates in the vitreous do not originate in the latter itself, but from an inflammation of the membranes (uvea and retina) surrounding it. The disturbance of vision which is set up by a recent cyclitis, chorioiditis, or retinitis, is in large part attributable to the opacity of the vitreous, which exists at the same time. Primary inflammation (hyalitis) of the vitreous, which not only is devoid of vessels, but also contains scarcely any cellular elements, can be assumed to exist in only a very few cases—e.g., when a small foreign body is situated in the midst of the vitreous, and there becomes the center of a focus of inflammation.

Opacities also form as the result of hemorrhages into the vitreous. These occur after injuries and also spontaneously in choroiditis, retinitis, and myopia of high degree, and, furthermore, are not infrequent in old people with atheromatous vessels. Sometimes, too, in eyes which are otherwise healthy hemorrhages into the vitreous are observed, which appear spontaneously, recur repeatedly, and permeate the vitreous so thoroughly that even quantitative perception of light is abrogated. This affection is observed chiefly in young men, sometimes in conjunction with frequent attacks of epistaxis. A cause for the repeated hemorrhages is usually not discoverable. If the hemorrhages recur frequently, the vitreous never clears up again perfectly, but masses of connective tissue ultimately form in it which may become vascularized; moreover, detachment of the retina may occur. The sight is thus seriously and permanently affected or even absolutely annihilated (cf. § 96, Retinitis proliferans, and Fig. 149).

The disturbance of vision caused by opacities of the vitreous is determined by their total amount. Isolated flocculi in the vitreous may coexist with normal visual acuity. When the opacities are numerous, the statement is often made by the patients that their sight shows great variations within short periods of time. This fact is also noticed when tests of the vision are made. While at first the patient, when placed before the card with the test types, does not begin to see the large letters, he can sometimes distinguish even the small letters after he has had his gaze fixed upon them for a pretty long time. Then all at once he sees much worse again. This comes from the mobility of the opacities, which, when the gaze is kept steadily fixed for a long time, sink to the bottom of the vitreous, so that the central portions of the latter become clear; then any great movement of the eye stirs them up again.

The enteritis occurring in the vitreous are the Filaria oculi humani and the Cysticercus cellulose. Of the former but very few cases have so far been known. The cysticercus is the scolex of the Tænia Solium. Before a patient can have a cysticercus, the eggs must first get into his stomach. This may take place from the fact that the patient himself harbors in his intestine a tænia, joints of which find their way into his stomach. Here they are digested and the eggs contained in them set free. Most patients, however, who suffer from the presence of a cysticercus do not have a tænia themselves. Hence, the eggs of the tænia must get into the stomach from outside along with the food (and most frequently with the drinking water). In the stomach embryos develop from the eggs, having hooklets, by means of which they penetrate the stomach walls and get into the blood-vessels. The blood current then carries them into different parts of the body, where they again leave the vessels, bore into the tissues, and there grow into cysticerci. In the eye the cysticercus first develops beneath the retina,
detaching it from the choroid (see Fig. 146). When it has reached a certain size it perforates the retina and gets into the vitreous; but it may also enter the vitreous directly, without preceding detachment of the retina. In the vitreous the cysticercus becomes visible as a bluish-white bladder. If the head and neck are drawn in, they appear under the form of a brilliant white spot; but if they are protruded they can be recognized quite distinctly, and it is even possible to make out in the head the suctorial disks and the crown of hooklets. The animal makes spontaneous, often very active, movements. It is rare, however, for the cysticercus to be seen with perfect distinctness when in the vitreous. For it very soon forms opacities in the shape of membranes, which so envelop it that nothing can be discerned through them but a dense white mass. In such cases the diagnosis of a cysticercus is difficult, and can indeed be made with certainty only when upon long and attentive observation we make out the existence of spontaneous movements taking place in the white structure.
CHAPTER X.

DISEASES OF THE RETINA.

ANATOMY AND PHYSIOLOGY.

95. The retina is a thin membrane which in the living eye is perfectly transparent and of a purplish-red color. This latter depends upon the visual purple contained in the rods (Boli). After death the retina becomes very rapidly opaque, and, as at the same time the visual purple is bleached out under the influence of light, the retina in the eye of a cadaver appears under the form of a very frail white membrane. In the living retina, too, pathological changes manifest themselves at once by a loss of transparency, just as is also the case with the other transparent tissues like the cornea, lens, and vitreous. Thanks to this property, we discover even minute alterations in these organs very early.

There are two points that are particularly prominent in the retina when in situ. One is a small white disk, which lies to the inner side of the posterior pole of the eye, and from which the vessels of the retina emanate; this is the point of entrance or head of the optic nerve, the papilla nervi optici. The second spot occupies precisely the posterior pole of the eye, and is distinguished by its faint yellow color. It is hence called the yellow spot, the macula lutea. In its center is found a small depression, the fovea of the retina, or fovea centralis (f, Fig. 73).

If we try to lift the retina from the subjacent choroid by means of a forceps, we see that it is connected with its bed only at two places. One of these is the head of the optic nerve, the other is the anterior border of the retina. The latter is formed by a zigzag line, and hence bears the name of the ora serrata (o o, Fig. 73). The same line also represents the boundary between the choroid and ciliary body, and extends farther forward on the nasal than on the temporal side. Except at the two spots just named, the retina everywhere simply lies upon the choroid without being attached to it.

A histological examination of the retina shows that it arises from the optic nerve, the fibers of which spread out in all directions and form the innermost layer of the retina, the fiber layer. The most external layer, that of the rods and cones, is the light-perceiving stratum
of the retina. For the rays of light to get to it, they must pass through all the other layers, since these are placed in front of it. Vision, therefore, can be perfect only when these layers are absolutely transparent, so that light undergoes regular refraction on its way to the most posterior (most external) stratum. All opacities of the retina consequently affect the sight, even though the terminal percipient elements may be perfectly healthy.

With regard to the minute structure of the retina, which is very complicated, reference must be made to the text-books of anatomy and histology. It need only be mentioned here that the retina is composed of two kinds of tissue, the nervous tissue and the supporting tissue. The function of the latter is to maintain and support the extremely delicate nervous tissue in the proper position, and also to insulate the nervous elements from one another. The relative proportion of the two tissues changes in inflammation and particularly in atrophy of the retina, the nervous elements being destroyed while the supporting tissue becomes increased in quantity, so that the retina ultimately consists entirely of the latter.

The depression at the site of the fovea centralis arises from a thinning of the retina, the inner layers of the latter being here entirely absent. Furthermore, the retinal fovea is also distinguished by the fact that the most external layer here consists only of cones. The rods do not begin until at the border of the macula lutea, and as we pass toward the ora serrata, grow more and more numerous, while the number of cones diminishes in like proportion.

The fovea centralis is the part of the retina that has the most delicate perception. And so when we wish to get a precise perception of an object, we so adjust our eye that the image shall fall upon the fovea; we ["sight" or] "fix" the object.

The membrane here described—the retina, in the narrower sense of the word—develops from the inner layer of the secondary ophthalmic vesicle (page 384 and Fig. 87 B, 7). From the outer layer of the vesicle (p, Fig. 87 B) is developed the pigment epithelium, which therefore must, on embryological grounds, be counted in with the retina (in the wider sense of the term). It lies upon the chorioid along the outer side of the retina, and, because it remains behind when the retina is removed from the chorioid, was formerly regarded as belonging to the latter. The connection between the retina and pigment epithelium consists in the fact that the cells of the latter send minute cilia-like processes in between the rods and cones; in these processes lie the minute crystals of the brown retinal pigment.

The cessation of the retina at the ora serrata is apparent only; the microscope shows that under a simpler form it extends still farther, even up to the edge of the pupil. It therefore lines the inner surface of the ciliary body and the posterior surface of the iris. The portion
of the retina lying upon the ciliary body is called the *pars ciliaris retinae*. Wherever this extends, the external layer of the retina, or pigment epithelium (Figs. 74 and 75, *P*), is more darkly pigmented, so that this division of the interior of the eye is characterized by a particularly dark color (*or*, Fig. 73). The inner layer of the retina—the continuation of the retina, in the narrower sense of the word—is here reduced to a single stratum of cylindrical cells (Figs. 74 and 75, *C*). At the spot where the two layers of the retina pass over upon the iris, the difference between them becomes even less marked than before, since now the cells of the inner layer too are filled with pigment granules. Thus the two layers in conjunction form a uniformly pigmented stratum, which, as the *pars iridica retinae* (retinal pigment layer of the iris), covers the posterior surface of the iris up to the margin of the pupil, about which the two layers turn and then unite.

The retina has its own *system of blood-vessels*, which is almost entirely separate from the adjoining system of ciliary vessels. It is formed by an expansion of the *arteria* and *vena centralis nervi optici*, which break up into branches in the optic papilla. These branches subdivide in the retina as far as the *ora serrata* without anastomosing together (see Fig. 80, *a, a*1, and *b, b*1; Fig. 8 represents the branching of vessels in the retina as seen with the ophthalmoscope). At the papilla alone, minute communications exist between the retinal and the ciliary vessels (see page 268). The retinal arteries are hence to be regarded as terminal arteries (Cohnheim). Consequently, disturbances of circulation in the retina, arising from contraction or plugging of a vessel, can not be compensated for by means of a collateral circulation.

Within the retina, the vessels lie only in the inner layers, so that the external layers of the retina are non-vascular, and are hence in part dependent for their nutrition upon the neighboring chorio-capillaris. This is especially true of the *fovea centralis*, the central part of which contains no vessels at all, while, on the other hand, the vascular network of the chorio-capillaris is here particularly dense.

**Function of the Retina.**—The objects of the outer world throw their images upon the retina. It is the function of the latter to convert the rays of light, of which the images are composed, into nervous stimuli. What takes place, accordingly, is a transformation of one sort of motion—the vibrations of the luminous ether—into another, namely, nervous excitation. This is without doubt simply another sort of motion of such a nature as to be transmissible within the nerve fibers to the brain, a property which is not possessed by the vibrations of the luminous ether. The place in which the conversion of luminous vibrations into nerve excitation occurs is the rods and cones. In what way this conversion takes place is not known, but we do know that a part of the *vis viva*, which the luminous vibrations represent, is used up in the production of chemical and physical changes, which we are able to follow.
The chemical changes consist in the transformation of the visual purple, contained in the rods and which was discovered by Boll, into a colorless substance by the action of light (Kühne). It is very probable that besides the visual purple still other "visual substances"—i.e., substances which undergo chemical changes under the influence of light—exist in the retina, but that such changes are not accompanied by alterations of color, and have accordingly thus far escaped discovery. The physical changes partly consist in variations in the strength of the electric current that normally passes from the retina to the brain (Holmgren), partly are motile phenomena of a less subtle sort, which we perceive both in the cells of the pigment epithelium and in the rods and cones. In the cells of the pigment epithelium, the pigment granules, when the eye is in the dark—that is, in a condition of rest—lie in the most posterior part of the cell close to the nucleus; but if light impinges upon the retina, these granules push their way forward into the ciliarrlike processes which extend between the rods and cones. In the rods and cones themselves, a process of contraction combined with shortening takes place under the influence of light.

I. Inflammation of the Retina.

96. The retina is often the seat of disturbances of circulation, such as anemia and hyperemia, which latter frequently gives rise to hemorrhages into it. The most extreme degrees of disturbance of circulation occur in consequence of embolism of the central artery and thrombosis of the central vein. In both cases the affected eye is made blind.

Inflammation of the retina (retinitis) is characterized first of all by a diffused cloudiness of the organ. The cloudiness varies very greatly in intensity, although in general it is greatest in the vicinity of the papilla, because here the retina is thickest. Consequently, the outlines of the papilla become indistinct and the vessels in the retina hazy. In addition, circumscribed exudates occur in the retina, usually under the form of brilliant-white, sharply defined macule. Retinitis is always associated with hyperemia of the retina, evidenced by distention and tortuosity of the vessels, and often also by extravasations of blood. Owing to the passage of the exudate from the retina into the vitreous, opacities of the vitreous are produced.

The function of the retina is impaired in proportion to the intensity and extent of the inflammation. In the lightest cases vision may be normal, so that the patients complain simply of the presence of a light-colored cloud before their eyes. But for the most part vision is very considerably reduced, both because of the changes in the retina itself and because of the accompanying opacities in the vitreous. Circumscribed exudates cause fixed scotomata in the field of vision.

The course of retinitis is always pretty sluggish. It is only in the lightest cases that the inflammation abates completely within a few
weeks, and then the visual acuity may once more become perfectly normal. But for the most part it takes several months for all the inflammatory symptoms to disappear from the retina, while the sight remains permanently impaired. Severe and, more particularly, recurrent in-

![Retinitis Albuminurica](image)

The clouding of the retina is most pronounced in the region of the papilla, where it exhibits a fine radial striation, and completely veils the margin of the nerve. Furthermore, even at a considerable distance from the papilla, the retinal clouding covers isolated portions of the vessels, and especially the distended veins, with a delicate haze, so that the vessels in these places look brighter. Surrounding the papilla are found rounded, brilliantly white spots of exudation and numerous dark-red, radially striate hemorrhages. The latter lie mainly in the neighborhood of the larger retinal vessels, and in part cover them. From this fact and from their striate appearance, it can be inferred that they belong to the most anterior layer of the retina—the nerve-fiber layer. In the region of the macula lutea is seen a group of small white specks, which combine to form the stellate figure characteristic of retinitis albuminurica. In the present case this is not very regularly formed, and above it is a somewhat larger spot, produced by the coalescence of several small dots.

Flammations of the retina lead to atrophy of it, pigmentation frequently occurring at the same time (through migration of pigment from the pigment epithelium). When atrophy of the retina has once made its appearance, the sight is always abolished, either completely or all except a small remnant, and its restoration is no longer possible.

In the etiology of retinitis, general affections play the principal part. Retinitis appears but rarely as a local lesion, although it does so sometimes, as when it occurs in consequence of dazzling; in most cases it is simply the symptom of an internal disease, to the discovery of which we are often led by our finding the retinitis. Among such general diseases are, above all, albuminuria, diabetes, leucæmia, syphilis, and diseases of the vascular system. In such cases the inflammation of the retina is usually bilateral.

The treatment must be directed both against the causal lesion and
against the local affection of the retina as well. The first indication is most readily fulfilled in cases of syphilitic retinitis, where an energetic treatment by inunction in most cases results in rapid improvement. The symptomatic treatment consists in the prevention of all injury to the eye by keeping the patient from every kind of work and by protecting the eye from too bright light either through the use of dark glasses or in severe cases by confinement in a darkened room. To combat the inflammation, and also to cause resorption of the exudate and restoration of the transparency of the vitreous, mercury, potassium iodide (both remedies being used in non-syphilitic as well as in syphilitic cases), saline purgatives, and diaphoretic treatment are employed.

Before we go more minutely into the subject of pathological changes in the retina, we must make ourselves acquainted with a congenital anomaly which by the inexperienced is frequently considered pathological. This is the presence of medullated nerve fibers in the fiber layer of the retina. The normal retina is perfectly transparent, because the optic-nerve fibers lose their medullary substance before passing through the lamina cribrosa, and hence when inside of the retina itself are transparent; but in exceptional cases after passing through the lamina cribrosa they regain their medullary substance through more or less of their extent. (In many animals—e. g., in rabbits—this is the rule.) Since the medullated fibers are opaque, there is found in these places a brilliant-white spot which is contiguous with the edge of the papilla and splits up at its periphery into white fibers, so as to have a flamelike look. Such spots are found.

FIG. 125.—MEDULLATED NERVE FIBERS. (After Jäger.)

The papilla shows in its center a whitish coloration, representing the physiological excavation. The temporal border of the papilla is surrounded by an irregular choroidal ring, while the upper and lower borders are concealed by the white fibrous masses that arise from them. These in places cover the retinal vessels, and especially the two arteries running outward and downward. At their peripheral borders the white masses break up into fibers.
most frequently at the upper and lower borders of the papilla (Fig. 136), but
may also surround the papilla completely, in which case the latter, owing to
the effect of contrast, appears of a strikingly dark red. In rare cases white
spots, formed of medullated fibers, lie within the papilla itself, or conversely at
a distance from it and in the transparent retina. The retinal vessels are in
places covered by the masses of white fibers. The vision of such eyes is often
reduced, and Mariotte’s blind spot enlarged.

Hyperemia of the retina may be either of arterial or of venous nature. The
former accompanies all inflammations of the retina and also of the neighboring
tissues, particularly the uvea, and is characterized by a quite pronounced
dilatation and tortuosity of the arteries. Venous hyperemia manifests itself by
dilatation and great tortuosity of the veins, while the arteries are often thinner
than usual. It is produced most frequently by plugging of the veins (see
Thrombosis, page 447) or by their compression. The compression is mostly
located in the optic papilla, as in the case of glaucoma, where the increased
intra-ocular tension squeezes the veins down into the excavated papilla, or in
the case of optic neuritis, in which the swelling of the papilla compresses the
veins. In orbital tumors it is the trunk of the optic nerve that is compressed.
Venous hyperemia also occurs as one of the symptoms of a general venous con-
gestion, particularly in diseases of the heart.

Anemia of the retina may either develop suddenly or gradually. Its sudden
development may take place as a result of occlusion of the vessels (hence, above
all, in embolism of the central artery) or through their compression, as in the
case of sudden increase of tension. Spasm of the retinal arteries also occurs,
particularly in acute poisoning by quinine—that is, in cases in which large doses
of quinine have been administered, sudden blindness (and usually deafness, too)
sometimes supervene. The blindness abates again, but a certain degree of en-
feeblement of sight, and more particularly a contraction of the field of vision,
generally remain. Ophthalmostopically, we find pallor of the optic nerve, and
as a special feature a very great attenuation of the retinal vessels. Much more
frequent than acute anemia of the retina is that form of anemia which sets in
gradually as a consequence of retinal atrophy. The vessels of the retina then
either become simply attenuated (Fig. 143) or they get to be surrounded by
white bands, the result of thickening of the vessel walls, while the column
of blood simultaneously becomes narrowed (perivasculitis retinae). Ultimately
the vessels may disappear altogether from the retina or may be transformed
into white strands empty of blood.

Hyperemia of the retina leads to the production of hemorrhages into its
substance. Extravasations of blood into the retina are frequently found on ex-
amination, and occur in all sorts of sizes and shapes. They form dark-red
patches that contrast with the brighter red of the fundus. If they lie in the
fiber layer of the retina they have striate or flamelike shapes, because the ex-
uded blood spreads along the fibers (Figs. 135 and 141). Haemorrhages situated
in the deeper layers of the retina or between it and the choroid are of rounded
or irregular shape (Fig. 140). In the region of the macula large disk-shaped
eextravasations sometimes occur, which are situated not in the retina, but be-
tween it and the vitreous ( preretinal or subhyaloid hemorrhage (Fig. 137).
The result of this is that the retinal tissue suffers no injury from the hemor-
rhage, so that after the resorption of the blood the vision becomes normal
again.
The extravasations are most frequently located in the neighborhood of the larger vascular trunks. The causes of retinal hemorrhages are—

1. General fragility of the walls of the vessels. This is found very frequently in old people with atheromatous vessels, particularly if they have a heart lesion at the same time. In such cases the retinal hemorrhages are not infrequently the precursors of cerebral apoplexy.

2. Local disease of the retinal vessels or of the adjacent vessels of the choroid. Under this head must be reckoned those hemorrhages which occur so frequently in excessively myopic eyes in the region of the yellow spot. With the occurrence of such a hemorrhage central vision is often permanently destroyed.

3. Overdistention of the blood-vessels by circulatory disturbances, such as active and passive hyperemia of the retina and embolism of the central artery or thrombosis of the central vein or of their branches. In newborn infants retinal hemorrhages are frequently found as a consequence of the disturbances of circulation which occur within a child's skull during the act of birth. In this category, furthermore, belong the retinal hemorrhages which very frequently
DISEASES OF THE RETINA. 445

take place in glaucomatous eyes as a result of iridectomy. Moreover, the varie-
ties of retinal hemorrhage adduced under the next head may in part be caused
by stoppage of the smaller vessels—e. g., the hemorrhages in sepsis by emboli
composed of masses of fungi.

4. Altered composition of the blood making its influence felt upon the walls
of the vessels. Under this head belong retinal hemorrhages in extreme anaemia,
particularly in pernicious anaemia, in leucæmia, scurvy, purpura, sepsis, albu-
minuria, diabetes, oxaluria, intermittent fever, relapsing fever, icterus, poison-
ing by phosphorus, extensive burns of the skin, etc.

5. Rupture of the blood-vessels due to trauma.

Retinal hemorrhages undergo resorption very slowly, requiring for this
weeks and months, during which they are frequently seen to take on a white
color (Fig. 138). They ultimately disappear without leaving a trace of their
presence or they leave decolorized whitish, rarely pigmented, spots in the
fundus. Whether a scotoma is left at the affected spot or not depends
upon the degree to which the hemorrhage has lacerated the tissue of the
retina.

Embolism of the central artery was first observed by Von Graefe. The patient
is made aware of his disorder by sudden and complete blindness, which appears
at once upon the obliteration of the artery. If immediately afterward an ex-
amination is made with the ophthalmoscope, the signs of an extreme arterial
anaemia of the retina are found (Fig. 138). The larger arteries are narrowed
down to thin filaments, the smaller ones become invisible. The veins, on the
other hand, are not markedly contracted except upon the papilla itself; the lat-
ter appears paler. Within a short time, often within a few hours, the retina,
becoming dead, loses its transparency. It becomes of an opaque milky white,
most markedly so in the vicinity of the papilla and of the fovea centralis.

Owing to this opacity the outlines of the papilla are obscured, and, on the other
hand, fine ramifications of the retinal vessels, such as ordinarily are not visible
with the ophthalmoscope, come into view in the vicinity of the fovea, where
they stand out with great distinctness upon the white background. At a point

A point corresponding to the center of the fovea is a vivid red spot presenting a strong
contrast with the cloudy-white ground. There has been much discussion as to
whether this is a hemorrhage, or is caused by the fact that in the region of the
fovea centralis the red choroid is seen through the clouded retina because the
latter is thinnest in this spot—the red of the choroid being supposed to appear
particularly pronounced from contrast with the white and hazy tissues surround-
ing it. I have repeatedly convinced myself that both explanations may be true.

I saw this particularly well marked in one case in which several bright-red recen-
t hemorrhages were placed alongside of the dark-red spot that was due to the
effect of contrast.

After some days the retinal vessels fill up again. Then a peculiar phenom-

Then a peculiar phenomenon is sometimes observed. In some sets of the vessels (particularly the veins)
the blood column appears to be broken up into short sections separated by clear
interspaces, and the whole column makes jerking movements, sometimes in the
sense of the normal blood current, sometimes in the reverse direction. In the

In the course of the following weeks the cloudiness of the retina vanishes; the retina
regains its transparency, but becomes perfectly atrophic. The optic papilla is
now white and sharply outlined, the blood-vessels both upon the papilla and
in the retina are scanty, thin, filamentous, and often bordered by white lines;
many of the finer vascular twigs become completely invisible. The blindness persists and is permanent.

Instead of affecting the central artery, the embolism may affect only a branch of it. In that case the visible alterations are limited to that portion of the retina which draws its blood supply from the obliterated vessel. The blindness, too, corresponds then simply to the part of the retina that is diseased—that is, appears under the form of a defect in the visual field, one half of the latter or a sector of it being destroyed. Even in embolism of the central artery itself a small portion of the retina may retain its functional power. This is the case when cilio-retinal vessels from the vascular circle of Zinn are distributed to the retina (see page 268). In ophthalmoscopic examination such vessels can be rec-

![Fig. 128. — Embolism of the Central Artery, developing eight days previous to the date on observation in a woman affected with aortic aneurism.](image)

The whitish haze over the retina obscures the outlines of the papilla and the initial portions of the vessels arising from it. The arteries are already better filled than they were, although they still are below the normal in this respect. The veins have a very uneven caliber, the latter in general increasing toward the periphery. In the large veins, running upward and outward and downward and outward, the blood column is seen to be broken up into short separate sections. The vicinity of the fovea centralis is covered with a dense whitish haze, upon which the finest ramifications of the vessels stand out distinctly, although the connection between them and the main vessels is in places concealed by the haze. The mid point of the fovea centralis is occupied by a spot which is dark red with a light center, and which represents the chorioid showing through the haze.

ognized from the way in which they are seen to arise, which is by a hook-shaped extremity from the border of the papilla (Fig. 81). These vessels, which receive their blood from the short posterior ciliary arteries, are of course unaffected by embolism of the central artery, and hence the region of the retina that is supplied by them, and which lies between the papilla and macula, retains its functional power.

Embolism occurs in all those disorders which give rise to the entrance of clots into the circulation, and above all in affections of the heart. The possibility of a cure exists only in very recent cases, before the death of the retina has taken place. The retina might then regain its function if we could succeed
in restoring the circulation in it. The only way in which this can be accomplished is for us to try to drive the plug lodged in the central artery on into its smaller branches, where it will do less harm. With this object in view, we evacuate the aqueous by paracentesis of the cornea. In consequence of the sudden diminution of intra-ocular tension thus produced, the blood tends to flow into the eye in increased quantity, and may thus push the embolus forward if it is not too tightly fixed in its position. In addition, we try to favor the washing away of the embolus by performing massage of the eye. In this way it has been possible to restore the circulation in the retina, and with it the sight in some few cases, in which the lesion was still very recent.

What is known clinically under the name of embolism of the retinal arteries corresponds to those cases in which there are no infected emboli in question; hence, no inflammation occurs, but only the results of the mechanical cutting off of the blood supply. The retina, being no longer nourished, simply dies. It does not indeed become necrotic, because it still obtains a supply of nourishment from the adjacent chorio-capillaris of the choroid, although this does not suffice to maintain the function of the retina. But infectious emboli also may get into the retinal arteries, as sometimes happens in pyæmia. Then a supplicative retinitis develops, the suppuration from which extends to the other structures of the eyeball, so that the clinical picture of panophthalmitis is produced. These cases accordingly run a course just like that of metastatic chorioiditis (see page 347).

The ophthalmoscopic picture of embolism is the expression of changes which set in when the supply of arterial blood is cut off from the retina. It is hence not confined to embolism of the central artery, but is found in occlusion of it in general, due to other causes as well. Among these causes belong thrombosis of the artery, and possibly also spasm of it, in case it lasts long enough; furthermore, also compression of the artery within the trunk of the optic nerve consequent upon haemorrhage or inflammatory infiltration in the latter; and, finally, a solution of the continuity of the artery occurring when the optic nerve is cut or torn through in front of the point where the central vessels enter it.

Thrombosis of the central vein, which was first anatomically demonstrated by Michel, is characterized by an enormous distention of all the retinal veins with blood, while the arteries are so attenuated as to be scarcely discoverable (Fig. 139). The blood escapes from the turgid veins at many spots, so that the entire fundus is covered with haemorrhages. These keep recurring again and again, and with their recurrence the sight which from the start was greatly reduced is at length utterly destroyed. Like embolism, thrombosis, too, may be confined to a branch of the central vein, in which case also the changes in the fundus are present only in that district of the retina which corresponds to the region of distribution of the occluded vein.

Thrombosis of the central vein occurs for the most part in elderly persons suffering from a cardiac affection or from atheroma of the vessels; but an inflammation in the orbit may also lead to thrombosis of the central vein, probably through the development in the orbital veins of thromboses, which subsequently extend into the central vein. In this way cases of blindness are sometimes produced in the course of facial erysipelas. The erysipelatous inflammation of the skin has a tendency to penetrate in spots into the deeper parts, and there set up either infiltrations or phlegmons. Hence, abscesses of the lids, abscesses in the orbit, and, through transmission to the brain, even purulent
meningitis, are observed as sequelae of facial erysipelas. If, then, a case of erysipelas is complicated with inflammation of the cellular tissue of the orbit, it is sometimes found, after the erysipelas has run its course and the swelling of the lids has abated, that the eye is blind. The ophthalmoscope shows atrophy of the optic nerve with extreme attenuation of the blood-vessels. According to an observation of Knapp's, we are dealing in this case with a thrombosis of the central vein, consequent upon the inflammation of the retrobulbar cellular tissue. The blindness that is due to erysipelas may affect both eyes.

In proceeding to consider the separate forms classified with reference to their etiology, we are not to forget that it is very rare indeed for this inflammation to remain confined strictly to the retina, the fact being that it usually implicates

---

Fig. 139.—Thrombosis of the Central Vein. Present for Fourteen Days in a Man Fifty-Two Years of Age.

The outlines of the papilla are concealed partly by a gray striate opacity, partly by radially disposed hemorrhages. The retinal arteries are attenuated; the retinal veins are unusually broad and tortuous, and are filled with blackish blood. In many places the vessels are covered by extravasations of blood, and hence appear interrupted. The hemorrhages are extremely numerous, have a dark red, almost black, color, and are either radially striate or irregularly rounded in shape. A few of the hemorrhages have taken on a brilliant-white hue in their center. This is particularly visible in the large patches of blood lying outside of the macula lutea. The retina, wherever it is not occupied by hemorrhages, is clouded, and of a faint-gray color.

the head of the optic nerve as well. If this implication is present to a marked degree we call the case one of neuro-retinitis. We use the same term when an inflammation that starts from the head of the optic nerve extends out into the retina. With regard to its etiology, therefore, neuro-retinitis is at one with retinitis on the one hand and with neuritis on the other. A similar relation exists between retinitis and chorioiditis. An inflammation that affects predominantly the outer layers of the retina, adjoining the chorioid, will scarcely run its course without implicating the chorioid too. Of this syphilitic retinitis affords a very evident example. Conversely it is obvious that chorioiditis can not exist without the portions of the retina immediately adjacent participating in the process. From an anatomical standpoint every chorioiditis is a retino-cho-
DISEASES OF THE RETINA.

{More text here...}
tained in the blood. Uraemic amaurosis is distinguished from the disturbance of vision due to retinitis albuminurica partly by the negative result of ophthalmoscopic examination, partly by the course. Uraemic amaurosis sets in suddenly and is complete, while in retinitis albuminurica the sight is gradually reduced and is seldom annihilated entirely. The blindness, however, is permanent, while the blindness due to uremia again gives place to normal vision, provided the patient does not succumb to the uraemic attack. Of course, the possibility of a uraemic amaurosis occurring in a patient already suffering from retinitis is not excluded.

2. Retinitis Diabetica.—This is characterized in many cases by the presence of small, brilliantly white spots in the retina, which chiefly occupy the region of the macula lutea and its vicinity, without, however, presenting a stellate arrangement, as in albuminuric retinitis (Fig. 140). Sometimes by the confluence of small dots one or two large patches are found, which show by their crenated border that they are composed of smaller spots. Between the white patches lie punctate extravasations of blood. The rest of the retina is transparent, and the papilla, too, is unaltered.

In other cases this characteristic picture is not present; in fact, diabetic retinitis may actually appear under the guise typical of albuminuric retinitis.

Retinitis is also observed in azaluria.
3. Retinitis Leucomica.—In this, superadded to the general symptoms of inflammation of the retina (namely, retinal cloudiness and hemorrhages), there is found, as a characteristic feature, a light hue of the blood in the retinal vessels, which ordinarily are greatly dilated. Furthermore, since in leucæmia the blood that flows in the choroidal vessels is of lighter color than normal, the entire fundus, even where there is no retinitis present, is of a much lighter red than usual, and shows a yellowish tinge. Likewise characteristic of leucæmic retinitis are white patches with a red rim (consisting of white corpuscles surrounded by red ones); but such patches are present in only a few cases of retinitis leucaemia.

4. Retinitis Septica.—In this the changes affect mainly the posterior section of the retina, in which both hemorrhages and white patches are found. The papilla is unaltered. The disease occurs in connection with sepsis, and that not only in the fatal forms, but also in the slighter cases.

5. Retinitis Hemorrhagica.—This is diagnosed when, along with the presence of numerous hemorrhages in the retina, the latter itself is hazy and the papilla is obscured (Fig. 141). Haemorrhagic retinitis is due for the most part to diseases of the retinal vessels; many of these cases are probably identical.
with those of thrombosis of the central vein, as described on page 447. Hemorrhagic retinitis frequently becomes complicated later with increase of tension (hemorrhagic glaucoma, page 392).

Manz has described under the name of retinitis proliferans an affection in which dense masses of connective tissue extend out from the retina into the vitreous and cover a portion of the fundus; in fact, even the papilla itself (Fig. 142). Into these masses run new-formed vessels from the retina. For a number of these cases it is probable that these masses of connective tissue have been preceded by hemorrhages, which were poured out from the retina into the vitreous and afterward became organized (see page 435).

Another condition in which a new formation of blood-vessels occurs is in retinitis, particularly in syphilitic retinitis, that has lasted a long time. The vessels in this case project from the retina into the vitreous under the form of slender, often repeatedly convoluted coils.

6. Retinitis Syphilitica.—Acquired syphilis is one of the most frequent causes of retinitis. Syphilitic retinitis is usually associated with disease of the uvea, and above all of the choroid; often also of the iris, which then exhibits the picture of syphilitic iritis. In the retina syphilitic inflammation appears under two forms, diffuse and circumscribed. In the former case the entire retina is
clouded and faintly gray; here and there, especially in the macular region, more densely gray spots may be found. Later on in the disease, in proportion as the cloudiness of the retina abates, changes in the pigment epithelium set in, and ultimately migration of pigment from the latter may take place into the retina, so that a picture is formed resembling that of retinitis pigmentosa. This form of syphilitic retinitis consequently coincides in part with the syphilitic chorioiditis described by Förster (page 341).

In the circumscribed form a bulky white exudate is found either in the region of the macula lutea or more frequently close to one of the larger retinal vessels. In the latter case it is often possible with the ophthalmoscope to recognize that an affection of the wall of the vessel is the cause of the circumscribed exudation. Later on the exudate is transformed into bluish-white scar tissue, which in consequence of its shrinking may give rise to detachment of the retina.

Hereditary syphilis, too, leads to retinitis, which may be observed in children or may be even congenital. Ordinarily we see only the evidences of inflammation after it has run its course; such evidences occurring either under the form of numerous small, light or black spots, or under the form of an old, bulky exudate, that has been transformed into connective tissue.

7. Retinitis due to dazzling is produced most frequently by looking at the sun. It is particularly observed after eclipses of the sun in people who have tried to follow them with glasses that have not been blackened sufficiently or with the naked eye. I have also seen it produced after gazing too long at the electric arc light. The ophthalmoscope shows pigment changes in the macula lutea, upon which the image of the sun has been cast. Corresponding to this spot there exists a central scotoma, which for the most part remains permanently. We must not confound with the retinitis due to dazzling that variety of inflammation of the eyes which is produced by the action of snow (snow blindness) or by the electric arc light. This, in addition to transitory symptoms of dazzling, consists mainly in a violent conjunctivitis (see page 112).

In the last-mentioned forms of retinitis—namely, retinitis syphilitica and retinitis due to dazzling—the inflammation has its seat mainly in the outer layers of the retina, as is proved by the changes simultaneously taking place in the pigment epithelium and, indeed, in the chorioid itself. But in the forms of retinitis first described it is mainly the inner layers of the retina that are affected.

Often enough cases of retinitis occur in which even a careful examination of the patient is unable to demonstrate any determining etiological factor. Several forms, which are, to be sure, of rare occurrence, are distinguished by characteristic changes in the fundus from which they get their names—e.g., retinitis circinata from the circle of white spots surrounding the macula lutea, and retinitis striata from the gray striae in the retina.

A very rare affection of the retina is that occurring in children in the first two years of life with the following symptoms: The region of the macula lutea is occupied by a grayish-white patch of the size of the papilla, having in its center a small vividly red spot like that found in embolism of the central artery. The rest of the fundus is normal, although the papilla becomes paler and paler all the time and finally altogether atrophic. The changes are always found in both eyes, and are alike in both. The children gradually become blind, and exhibit
apathy and paralytic weakness of the muscles. These symptoms increase until after the lapse of many months the children die. Autopsy shows changes in the cerebral cortex* and descending degeneration in the spinal cord.

II. ATROPHY OF THE RETINA.

87. Atrophy of the retina is the result of its protracted inflammation, or is the final outcome of an embolism or a thrombosis of the retinal vessels. Ophthalmoscopically, atrophy is characterized above all by the stenosis of the retinal vessels (Fig. 143), which in severe cases may amount to complete obliteration, so that the vessels are either transformed into white strands or have become altogether in-

![Image](https://example.com/image)

**Fig. 143.—Retinitis Pigmentosa. (In part after Jäger.)**

The fundus throughout presents the picture of tessellation, since the bright-red choroidal vessels with the darkly pigmented intervascular spaces are everywhere visible. For the same reason numerous branched, interconnected pigment spots are found in the periphery of the retina. This pigmented zone extends in a circle, although it comes closer to the papilla on the nasal than on the temporal side, where, in fact, it lies so far to the periphery that it is not represented in the drawing at all. The papilla is of a dirty grayish-yellow color and ill-defined. Of the retinal vessels, only the main trunks are visible, and these, especially the arteries, are greatly contracted.

visible. The retina may look otherwise unchanged and transparent, or it may bear traces of the antecedent inflammation. In every case the signs of a secondary atrophy can be made out upon the papilla as well; its outline is indistinct and it is of a pale, dirty-gray color (retinitic atrophy of the papilla).

A special variety of atrophy which runs a very chronic course is the pigmentary degeneration of the retina (also called retinitis pigment-

* [And in the ganglion cells of the retina (Holden).—D.]
DISEASES OF THE RETINA.

This is marked by such characteristic subjective symptoms that the diagnosis can be made almost from them alone. The persons affected with this disease, even when still young, complain that they see worse whenever the illumination is reduced, and particularly at night (hemeralopia). This state of things increases with the age, so that finally the patients are no longer able to go about alone at night, while in the daytime they still see quite well. The cause of this phenomenon is disclosed by the examination of the field of vision. In the beginning of the disease the field of vision, when taken under good illumination, proves to be nearly normal, while, when the illumination is reduced, it appears very much contracted.

We must conclude from this that the peripheral portions of the retina are under-sensitive, so that under good illumination they still perform their function but do not react to weaker stimuli, such as feebly illuminated images afford. Later on, the field of vision shows itself so contracted, even under full illumination, that the capacity of orientation suffers, and the patient can scarcely guide himself alone even in daytime. At the same time direct vision may still be so good that the patient is able to do fine work. Finally, central vision too is lost, so that complete blindness supervenes. This ordinarily is not the case until late in the disease (in the sixth decade or later).

Ophthalmoscopic examination shows, as the most prominent symptom of the disease, the presence of small black spots in the retina ("speckled retina," Fig. 143). These are of branched shape, so that they have been compared to bone corpuscles or spiders; they are connected with one another by their processes, and are found especially along the blood-vessels. In the beginning of the disease they occupy only the most anterior portion (periphery) of the fundus; as time goes on, new spots keep forming farther and farther back, until at length they reach the macula lutea and the papilla. As fast as the retina becomes pigmented, the pigment epithelium becomes decolorized, so that the chorioidal vessels get to be more and more visible, and the picture of a tessellated fundus is produced. With the increasing pigmentation of the retina the signs of atrophy of the retina and the papilla become
more and more prominent. Accordingly, what takes place is a gradual
degeneration of the retina associated with a migration of pigment from
the pigment epithelium into the retina (Fig. 144). The degeneration
begins at the periphery and advances toward the center. In the same
way, too, the retina gradually loses its function; the affected portions
of it at first are simply less sensitive than before, being still stimulated
to action by a pretty strong light; later on they become completely
insensitive.

The disease attacks both eyes. It develops in childhood, and would
seem to be congenital in many cases, although it usually is not discov-
ered until some time after birth. Inheritance plays a great part in its
production; retinitis pigmentosa occurs frequently in brothers and sis-
ters, and also in several successive generations. The female members
of the family are less frequently affected than the males. It is often
found at the same time with other congenital anomalies, like deafness,
mental weakness, harelip, or supernumerary fingers or toes, or with
malformations of the eye, such as persistent hyaloid artery, posterior
polar cataract, etc. After it has lasted a pretty long time, posterior
cortical cataract usually develops. In almost a third of the cases the
disease occurs in individuals descended from consanguineous parents.
Herein apparently lies the explanation of the fact that pigmented
degeneration of the retina is so frequently associated with other conge-
nital anomalies, since these latter also occur as a result of the consan-
guinity of the parents.

Treatment is powerless against pigmentary degeneration of the
retina, and the prognosis, therefore, is bad, since complete blindness
inevitably supervenes—though not, to be sure, until after the lapse of
many years.

The black spots in pigmentary degeneration of the retina are not always
like bone corpuscles, but sometimes are also rounded or irregular, like the black
spots in chorioiditis. Their characteristic distinguishing mark lies not so much
in their shape as in their situation, which must be assigned to the retina. This
is recognized from the fact that the retinal vessels, wherever they run by the
black spots, are covered by them; hence, the spots must lie in front of the ves-
sels—i.e., in the inner layers of the retina. (In the case of pigment spots in
the choroid we can distinctly follow the retinal vessels in their course over the
spots.) Spots of pigment in the retina are not, however, limited to pigmentary
degeneration of the latter; on the contrary, the migration of pigment into the
retina may take place ultimately in every case of retino-choroiditis. This is
particularly the case in syphilitic retino-choroiditis, in which the pigment in
the retina can, moreover, assume the bone-corpuscle shape, so that a picture
quite similar to that of pigmentary degeneration may be produced (Förster).
In chorioiditis, however, there are also usually present atrophic changes (white
spots) in the choroid, which are wanting in retinitis pigmentosa. Neverthe-
less, there are cases in which the diagnosis is very difficult, and can only be
made with the aid of the previous history and the careful testing of the function.
Not only is pigmentation of the retina not confined to pigmentary degeneration of this part, but, on the other hand, such degeneration is not necessarily associated with the presence of pigment. There are cases of what are called \textit{retinitis pigmentosa without pigment}, in which the same gradual attenuation of the retinal vessels, progressive atrophy of the optic nerve, hemeralopia, and ultimate blindness are observed as in retinitis pigmentosa, and only the migration of pigment into the retina is absent. These cases resemble \textit{congenital hemeralopia}, in so far as in this also there is hemeralopia without any pigmentation of the retina being present. A further point of resemblance is that congenital hemeralopia frequently occurs in several members of the same family. The distinction between these cases and retinitis pigmentosa sine pigmento is that in the former the fundus presents no signs of atrophy of the retina or optic nerve, and vision remains good throughout life. The condition, therefore, is a stationary one as opposed to the slowly but surely progressing retinitis pigmentosa.

An affection allied to retinitis pigmentosa is \textit{retinitis punctata albescens} (Gayet, Nettleship). This in all the rest of its symptoms agrees with retinitis pigmentosa, but instead of the pigmentation of the retina shows hundreds of small white dots, which are distributed pretty uniformly over the whole fundus.

For treatment in pigmentary degeneration of the retina we may try potassium iodide, hypodermic injections of strychnine, the constant current, diaphoresis, and the like. We do this more for the satisfaction of the patient than anything else, for, although we do sometimes obtain an improvement of the sight, it is only a transient one.

The \textit{anatomical changes} found in inflammation and in atrophy of the retina are as follows:

In inflammation the signs of inflammatory oedema exist, or those of a cellular infiltration due to extravasated white blood-corpuscles; also extravasations of blood. The changes at the same time observed in the tissue elements of the retina itself are: 1. Fatty degeneration both of the nervous elements and of the supporting tissue of the retina. 2. Thickening (sclerosis), especially in the nerve fibers of the fiber layer. 3. Free exudate under the form of homogeneous masses interposed between the tissue elements. The three changes just mentioned constitute the principal cause of the brilliant-white spots occurring in many cases of retinitis (particularly in retinitis albuminurica). 4. Hypertrophy of the supporting tissue, which becomes the more prominent in proportion as the inflammation passes over into atrophy. 5. Thickening of the walls (sclerosis) of the blood-vessels, leading to the contraction of their lumen or even to their obliteration. 6. The migration of pigment cells from the pigment epithelium into the retina, where they may undergo spontaneous multiplication (Fig. 144).

When, after protracted inflammation the retina has become perfectly atrophic, it consists of a reticulum which is derived from the supporting tissue and which contains pigment cells, but from which the nervous elements have disappeared without leaving a trace of their presence. The blood-vessels are in great part obliterated and converted into solid strands of connective tissue.

Many pathological changes in the retina do not originate in it, but are derived from an affection of the chorioid, which contributes so greatly to the nourishment of the retina. If we divide the ciliary vessels in rabbits and thus interfere with the circulation in the chorioid, degeneration of the retina ensues,
with migration of pigment into the latter (Wagenmann). On the basis of experiments like these it has been conjectured that retinitis pigmentosa and the allied affections of the retina have their starting point in the chorioid.

III. DETACHMENT OF THE RETINA.

98. Detachment of the retina (ablatio sive amotio retinae) is diagnosed by means of the ophthalmoscope, which shows the detached retina under the guise of a delicate gray membrane that rises above the level of the normal fundus and projects forward into the vitreous

![Figure 145 - Serious Detachment of the Retina in Myopia](image)

A woman of sixty-two, having previously been very myopic, had for four years suffered from a cataract in the right eye. After the removal of the cataract by operation, the lower half of the retina proved to be detached, thrown into folds, and tremulous. The upper border of the detached retina lay upon the lower border of the papilla, and concealed it. To the outer side the detachment is sharply demarcated from the normal fundus, while to the inner side it spreads out quite gradually into two or three flat folds. On the crests of the folds the detached retina looks lighter than in the depressions between them. The retinal vessels running downward from the papilla soon after they start disappear behind the overhanging edge of the detached portion of the retina, and are apparently interrupted at this spot. In their subsequent course they are distinguished by the remarkably sharp bends they make and which follow the folds of the detached retina. The outer side of the optic disk is bordered by a white atrophic crescent, which is about half the width of the papilla, and is attributable to the myopia pre-existing in the eye. The outlines both of this papilla and the crescent are hazy. The rest of the fundus is tessellated—i. e., displays the choroidal vessels and the dark intervascular spaces.

(Fig. 145). Externally the eye looks normal, only the anterior chamber is often strikingly deep and the tension is also diminished.

The detachment of the retina is at first partial—i. e., is confined to one portion of the retina. It may develop at any spot whatever of the retina, but usually (in case it is caused by fluid) changes its place afterward, for, as the subretinal fluid sinks on account of its weight, it depresses the detachment gradually to the lower part of the eye; hence
DISEASES OF THE RETINA.

detachments of the retina are most frequently found low down, although their original situation very often was at some other spot in the fundus.

Every detachment of the retina has a tendency to enlarge and finally become total. In the latter case we find the retina pushed forward as a whole, and connected with its bed at two points only—at the papilla and at the ora serrata. Then the detached retina forms a plaited funnel, beginning at the papilla and opening out in front, a shape which Arlt has well compared to that of the flower of a convolvulus (see Figs. 100 and 113).

The subjective symptoms of detachment of the retina consist in the disturbance of vision that it causes. This is characterized above all by a limitation of the field of vision, which is often perceived as a positive phenomenon by the patient. A dark cloud lies over a part of the field of vision, corresponding in location to the detached portion of the retina, which has partially or entirely lost its sensitiveness to light. If, as is so frequently the case, the detachment lies below, the patient complains of a dark curtain which veils from him the upper parts of objects. For instance, he does not see the head of a man standing in front of him. Hence, the examination of the field of vision is of great importance for the diagnosis of detachment of the retina. Direct vision is preserved as long as the detachment has not yet extended to the site of the macula lutea. In total detachment there is absolute blindness.

Etiology.—The retina simply lies upon the chorioid without being connected with it anywhere except at the papilla and the ora serrata. In the dissected eye it can be lifted from its bed with the greatest ease. In the living eye the retina is kept pressed against the chorioid by the vitreous. A detachment of the retina, therefore, is possible only when either the pressure exerted by the vitreous ceases to act, or when the retina is pushed from its bed by a force greater than this pressure.

(a) The former variety of detachment occurs when through disease of the vitreous the pressure exerted by it is diminished or becomes absolutely negative—i.e., is converted into a traction. This occurs: 1. When a pretty large quantity of vitreous has escaped, in the case of injuries or of operations; 2. When shrinking of the vitreous is produced on account of some disease of it. The most frequent cases of this sort are those in which the formation of exudates has taken place in the vitreous in irido-cycilitis or irido-chorioiditis. When these exudates become organized and shrink they draw the retina, to whose surface they are attached in places, away from the chorioid. This form of detachment, it is true, can not be seen with the ophthalmoscope, insomuch as the media are too cloudy, but can be readily diagnosticated by means of the softening of the eyeball and the contraction of the field of vision. The form of detachment of the retina that is visible with the ophthalmoscope, and which occurs without any antecedent inflammation, is
most frequently found in connection with high degrees of myopia. In this case it is a fibrillary degeneration of the vitreous which must be regarded as the cause of the detachment. A similar fibrillary condition of the vitreous, which is dependent upon senile changes, is probably at the bottom of that variety of retinal detachment which sometimes occurs in elderly persons without any other cause.

When the retina is detached from the chorioid by alterations taking place in the vitreous, fluid transuded from the chorioidal vessels collects between the retina and the chorioid, owing to the negative pressure set up beneath the retina by reason of its detachment. This subretinal fluid is a quite albuminous, usually rather yellow serum, and hence detachments of the retina of this sort are called serous.

(b) Much less frequent are those cases in which the separation takes place in consequence of an active propulsion of the retina away from the chorioid. The causes of such a propulsion are: 1. An acute process of exudation from the chorioid, as occurs in purulent chorioiditis and in phlegmons in the orbit. 2. Hæmorrhage from the chorioidal vessels, whether spontaneous or due to injury. 3. Tumors of the chorioid or of the retina, and also a cysticercus developing beneath the retina.

The treatment in serous detachment of the retina must seek to secure the resorption of the subretinal fluid. This is accomplished by diaphoresis, by purgatives, by preparations containing iodine, and also by a pressure bandage applied with moderate firmness; at the same time the patient should keep to his bed. This treatment must be kept up for several weeks at least. When these remedies have failed us, or when from the start we are dealing with a saccate detachment produced by the copious exudation of fluid, we may try to evacuate the subretinal fluid by puncture of the sclera (see § 154). The puncture is made at the spot where the detachment is most pronounced, for which purpose the site and extent of the detachment must have been precisely determined beforehand with the aid of the ophthalmoscope. Only as much fluid is allowed to escape as will flow off spontaneously. After the operation, the patient should keep his bed for from one to several weeks, with a light pressure-bandage on the eye. By these methods of treatment it is generally possible in recent and not too extensive cases of separation of the retina to obtain an improvement of the sight by partial reattachment of the retina, and in especially favorable cases even to cause the detachment to disappear completely. Unfortunately, it is only in the rarest cases that these good results are lasting. As a rule, after some time the separation develops anew, and ultimately in spite of all our therapeutical endeavors becomes total, so that the prognosis of retinal detachments in general must be characterized as very unfavorable. The cause of the recurrences lies in the fact that no treatment is able to do away with the lesion which usually lies at the
bottom of the trouble—namely, the shrinking of the vitreous, by which the freshly attached retina is constantly withdrawn again from its bed. In inveterate cases or in total detachment of the retina, we had better abstain from any form of treatment.

In total detachment of the retina, cataract usually develops later on, the eye becomes soft, and a slight degree of atrophy of the eyeball supervenes. Moreover, a sluggish form of iritis is not infrequent in eyes with detachment of the retina.

When the retina is detached by means of a neoplasm, enucleation of the eye must be performed. A cysticercus occurring beneath the retina, may be extracted by an incision into the sclera, and the eye may thus be preserved in a condition serviceable for vision.

The detached portions of the retina, being pushed forward, exhibit a lower degree of refraction than the rest of the fundus; they are, in fact, generally very hypermetropic. On account of this difference of refraction one can not, using the erect image, see the detached and the adjoining portions of the retina distinctly at the same time; it being possible to do this only by means of the indirect method. In order to examine with the erect image, we had best hold the mirror some distance off when looking into the eye; and at the same time we may place a convex lens (e.g., one of +3 D.) behind the mirror. Not infrequently it lies so close behind the lens that it can actually be seen by lateral illumination when the pupil is dilated; a gray membrane, with the characteristic retinal vessels, being recognized deep down in the eye.

The ophthalmoscopic appearance of a detachment differs according as the case is one of serous detachment or of detachment due to a tumor or a cysticercus.

In serous detachment of the retina from the choroid, the pigment epithelium remains in its place upon the latter. The retina, therefore, is at first transparent, but very quickly becomes cloudy, because it is separated from the choroid, which in great part provides for its nutrition. The detached retina, accordingly, has a light, rather transparent gray color and a dull luster. If some blood is mixed with the subretinal serum, the detachment acquires a greenish tinge. The retina lies in folds of greater or less size, whose tops show a whitish sheen; and it shakes all over when the eye is moved. The gray hue and dull luster, the folds, and the tremulousness of the detached retina justify the comparison made between it and a gray silk or satin fabric.

A thing that especially characterizes a detached retina is the appearance presented by the blood-vessels that run over it. Inasmuch as these follow the folds of the retina, they are very tortuous, and some of their bends are entirely concealed between the folds. The blood-vessels are dark red, indeed almost black, as though the blood circulating in them had been altered in character. This, however, is not the case, the dark color being really due to the fact that the blood-vessels are in part at least seen by transmitted light, since some light always passes through the detached retina and is then reflected from the more posteriorly placed choroid. The blood-vessels, consequently, look dark for the same reason that opacities in the media appear black.

The sides of the detachment may merge by a gradual slope into the surrounding retina, or they may be baggy and overhanging. In extensive detach-
ments the papilla is partly or wholly concealed by the overhanging retina. Very flat detachments are rather hard to diagnose. In this case the red hue of the fundus shows a slight gray cloudiness in the parts affected, and is traversed by low folds of a rather lighter gray; but the main thing that enables the diagnosis of detachment to be made is the unusual tortuosity and the dark color of the vessels. When there is a flat detachment in the region of the macula, we can sometimes see at a point corresponding to the macula a pale-red spot in the detached retina.

The detached retina sometimes exhibits white patches, extravasations of blood, or pigmented spots. Particularly often there is found a rent in it (ruptura retinae). The rent lies generally in the periphery of the fundus, and most frequently in its upper part. Observers were formerly disposed to look upon it as the result of the detachment, it being supposed that the delicate retina, being deprived of all support, was lacerated in the movements of the eye owing to the agitation of the subretinal fluid. While this may sometimes be the case, it appears from the researches of Leber and Nordenson that generally the reverse of this process occurs—i.e., the laceration of the retina precedes its detachment. The vitreous, as it shrinks, exerts a traction upon the retina, and particularly at its most anterior portion, where under normal conditions the vitreous is most intimately adherent to it. Ultimately the traction becomes so great that the retina ruptures, and now fluid from the vitreous cavity passes in through the rent and beneath the retina, so that the latter is detached. In this way Leber explains the sudden development of most detachments, particularly those occurring in connection with myopia.

In the beginning of a detachment of the retina, objects frequently appear crooked (metamorphopsia), in consequence of the oblique position of the pericipient retinal elements. Photopsia, too, is often caused by the traction upon the retina, and often gives the first warning of the advent of the detachment.

The retina, when but recently separated, retains for some time its sensitiveness to light, and, if it soon becomes reattached, may resume its function perfectly. Thus there is a possibility afforded of a cure of the detachment in respect to function as well as in other regards. Moreover, it sometimes happens that the sight improves very much, although the detachment remains and is not diminished in size. Such an apparent cure is brought about, whenever the detachment, after occupying the site of the macula lutea, afterward settles lower down, so that the macula resumes its function, and nothing is left but a peripheral contraction of the visual field, that causes but little disturbance.

After a detachment has lasted some time, the retina becomes entirely atrophic. It has then lost its sensitiveness to light, and, moreover, becomes again transparent. At the same time the recognition of the detachment by means of the ophthalmoscope becomes more difficult, being now made mainly from the anomalous characters presented by the vessels.

A retinal detachment that is caused by a tumor of the choroid exhibits a characteristic appearance only so long as it remains in contact with the tumor throughout. It then forms a prominence which is smooth and destitute of folds, and which rises abruptly from the surrounding fundus. We may also be able to recognize through the retina the vessels of the choroid or of the tumor, and also the color of the tumor, which is usually dark. The retina that lies upon the tumor is obviously not tremulous.
In *cysticercus subretinalis* a rounded, rather sharply circumscribed detachment is found, beneath which may be recognized the bluish-gray cysticercus bladder with its lighter colored margin (Fig. 146). The detached retina is not tremulous, but spontaneous movements may be made out through it taking place in the bladder.

In its later stages a detachment of the retina, whatever its origin, is frequently made inaccessible to observation with the ophthalmoscope, owing to turbidity of the media, especially of the lens and vitreous, and hence the diagnosis is rendered difficult or impossible. In such cases the diagnosis must be based upon two factors—upon the *field of vision* and the *intra-ocular tension*. If qualitative vision is lost on account of the turbidity of the media, the field of vision must be tested with the candle flame in a darkened room (see fine print under

---

**Fig. 146.—Cysticercus Subretinalis in a Woman Twenty-six Years Old, Who Had Noticed a Sudden Diminution in Her Sight Two Months Previous.**

The papilla is encompassed on its outer and lower side by an irregular crescent. The region of the posterior pole of the eye is occupied by a bladderslike detachment of the retina. This detachment has a faint-gray hue, and allows the red of the fundus to appear through it, although dully. The edge of the bladder shows a light-gray, silky luster, while in the center of the bladder a bright yellowish-white speck is visible, which corresponds to the animal’s head. The retinal vessels run up upon the bladder without showing any marked bend as they pass its edges. The bladder displays active spontaneous movements, in which the central white speck changes its position, shape, and size. Between the papilla and the inner edge of the bladder an irregular, light-colored speck in the retina lying beneath a small retinal vessel. The upper part of the fundus is of a uniform red, the lower is somewhat albinotic, so that the dark choroidal vessels stand out distinctly upon the bright-red background.

§§ 155 and 156); in detachment of the retina a corresponding limitation of the field will then be found. The intra-ocular tension in detachment of the retina is generally reduced, because the volume of vitreous is diminished; for the same reason the anterior chamber is often found to be deepened, because the lens has sunk backward. When in advanced cases of irido-cyclitis, irido-chorioiditis, or complicated cataract we find limitation of the visual field and reduction of the tension, we are warned that complete blindness due to total detachment of the retina and subsequent atrophy of the eyeball is imminent.

In that form of detachment of the retina which is produced by active pro-
pulsion of the retina away from the choroid, the tension is not diminished, but rather is increased. Hence, increase of tension with detachment of the retina is in doubtful cases an argument for an intra-ocular tumor being the cause of the detachment (Von Graefe).

Among the causes of detachment of the retina must be mentioned cicatrices that remain after perforating wounds in the region of the sclera. Such cicatrices may be produced by accidental traumatism or by operation (page 241). They attach the retina to the choroid and the sclera, and by their subsequent contraction cause a strain upon the retina that leads to its detachment from its bed.

IV. GLIOMA OF THE RETINA.

99. Glioma is the only neoplasm which occurs in the retina. It is found only in children. In a case of it the parents notice that a bright, whitish, or golden-yellow reflex emanates from the pupil, which sometimes even is noticeable at a distance. For this reason the disease since the time of Beer has been known as amaurotic cat's eye; amaurotic, because the eye is blind; and cat's eye, because it shines like cats' eyes in the dark. If such an eye is examined by focal illumination, we recognize as the cause of the reflex a light-colored nodular mass (the degenerated retina) situated behind the lens and covered over with minute vessels.

The subsequent course of the glioma shows the same stages that we have learned to recognize in the case of chorioidal tumors (see page 333). In the first stage, inflammatory symptoms are absent; the disease manifests itself only in the light-colored reflex and the blinding of the eye. The second stage is characterized by the development of increase of tension. The eye becomes irritated and painful, and the child begins to suffer. Afterward, in the third stage, the tumor grows out from the eye, first of all along the optic nerve, then in other places as well, particularly through the cornea or in its vicinity. The eye at length is transformed into a large, ulcerated, painful, and readily bleeding mass, which fills the whole orbit and projects out between the lids. In the fourth stage the tumor spreads to remote organs. Through transfer by continuity it passes along the optic nerve to the brain; and by way of metastasis it spreads to the neighboring lymphatic glands and also to the most various internal organs (most frequently to the liver). The children finally die either from exhaustion or from the spread of the neoplasm to vital organs, especially the brain. The course of the disease from its very outset to its fatal termination usually extends over several years.

Glioma, as a rule, attacks only one eye, although numerous bilateral cases have also been seen. It is found in children only, and mostly before the fifth year of life. Often it is observed at such an early age that its beginning must be dated back to foetal life. This, as well as the fact that several children in the same family are one after
another affected with glioma, would argue that the cause of it is in many cases to be looked for in a congenital failure of development.

_Treatment_ consists in the promptest possible removal of the neoplasm. So long as the growth is still confined to the eyeball, it is sufficient to enucleate the latter, in doing which we take the precaution to divide the optic nerve as far back as possible. In such cases we may hope for a permanent cure. When the tumor has perforated the eyeball and is growing outside of it, but is still confined to the orbit, complete removal of the neoplasm can still be attained through exenteration of the orbit (see § 166). But in this case rapid recurrences both in loco and in the neighboring lymphatic glands seldom fail to occur. Nevertheless, even in such cases the operation is indicated, because by the removal of the local focus of disease the child is spared much suffering.

From what has been said, the _prognosis_ is favorable only when the operation is performed very early.

_Glioma retinae_ (Virchow), in contradistinction to intra-ocular sarcomata, is never pigmented. It develops ordinarily from the two granule layers of the retina and mainly from the inner granule layer. The tumor is composed of small cells and a very soft basement substance (Fig. 148). The cells consist of a nucleus surrounded by a very scanty amount of protoplasin which in many spots possesses minute processes. According to the varying character of these processes the cells are to be classed partly as glia cells, partly as ganglion cells. Usually the tumor cells are aggregated in specially dense masses along the wide blood-vessels, which thus get to have cloaklike envelopes; and the entire tumor, consequently, exhibits a tubular structure. In many cases there are also found long cylindrical cells, which are undoubtedly to be regarded as constituents of the external layers of the retina, or the neuro-epitheliolium of Schwalbe (Flexner, Wintersteiner). These are arranged in groups, and generally in such a way as to inclose a free cavity into which their extremities, representing the outer members of the rods and cones, project. Hence, if we take these structures into account, it would be more correct to give glioma the name of neuro-epithelioma of the retina. The process of overgrowth of the retina leads to its irregular thickening, and consequently to folding and detachment of it; but in many
cases, as Fig. 146 shows, the detachment may for a long time remain confined to a small circumscribed spot. Neoplasms germs pass from the degenerated retina both into the chorioid and into the vitreous, where they subsequently develop into small independent nodules (k, Fig. 146).

That a congenital morbid disposition very often lies at the bottom of glioma is shown by the following interesting observation which I once made: A mother brought her four-year-old son into the clinic with a glioma of the right eye. According to her statement, this had only existed for a year, but it was already far advanced; the eyeball, as a whole, was very much enlarged, and the pseudoplasm was growing out from it into the orbit. The entire orbital contents were removed, but nevertheless the child died half a year afterward with brain symptoms, while at the same time a new tumor could be felt in the orbit. Some months afterward the mother brought the next child, a two-year-old boy, with the statement that he had been blind in the right eye since birth, although it was only recently that she had noticed an enlargement of the eye. This child likewise had a glioma of the right eye, and also died of a recurrence about a year after the operation had been performed. Soon afterward the woman brought me her last child, then only a few months old, full of fear lest this one, too, might be the victim of the same frightful disease, because she had noticed in its left eye an appearance varying from the usual. This child, however, did not have a glioma, but a typical, congenital coloboma of the iris downward as well as a coloboma of the chorioid.

The features of amaurotic cat’s eye may be produced not only by glioma, but also by exudate into the cavity of the vitreous. Such cases are often hard to distinguish from glioma, and are hence designated by the name of pseudoglioma (see page 850).

INJURIES OF THE RETINA.—Ruptures of the retina occur in consequence of contusions of the eyeball, even without perforation of the remaining tunic of the eyeball; but these cases of isolated laceration of the retina are extremely rare. The retina is much harder to tear than the chorioid, since in ruptures of the latter the retina is generally found to be uninjured. Less infrequent are the spontaneous ruptures of the retina in detachment of the latter.
A transient alteration of the retina after contusion of the eyeball is the *commotio retina*, described by Berlin. This is characterized by a milk-white cloudiness of the retina, which occupies either the vicinity of the papilla or that part of the retina which corresponds to the point at which the effect of the blow was felt. In many cases also the spot diametrically opposite is found to be clouded. At the same time a moderate reduction of central vision and often also a contraction of the field of vision are present. The clouding of the retina disappears after some days, and with it also disappears the disturbance of vision that it produced. Probably the condition in question is one of oedema of the retina.
CHAPTER XI.

DISEASES OF THE OPTIC NERVE.

ANATOMY.

100. The optic nerve (nervus opticus) collects its fibers from the retina, and passes from the eye through the orbit and through the optic foramen into the cavity of the skull. Hence, three divisions are distinguished in the optic nerve: (a) The intra-ocular termination, which is found within the sclera, (b) the orbital portion from the eyeball to the optic foramen, and (c) the intra-cranial portion from the optic foramen to the chiasm.

(a) Intra-ocular Division of the Optic Nerve.—To get from the retina to the exterior of the eye, the optic nerve must pierce the chorioid and sclera. The spot where this takes place lies a little to the inner side of the posterior pole of the eye (Fig. 73). The opening in the sclera through which the optic nerve leaves the eye is called the foramen sclerae, and really consists of a short canal; the segment of the optic nerve lodged in this is its intra-scleral portion. Accurately speaking, a complete aperture for the optic nerve exists neither in the sclera nor in the chorioid, but the two membranes conduct themselves as follows: The external lamellae of the sclera, which occupy about two thirds of its thickness (Fig. 149, 50), are not perforated by the optic nerve at all, but are reflected backward upon it to form its sheaths. The innermost lamellae (51, Fig. 149) of the sclera, on the contrary, stretch over the foramen sclerae, and are perforated by numerous openings designed for the passage of the separate funiculi of the optic nerve. Consequently, the optic nerve in this spot is traversed by numerous septa of tough connective tissue. The chorioid, too (ch, Fig. 149), stretches in a modified form transversely through the optic nerve. Together with the inner layers of the sclera it forms the lamina cribrosa, which bridges over the foramen sclerae, and is so called because it is everywhere perforated by the funiculi of the optic nerve.

If we look at the optic-nerve entrance in longitudinal section, we see that at its point of entrance into the sclera it is narrowed down in a conical shape (Fig. 149), so that the spot corresponding to the lamina cribrosa is the slenderest portion of the optic nerve. This narrowing of the optic nerve appears still more marked when we consider that at
the site of the lamina cribrosa the connective-tissue septa are particularly numerous and of large size. The space left for the nervous constituents of the optic nerve is hence very considerably reduced at this

![Diagram of the head of the optic nerve](image)

**FIG. 149.—HEAD OF THE OPTIC NERVE.**

A, Ophthalmoscopic View.—Somewhat to the inner side of the center of the papilla the central artery rises from below, and to the temporal side of it rises the central vein. At the temporal side of the latter lies the small physiological excavation with the gray stippling of the lamina cribrosa. The papilla is encircled by the light scleral ring (between c and d), and the dark choroidal ring at d.

B, Longitudinal Section through the Head of the Optic Nerve. Magnified 14 x 1.—The trunk of the nerve up to the lamina cribrosa consists of medullated nerve fibers, n. The clear interspaces, sa, separating them represent the septa composed of connective tissue. The nerve trunk is enveloped by the sheath of pia mater, p, the arachnoid sheath, or, and the sheath of dura mater, du. There is a free interspace remaining between the sheaths, consisting of the subdural space, ei, and the subarachnoid space, sa. Both spaces have a blind ending in the sclera at e. The sheath of dura mater passes into the external layers, sa, of the sclera, the sheath of pia mater into the internal layers, ei, which latter extend as the lamina cribrosa transversely through the optic nerve. The nerve is represented in front of the lamina as of light color, because here it consists of non-medullated and hence transparent nerve fibers. The optic nerve spreads out upon the retina, r, in such a way that in its center there is produced a funnel-shaped depression, the vascular funnel, b, on whose inner wall the central artery, a, and the central vein, v, ascend. The choroid, ch, shows a transverse section of its numerous blood-vessels, and toward the retina a dark line, the pigment epithelium: next the margin of the foramen for the optic nerve and corresponding to the situation of the choroidal ring, the choroid is more darkly pigmented. ci is a posterior short ciliary artery which reaches the choroid through the sclera.

spot. How, then, is it possible that the bundles of nerve fibers can go through this narrow passage? A glance at the longitudinal section of a fresh optic nerve gives the explanation of this. Such a section shows the nerve to be white as far as the lamina cribrosa, while in front of it
it is of a translucent gray. The white hue of the optic nerve in its extra-ocular portion depends upon the fact that the optic-nerve fibers here are medullated, and therefore opaque (in Fig. 149 they appear black, in consequence of being stained with haematoxylin, after Weigert's method). In their passage through the lamina cribrosa the nerve fibers lose their medulla, and consequently become transparent; hence, the translucent, gray appearance of the head of the optic nerve. With the loss of the medulla the diameter of each individual nerve fiber diminishes very considerably, so that their aggregate bulk finds room in the narrow foramina of the lamina cribrosa.

The lamina cribrosa plays an important part in pathological processes. In the first place, it is the weakest spot of all the tunics of the eye, being here constituted only by the innermost layers of the sclera (together with a few lamellas of the choroid), which, moreover, are perforated by the foramina for the bundles of fibers of the optic nerve. Hence, in case of increase of tension, this spot is the first to give way. In the normal eye the lamina cribrosa runs straight, or with but a slight backward curvature, across through the optic nerve. With increase of tension, it recedes more and more, and thus forms the glaucomatous excavation. A second reason for the production of pathological changes lies in the fact that within the foramen sclerae, and particularly within the limits of the lamina cribrosa, the optic nerve is tightly inclosed between firm, fibrous walls, a thing that occurs at no other spot in its course. Here, therefore, when swelling of the optic nerve takes place, constriction and strangulation of it may readily occur. The foramen sclerae, accordingly, in this case play a part like that which the fibrous ring of the hernial orifice does for the viscera lying in front of it.

That portion of the optic nerve situated in front of the lamina cribrosa in the interior of the eye itself is the head of the optic nerve (papilla nervi optici). It is the part of the optic nerve which even during life can be seen by means of the ophthalmoscope. The name papilla was selected by the older authors under the erroneous impression that the head of the optic nerve represented a projection into the interior of the eye. This, however, is only the case in pathological conditions—e. g., in inflammatory swelling of the papilla. In the normal state, the latter is perfectly flat, so as to lie in the same plane as the retina, or it actually has a central depression (b, Fig. 149). The way in which this latter is produced is that the fibers of the optic nerve begin to separate from each other, not at the level of the retina but below it, so that a funnel-shaped depression is produced from which emerge the central vessels of the optic nerve. This is the normal vascular funnel, which quite often expands into a pretty extensive depression, the physiological excavation.
(b) Orbital Division of the Optic Nerve.

The optic nerve on its way from the eye to the foramen opticum makes an S-shaped bend (O, Fig. 73). Owing to this, the eyeball can move freely within wide limits; for the movements of the eye take place about a center of rotation which lies nearly in the center of the eyeball. Hence, when the cornea is turned toward one side, the posterior pole of the eye goes about as far to the opposite side. And so for all excursions of the cornea there are corresponding ones, as large in extent but in the opposite direction, of the posterior pole, for which reason the latter must be freely movable. If now the optic nerve were stretched in a straight line between the eyeball and the optic foramen, it would keep the posterior segment of the eyeball fast in its place, and hinder the movements of the whole eye. We see a confirmation of this in those cases in which the optic nerve is put on the stretch by protrusion of the eyeball from the orbit. The more pronounced the exophthalmus, the greater is the restriction of the motility of the eyeball. In the normal state, the optic nerve, on account of its S-shaped curvature, is longer than the distance between the eye and the optic foramen, so that it can undergo extension and thus follow the changes of place of the posterior pole of the eye.

The orbital portion of the optic nerve consists of the trunk of the nerve and the sheaths enveloping it.

(a) The trunk of the optic nerve is composed of nerve fibers and connective tissue. The nerve fibers vary greatly in caliber and are extremely numerous, their amount being estimated at half a million or more. Most of them are centripetal, but there are also some centrifugal fibers in the optic nerve. Lying between the fibers as a supporting and insulating substance is the neuroglia tissue. The nerve fibers are combined into bundles (b, Fig. 150) which run parallel to one another, and anastomose together by a mutual interchange of fibers. Between the bundles lies the connective tissue which furnishes the supporting framework for the entire optic nerve. It forms thick or thin septa which are everywhere connected and traverse the entire optic nerve (s, Fig. 150). Between the outer surface of a nerve bundle and the inner surface of the septa is found a space which acts as a lymph cavity.

(b) The sheaths of the optic nerve are three—an internal, a middle, and an external one. As these originate from the three enveloping membranes of the brain, they are designated by the names of the pial, arachnoid, and dural sheaths (Axel Key and Retzius). The inner or pial sheath (p, Figs. 149 and 150) closely embraces the trunk of the optic nerve. From it the bands of connective tissue, which form the septa, pass into the interior of the nerve; and with them pass the blood-vessels. The external or dural sheath (du, Figs. 149 and 150) is much thicker than the internal sheath, and surrounds the nerve loosely. By
reason of this, a pretty broad space—the intervaginal space—is left between it and the internal sheath. The middle or arachnoid sheath (ar) is a very delicate pellicle which for the most part is intimately attached to the dural sheath. It is united by manifold trabeculae of connective tissue to the external and internal sheaths. It divides the intervaginal space into two portions, the subdural (sd) and subarachnoid (sa) spaces, which communicate with the cerebral spaces of the same names. These appear particularly prominent in Fig. 156, where they are pathologically dilated by an accumulation of fluid. The surfaces of the sheaths

![Diagram](image)

**Fig. 156.** Cross Section of the Optic Nerve, with Atrophy of the Papillo-macular Bundle (Section made 4 mm. behind the Eyeball). Magnified 15 x 1.

The optic nerve is enveloped in the dural sheath, du, the arachnoid sheath, or, and the pial sheath, p. Between the first and second is found the subdural space, sd; between the second and third, the subarachnoid space, sa. On the outer and upper side of the center of the section is seen the central artery, ca; and more centrally is seen the central vein. These are surrounded by the cross sections of the nerve bundles, b, which are separated from each other by the septa, s, of connective tissue. At the temporal side, a wedge-shaped segment, pm, is distinguished from the rest of the cross section of the nerve by its paler color. This represents the atrophic papillo-macular bundle. Within the confines of it the cross sections of the nerve bundles are narrower and the septa of connective tissue are correspondingly broader.

that are turned toward these spaces are provided with an endothelial coating, so that these spaces are lined completely with endothelium, and must be regarded as lymph channels (Schwalbe).

Upon the eyeball the three sheaths become united to the sclera. The external and middle sheaths pass into the outer two thirds of the sclera (Fig. 149, so); the inner sheath goes to the innermost lamellae of the sclera (Fig. 149, si), which form the lamina cribrosa, and it is also connected with the choroid. The intervaginal space has a blind ending situated within the sclera (Fig. 149, e). Posteriorly the three sheaths are continuous with the corresponding membranes of the brain.
DISEASES OF THE OPTIC NERVE.

The blood-vessels pass from the pial sheath into the optic nerve. In addition, in the anterior portion of the orbital division there are found the central vessels of the optic nerve. The central artery is a branch of the ophthalmic artery; the central vein empties into the superior ophthalmic vein or directly into the cavernous sinus. Both vessels enter the optic nerve at a distance of ten to twenty millimetres behind the eyeball (Fig. 73, e) and run in the axis of the nerve as far as the papilla, where they divide into the retinal vessels.

(c) Intracranial Section of the Optic Nerve.

The optic nerve leaves the orbit through the optic foramen. The latter really forms a short bony canal (canalis opticus), which contains besides the optic nerve only the ophthalmic artery (lying on the inner side of the optic nerve). Owing to the fact that the optic nerve within the canalis opticus is tightly inclosed by the bony walls of the latter, this section, just like the intra-scleral portion of the optic nerve, has a particular predisposition for morbid affections. Such affections consist in inflammation, in compression of the nerve through thickening of the bone, and in its contusion and laceration in case of fracture of the bony wall of the canal.

The intracranial portion of the optic nerve extends from the optic foramen to the chiasm; is therefore short (scarcely one centimetre). It is flattened and is enveloped only by the pial sheath, since the other two sheaths after passing through the optic foramen become united with the two outer membranes of the brain.

Continuation of the Fibers of the Optic Nerve to the Cerebral Cortex.

The two optic nerves join together in the chiasm, where they form an intimate anastomosis, and then on the posterior side of the chiasm make their appearance again as the optic tracts. The chiasm lies in the optic groove of the body of the sphenoid bone, directly in front of the infundibulum. Starting from the chiasm the optic tracts pass backward, diverging as they go, and, winding about the crus cerebri, arrive at the primary subcortical optic centers, the external geniculate bodies, the anterior corpora quadrigemina and the thalami optici. Of the fibers that pass from these points to the various parts of the brain two are of particular importance—the fibers (Fig. 151, m) which go to the nuclei of the oculomotorius, K, and the fibers, S, which pass to the cerebral cortex, B. The former regulate the movements of the ocular muscles and the reflex action of the pupils; the latter effect the perception of the object seen. The fibers of the optic tract which are destined for the cerebral cortex terminate in the cortical ganglion cells, within a district which is known as the optical area of the cortex, or the visual sphere (Munk), and which corresponds mainly to the medial surface of the
cuneus and to the parts surrounding the calcarine fissure. Within the ganglion cells the excitation set up in the optic-nerve fibers is transformed into sensation (sensory perception), so that it is here that the object seen comes within the domain of consciousness. In the ganglion cells which have once been subjected to excitation permanent changes remain (memories), which become so intense, particularly upon a pretty frequent repetition of the same excitation, that by means of them we are able to reproduce in our consciousness an object formerly seen (optical memory-pictures). Upon destruction of the cerebral cortex, excitations of the optic-nerve fibers either fail altogether to become objects of consciousness or on account of demolition of the optic memory-pictures they no longer evoke the recollection of anything already known. Objects are seen, to be sure, but are not recognized. These cases are known as cortical or psychical blindness.

We have still to study more exactly the course of the fibers of the optic nerve in the chiasm itself. It is not a complete but only a partial decussation (semi-decussation) of the fibers that takes place here. In order to understand the arrangement of the fibers it is best to start from the eyeball in making our examination. Let us suppose a vertical plane (V, Fig. 151) to be drawn through the retina and visual line of the right eye. This will pass through the fovea centralis, f, and will divide the retina into two halves, a right or temporal half (r) and a left or nasal half (l). The fibers (indicated by dotted lines in the figure) which spring from the right half pass backward into the optic nerve (O), and go, keeping all the while upon the right side, to the right optic tract (T). The sum of these fibers is hence known as the non-decussating bundle. But the fibers which proceed from the left half (l) of the retina of the right eye pass over to the left side in the chiasm, so as to be found in the left optic tract (Tl). They form the decussating bundle. The like is true of the fibers belonging to the left eye. They all lie together in the left optic nerve (Ol), and become separated in the chiasm; the fibers coming from the left half of the retina pass into the left optic tract, those from the right half of the retina into the right optic tract. Each optic tract therefore contains fibers from both eyes. The right optic tract consists of the non-decussating fibers from the right half of the retina of the right eye and the decussating fibers from the right half of the retina of the left eye. Accordingly, the right halves of both retinæ (r and rl), and thus the left halves of both visual fields (Gl), belong to the right tract. Hence, the perception of all objects situated to the left of the median line is conveyed along the right optic tract to the cortex of the right hemisphere; the latter is thus designed for the apprehension of the left half of the external world. The converse is true of the left hemisphere. Thus the nerve subserving the sense of sight is in harmony with other nerves, all of which terminate in the hemisphere of the opposite side. This is the
case both with centripetal and centrifugal nerves. What we touch with our left hand becomes an object of consciousness through excita-

**Fig. 151. — Schematic Representation of the Optic Tracts.**

The field of vision common to the two eyes is composed of a right half, $G$, and a left half, $G_1$. The former corresponds to the left halves, $I$ and $I_1$, of the two retina, the latter to the right halves, $r$ and $r_1$. The boundary between the two halves of the retina is formed by the vertical meridian. This passes through the foramen centralis, $f$, in which the visual lines drawn from the point of fixation, $F$, impinge upon the retina. The optic-nerve fibers arising from the right halves, $r$ and $r_1$, of the two retina (indicated by the dotted line) all pass into the right optic tract, $T_1$, while the fibers belonging to the left halves, $I$ and $I_1$, of the two retina pass into the left optic tract, $T$. The fibers of each optic tract for the most part pass to the cortex of the occipital lobe, $b$, forming Gratiolet's optic radiation, $S$; the smaller portion of them, $m$, goes to the oculo-motor nucleus, $K$. This consists of a series of partial nuclei, the most anterior of which sends fibers, $F$, to the pupil (sphincter iris); the next one sends fibers, $A$, to the muscle of accommodation; and the third sends fibers, $C$, to the converging muscle (internal rectus, $i$). All three bundles of fibers run to the eye in the trunk of the oculo-motor nerve, $Oe$. Division of the optic tract at $g g$ or at $e e$ produces right hemiopia; and in the former case there would be no reaction to light on illuminating the left half of either retina. Division of the chiasma at $s s$ produces temporal hemiopia. Division of the fibers, $m$, abolishes the reaction of the pupil to light, but leaves the sight and also the associated contraction of the pupil in accommodation and convergence unaffected.
tion of the cortex of the right side of the cerebrum; and destruction of a certain portion of the latter entails a loss of the voluntary movements of the left arm. The sense of sight appears to form an exception to this rule, since each eye is connected with both hemispheres. This exception ceases to exist if we distribute the visual sensations in accordance with the halves of the field of vision to which they correspond. *Everything which the observer sees on the left side of him becomes an object of consciousness through excitation of the cortex of the right occipital region, and vice versa.*

The fact of semi-decussation affords the explanation of an important variety of visual disturbance, *hemiopia.* Let us suppose that the continuity of the left optic tract (Fig. 151, T_l) is interrupted at any spot—e.g., at g g. In this case the left halves of both retinae (l and l_r) would be cut off from their connection with the cortex of the left hemisphere. The right half, G_r, of the fields of vision of the two eyes would be wanting, so that only the left halves of all fixed objects would be seen. In like manner, the left halves of both visual fields would be lost upon destruction of the right optic tract. Hemianopia thus originating is called *homonymous* or lateral (Fig. 152). The same thing, of course,

![Diagram](image)

**Fig. 152.—Homonymous Hemiopia. (After Schweigger.)**
The areas which have been left white correspond to the left halves of the visual fields, R and L, of the right and left eye, which are still intact: t, temporal; n, nasal side.

would also happen if the destruction did not affect the optic tract itself, but a spot placed higher up (e.g., e e)—in fact, even the cerebral cortex itself. Homonymous hemiopia, therefore, is always indicative of a lesion which lies to the central side of the chiasm and upon the same side as the blind half of the retinae.

If the chiasm is divided by a sagittal section (s s, Fig. 151) into a right and left half, all the decussating fibers are severed, while the non-decussating bundles remain intact. Since the decussating bundle supply the inner halves (l and r_l) of the two retinae, these portions of the retina

* From *μέσα*, half, and *άφιξις*, vision. By many authors the terms hemianopia or hemianopsia, formed by the interposition of an á privative, are employed.
would be thrown out of use, and thus the outer (temporal) half of the two visual fields would be suppressed. This form of visual disturbance is therefore called *temporal* hemiopia (Fig. 153). It occurs, for instance, when as the result of an inflammation or a neoplasm the chiasm suffers from a lesion situated mainly in its mesial line. The same thing might also be caused by a lesion existing in the anterior or posterior angle of the chiasm, where decussating fibers alone are situated.

The hypothesis of a *semi-decussion* of the optic nerves was made by as remote an observer as Newton, who was led to it by the observation of certain cases of hemiopia. In fact, hemiopia can not be adequately explained in any other way than upon the assumption of a semi-decussion. This assumption, therefore, passed for a well-established fact until it was attacked upon the basis of anatomical investigations (by Biesiadecki, Mandelstamm, and above all by Michel). In man the fibers of the optic nerve, which in some parts are very minute, are so intimately interlaced that it is not possible to follow them with certainty on their way through the chiasm. Accordingly, observers turned for information to comparative anatomy, which presents us in animals with much simpler conditions. The simplest case occurs in fishes, in which the two optic nerves either merely cross over each other (in the bony fishes) or in which one optic nerve passes through a slit in the other (in the herring). In the amphibia and birds the conditions are more complicated, but are still always easy to make out. In them each optic nerve divides into a number of flat bundles, which all pass over to the other side, interlacing with the bundles of the opposite side as they cross, in the same fashion as the intertwined fingers of two hands when clasped together. There is no doubt, therefore, that in the lower vertebrates a complete decussion of the optic nerves exists; the only mistake that has been made is in concluding from this fact that we are justified in assuming the same condition to hold good for the higher vertebrates also.

Guddden has the credit of having definitely demonstrated by his experiments the true state of the case in the higher vertebrates. He employed for this purpose the method of an artificially induced atrophy. When a portion of the body is removed, the nerve fibers which run to it become atrophied (ascending atrophy). This atrophy rises higher and higher toward the brain, the younger
the person is and the longer the time that has elapsed since the removal of the portion of the body in question. So also atrophy of the trunk of a nerve down to its termination sets in when the nerve is cut off from its connection with its central organ by the division of its root (descending atrophy). Methods based upon both of these principles were applied by Gudden to the organ of vision, insomuch as he performed either enucleation of one eye or division of one optic tract, and studied the course of the consequent atrophy. If the right eye is enucleated in a newborn puppy, and some time afterward the animal is killed and examined, the right optic nerve is found to be completely atrophied; it consists of a thin strand of connective tissue without a trace of nerve fibers. If complete decussation of the optic nerves took place in the chiasm, this complete atrophy would necessarily be continued into the optic tract lying on the opposite or left side, while the optic tract of the right side would be perfectly intact. This, however, is not the case; in the left optic tract there is still a slender bundle of nerve fibers which has escaped atrophy. This can only originate from the left optic nerve, and must, accordingly, be a non-decussating bundle. So also in the apparently normal right optic tract there is found a thin bundle of atrophic fibers which must spring from the right optic nerve, and which corresponds to the non-decussating bundle of the right side. Hence, in the dog a semi-decussation does exist, although the decussating is much more pronounced than the non-decussating bundle. In rabbits this disproportion is still more marked. In them the non-decussating bundle is so attenuated that at first it escaped Gudden’s notice altogether. On the other hand, in man the non-decussating bundle approximates the decussating one in size, the former containing about two fifths, the latter three fifths of all the optic-nerve fibers. In default of experiments, accident rendered the determination of this relation possible in man.* Opportunities were had of holding autopsies on men of advanced age who had lost one eye in childhood. In such subjects it was found that the complete atrophy of the single optic nerve was distributed between the two optic tracts in such a way that the tract of the opposite side was always somewhat more atrophied than that of the same side (Fig. 154). Hence the following statement may be made of the facts of the case: In the lower vertebrates complete decussation of the optic nerves takes place; in many of the higher vertebrates a partial decussation exists, the partial character of which is the more pronounced the nearer akin the animal is to man.

We comprehend the reason of the foregoing fact if we start from the law that the optical perception of all objects which are situated on the right side of the body is effected by means of the left cerebral hemisphere, and vice versa. In the lower vertebrates, and in fact even in most birds and mammals, the eyes are placed so much on one side of the head that the animal is unable to see any point whatever with both eyes at once. The fields of vision of the two eyes are perfectly distinct. The right eye sees nothing but those objects which are situated on the animal’s right side; accordingly, the fibers of the optic nerve originating from this eye must all pass to the left hemisphere, for which reason complete decussation of the optic nerves takes place. In the higher vertebrates—e.g., in the dog—we begin to find the eyes placed farther forward. Objects

[*It is interesting to learn that an observation of this sort in a case of ascending degeneration, after phthisis bulbii, led Vesalius to argue against the existence of a complete decussation in man.—D.]
DISEASES OF THE OPTIC NERVE.

straight in front of them situated in and close to the median line can therefore be seen by both eyes at once, so that in this locality the fields of vision of the two eyes partially overlap, and there exists a small common (binocular) field of vision. The right eye, to be sure, is mainly designed for the vision of objects situated on the right side of the body, but it also, by means of the extreme temporal portion of its retina, presides over a small area to the left of the median line. The optic-nerve fibers springing from this portion of the retina must go to the cortex of the right cerebral hemisphere, because they transmit the impressions of objects lying upon the left side of the body. These fibers constitute the non-decussating bundle; and this latter is small, because the area of retina corresponding to it is of but slight extent.

Lastly, in man both eyes lie in the frontal plane, so that almost all objects are seen with both at the same time. Accordingly, the visual fields of the two eyes are to a large extent coincident, so that there is formed a large binocular field of vision (the area left white in Fig. 155). Each eye sees objects both upon the right and upon the left side of the body, for which reason one part of the fibers of the optic nerve belonging to it go to the right, another part to the left hemisphere. To be sure, the visual field of each eye extends farther to the temporal than to the nasal side (see page 31 and Fig. 19). Hence, it follows that the nasal half of the retina is larger than the temporal, and as the fibers which spring from the former pass over in the chiasm to the opposite side, the number of decussating fibers in the optic nerve is necessarily somewhat larger even in man than the number of those which do not decussate.

The way in which the optic nerves decussate, therefore, depends upon the relation of the fields of vision of the two eyes. If the two fields are completely separated, total decussation exists. If there is a binocular field of vision, semi-
decussion takes place, and this is the more pronounced the larger the binocular field of vision.

Hemipipa in the more extended sense of the term exists not only when an entire half of each visual field is wanting, but also when there is a deficiency which, though smaller, occupies a symmetrical position in the visual fields of the two eyes (incomplete hemipipa, Wilbrand). In this case, too, there is a lesion of the fibers of the optic nerve above the chiasm, only now simply a portion instead of all the fibers of one tract (or of its continuation to the cortex) is destroyed. In typical hemipipa it very often happens that the field of vision is not divided exactly in half, the vertical border of the field bending out a little at the site of the point of fixation (Fig. 152), so that the portion of the field of vision corresponding to the macula lutea is preserved intact.

How are the nerve fibers coming from the different parts of the retina situated within the trunk of the optic nerve from the eye to the chiasm? Our knowledge in regard to this problem dates from very recent times, and has been worked out from the examination of pathological cases—e.g., in a case of optic-nerve disease a deficiency in the visual field is made out during life; upon autopsy a lesion is found in a certain portion of the trunk of the nerve. We are then justified in assuming the bundle of nerve fibers which give evidence of lesion appertain to that region of the retina which corresponds to the defect in the field of vision.

The fibers of the optic nerve upon entering the interior of the eye spread out like a sheaf to form the most internal (most anterior) layer of the retina. The fibers which are situated along the margin of the papilla terminate in the vicinity of the latter. The nearer the fibers lie to the axis of the optic nerve the greater is the distance that they have to traverse in the retina in order to reach the level of the next layer of the retina—the ganglion-cell layer—with which they are continuous. Accordingly, the following may be enunciated as representing the state of the case: Those fibers which come from the peripheral portions of the retina lie in the center of the optic nerve, while those which rise from the central regions of the retina lie along the margin of the nerve. It is deserving of mention that the bundles of nerve fibers situated nearest the margin of the nerve—i.e., directly beneath the pial sheath—regularly undergo atrophy in advanced life. The same is true of the bundles of nerve fibers adjoining the central vessels. Those fibers which supply the retina from the macula lutea to the papilla (the so-called papillo-macular region) take on a special form of arrangement. In that division of the optic nerve which adjoins the eyeball, they
DISEASES OF THE OPTIC NERVE.

are aggregated in the form of a sector whose apex is directed toward the center of the nerve, while its base corresponds to the outer margin of the latter (the paler-looking bundle, \( pm \), in Fig. 150). Farther back the arrangement changes, so that these fibers get to lie in the axis of the nerve. The sector occupied by the papillo-macular bundle amounts to about one third of the entire cross section of the optic nerve. This is very large, when we consider that the corresponding region of the retina constitutes but a small fraction of the entire retinal surface (being commensurate with the central scotoma shown in Fig. 158). This relation, in fact, is in harmony with the predominant importance of this region of the retina. It gives support to the hypothesis that each one of the terminal elements in the macula lutea is connected with the brain by a nerve fiber of its own, so that excitations of this element are conveyed to the brain, isolated from others, while in the peripheral portions of the retina probably a number of terminal elements are continuous with one common fiber.

Our knowledge in regard to the course of the optic fibers can be applied practically, inasmuch as it enables us to determine precisely the situation of a lesion in the optic tract. In this instance we are dealing with cases in which a defect exists in the visual field without the ophthalmoscope showing any disease of the deep tunics of the eye, so that the defect must be referred to some break in the conduction. In all cases in which the defect in the visual field is contained in one eye only or in which, while there are defects in both eyes, they are not symmetrically situated, the lesion must be seated in the optic nerve itself—that is, in front of the chiasm—since all interruptions on the farther side of the chiasm result in the production of symmetrical defects in the visual fields. For the same reason complete blindness of one eye, with retention of good sight in the other, must be referred to an affection in front of the chiasm. Central scotomata correspond to an affection of the papillo-macular bundle. In temporal hemiopia the lesion is seated in the chiasm itself. Homonymous hemiopia, or less extensive but still homonymous defects in the field of vision, depend upon a disturbance above the chiasm. If, in addition, there is loss of the reflex movement of the pupil when light is thrown upon the blinded portion of the retina (Wernicke's hemiopic pupillary reaction), the break in the conduction must lie below the spot at which the fibers to the oculo-motor nucleus are given off—i.e., they must lie in the optic tract itself; but, if the pupillary light reflex is intact, the lesion is to be located higher up—e.g., in the optic thalamus, in the internal capsule, or even in the cortex of the brain itself.

I. INFLAMMATION OF THE OPTIC NERVE.

101. Inflammation of the optic nerve (neuritis optica) may make its appearance at any spot whatever of the nerve. Of course, it is directly visible in the living eye only when the optic papilla, which is accessible to ophthalmoscopic examination, is involved. Such cases we call neuritis intra-ocularis or, on account of the changes in the papilla, papillitis (Leber). From them are to be distinguished those cases in which the inflammation is located in a portion of the optic nerve which is situated farther back (neuritis retrobulbaris). Since in this case the focus of inflammation can not be seen, its existence must be inferred from the other symptoms.

31
(a) Neuritis Intra-ocularis.

Symptoms and Course.—Neuritis of the papilla of the optic nerve manifests itself externally by no signs except that the pupils are dilated, to correspond with the diminution or absolute abrogation of the sight. Ophthalmoscopic examination shows in the papilla the following evidences of inflammation (Fig. 156 A): The color of the papilla is altered, being either white, gray, or reddish, and it is often mottled with white spots or with extravasations of blood (h). The outlines of the papilla become indistinguishable, the exudation extending beyond them into the adjoining retina; hence, too, the papilla appears of greater diameter than normal. The blood-vessels of the retina are altered, the arteries (a a) being thinner, while the veins (v v) are distended, in consequence of the compression of the vessels by the swollen optic nerve. The veins of the retina become exceedingly tortuous, especially where they pass down upon the retina over the edge of the swollen papilla; and wherever their coils dip pretty deeply into the clouded tissues they look hazy, or seem to suffer an actual interruption in their course. The most important symptom is the swelling of the papilla, shown by its projecting above the surrounding retina (Figs. 156 B and 157).

The subjective symptoms consist in a disturbance of vision. This in most cases is very considerable; when the neuritis is severe, complete blindness is usually present. Nevertheless, cases of marked swelling associated with normal sight do also occur (in choked disk). A characteristic sign of many cases of neuritis are sudden and momentary obscurations of sight, repeated many times a day. Contraction of the field of vision is frequently found, sometimes under the form of hemiopia.

Neuritis runs a chronic course. It takes months for the inflammatory signs to disappear, and then they are replaced by the symptoms of atrophy. The papilla grows paler, its outlines become once more clearly visible, and the vessels upon the papilla and in the retina are narrowed. This atrophy (neuritic atrophy, as it is called) is the greater the more intense the preceding neuritis; and the degree of the atrophy determines whether the vision grows better again after the inflammation has run its course, or remains permanently enfeebled, or is annihilated altogether. In any case, the prognosis of neuritis is serious.

Etiology.—Like the rest of the intra-ocular affections, neuritis is but rarely a local lesion; on the contrary, it usually originates in some deep-seated affection, and for this reason is almost always bilateral in its development. The diagnosis of neuritis is therefore of importance, not only for the oculist, but also for every physician engaged in the treatment of internal disorders, as it affords him aid that is indispensable for the diagnosis of many diseases.
The causes of neuritis are:

1. **Brain Diseases.**—These are by far the most frequent cause of optic neuritis. The brain lesion leads to disease of the optic nerve,

![Diagram of optic neuritis](image_url)

**Fig. 126.—Optic Neuritis (Choked Disk).** Magnified 14 x 1.

- **A. Ophthalmoscopic View of the Papilla.**—The papilla appears considerably enlarged and without distinct outline. It is of a grayish-white color, clouded, and covered with radiating striæ which extend into the adjoining retina. The retinal arteries, $a$, are contracted, the retinal veins, $v$, are exceedingly dilated and tortuous, and both are obscured in places. In the retina, adjoining the papilla, are found, radially disposed, striate, red spots (hemorrhages), $h$.

- **B. Longitudinal Section through the Head of the Optic Nerve.**—This is greatly swollen, so as to project above the level of the adjacent retina and form at the base an annular tumefaction, the neuritic swelling, $s$. There is a cellular infiltration, particularly along the minute blood-vessels, $c$, for which reason the latter appear specially prominent. The retina, $r$, is thrown into folds about the circumference of the papilla, in consequence of the swelling of the latter; the choroid, $ch$, and the sclera, $s$, are normal, as is the optic nerve posterior to the lamina cribrosa. Here there exists simply a dilatation of the intervascular space, $i$, through accumulation of fluid, by virtue of which the greatly folded arachnoid sheath, $ar$, becomes especially prominent: $du$, dural sheath; $p$, pial sheath.

* Compare with this the normal optic nerve in Fig. 149, page 469.
either through producing engorgement or through transfer of inflammation. (a) _Engorgement_ is chiefly of moment in those diseases of the brain which lead to an elevation of the pressure within the cranial cavity—i.e., most frequently in tumors of the brain and in hydrocephalus. A brain tumor, as a result of its growth, arrogates constantly more and more space to itself within the cranial cavity. Hence, as the skull is unyielding, an increase in the intracranial pressure arises, by virtue of which a portion of the cerebro-spinal fluid is squeezed out of the cranial cavity. This fluid finds an egress partly in the direction of the spinal cord, partly in that of the optic nerve. The spaces between the sheaths of the optic nerve which communicate with the lymph spaces between the membranes of the brain are dilated by an accumulation of fluid (hydrophys vaginæ nervi optici, Figs. 156 B and 157 i; Stellwag). Upon this fact is based Schmidt and Manz’s theory of the origin of neuritis, which is as follows: In consequence of accumulation of fluid in the intervagal space, a stasis of lymph occurs in the trunk of the optic nerve itself, particularly in the region of the lamina cribrosa, the lymph spaces of which communicate with the intervagal space. The oedema of the lamina cribrosa causes a compression of the central vessels—a compression which makes its influence felt sooner and to a higher degree in the central vein of the optic nerve than in the central artery. As there is constantly pouring into the papilla through the artery a quantity of blood which can not be completely carried away again by the contracted central vein, venous engorgement of the optic nerve and consequently swelling of the latter are developed. This swelling of the nerve leads to its incarceration at the spot where it fits so tightly in the foramen sclerae, and consequently extreme oedema develops in the strangulated papilla. Neuritis having this origin is hence not to be regarded so much in the light of an inflammation proper as of an inflammatory oedema, and is accordingly designated by the name of engorgement neuritis, or _choked disk_. It therefore constitutes a very important symptom of increase of the cerebral pressure. (b) Direct transmission of inflammation from the brain to the optic nerve must be assumed to exist chiefly in those cases in which an inflammation exists in the brain itself, and
particularly at its base, as is, for example, generally the case in tuberculous meningitis. Here the inflammation is transmitted along the optic nerve and its sheaths to the papilla (neuritis descendens).

2. Syphilis is a frequent cause of neuritis. The optic nerve may be attacked by the syphilitic affection directly. In other cases it becomes affected indirectly, owing to the development in the cranial cavity or in the orbit of inflammations or of tumors which result from syphilis, and which secondarily implicate the optic nerve.

3. Acute infectious febrile diseases, chronic disturbances of nutrition of various kinds, and poisoning, especially by lead.

4. Acute anæmia after great loss of blood, the most frequent variety being that due to hemorrhage from the stomach and to metrorrhagia. In these cases blindness usually does not set in until some days after the hemorrhage, and is generally incurable.

5. Heredity. There are families the members of which are attacked by neuritis without there being any special cause for it. Such a neuritis usually affects only the male members of the family, and these are generally attacked by it at the same age (as a rule at about the twentieth year).

6. Orbital affections, such as inflammations or new growths in the orbit or tumors developing upon the optic nerve itself. These are the only cases in which neuritis can with certainty be regarded as a purely local disease.

The treatment of neuritis must be directed first of all against the lesion which forms the basis of it. Local treatment, in addition to a suitable regimen of the eyes, consists in the abstraction of blood at the mastoid process, diaphoretic measures, and in the administration of absorbent remedies, such as iodide of potassium, mercury, etc.

Simple hyperæmia of the optic nerve is marked by increased redness of the nerve and by haziness of its outlines, so that it contrasts but little with the red fundus surrounding it, which shows a radiate striation corresponding to the course of the nerve fibers in the retina. To this are added dilatation and tortuosity of the retinal vessels. Hyperæmia of the retina is a frequent occurrence. It is not only a constant accompaniment of all inflammations of the retina and chorioid, but is found in connection with violent inflammations of the anterior division of the eye—e. g., in irido-cyclitis.

If an inflammation of the retina is associated with pretty marked involvement of the optic nerve, or if, conversely, an inflammation of the optic papilla has extended so as to occupy quite a large area of the retina, the picture of neuro-retinitis or papillo-retinitis is produced. Almost all forms of retinitis as well as of neuritis which have been described in the foregoing pages may appear under the form of neuro-retinitis. In connection with tumors of the brain, a special form of neuro-retinitis occurs, the peculiarity of which consists in the fact that together with the appearances in the optic papilla minute splashes of silvery luster are visible in the region of the macula lutea, so that a picture resembling that of retinitis albuminurica is produced.
Von Graefe was the first to distinguish the inflammations of the optic nerve accompanying diseases of the brain into the neuritis of engorgement and descending neuritis. The differences between the two are mainly differences with regard to the swelling of the optic nerve and to the transmission of the inflammation to the adjacent retina. The degree of swelling of the nerve can be judged of from the way in which the vessels bend as they pass over the edge of the papilla to descend upon the retina; also from the parallaxic displacement that the papilla shows with reference to the retina in examinations made with the inverted image. In the erect image the degree to which the papilla projects can be calculated from the difference in refraction between it and the retina (see page 25). In choked disk the swelling is so considerable that the vessels appear kinked or actually interrupted at the border of the papilla. The engorgement furthermore, if great, manifests itself in the frequently enormous distention of the retinal veins. On the other hand, the tissue changes are limited pretty sharply to the papilla itself. In neuritis descends the swelling of the papilla is slight; there is no distinct bending of the vessels at the border of the papilla, and frequently the difference of level can be demonstrated only through the difference in refraction shown to be present by examination with the erect image. On the other hand, the exudation made patent by the cloudiness and discoloration of the disk becomes a prominent feature. Moreover, the exudation extends beyond the edge of the disk into the adjacent retina, so that the disk appears enlarged; frequently the picture of neuroretinitis is produced. In spite of these distinctions the two forms of neuritis are not so widely separated as theory demands, since numerous transition forms occur between choked disk and descending neuritis. For this reason, and also on the basis of anatomical investigations, the purely mechanical explanation of choked disk, such as the theory of Schmidt-Manz affords, has been repeatedly questioned, and other hypotheses have been propounded to account for its development. In reality, the fact appears to be that a process of engorgement does actually play the most important part in the production of congestive neuritis, but that inflammatory processes in the trunk and in the sheaths of the optic nerve likewise participate in its production.

The diseases of the brain which are complicated with optic neuritis are partly focal, partly diffuse affections. Among the former, it is above all the tumora of the brain which result in neuritis, usually under the form of choked disk. Neuritis in this case is so frequent—it is said to be wanting in only ten per cent, according to others in twenty to thirty per cent of cerebral tumors—that it forms one of their most important symptoms. This symptom is the more deserving of consideration inasmuch as a cerebral tumor may often run its course for a long time without producing any other positive symptoms—e.g., it may simply cause headache, or even this may be wanting. Accordingly, in every case in which there is a suspicion of the existence of a cerebral affection, the fundus of the eye should be examined with the ophthalmoscope. This is the more necessary, since choked disk sometimes fails to manifest itself by any disturbance of the vision. This is explained by assuming that in choked disk—in the beginning, at least—there is simply a state of oedema. The disturbance of vision is accordingly produced by compression of the nerve fibers due to the edematous swelling. The degree of this compression, however, can not by any means be determined from the ophthalmoscopic appearance, so that normal sight may be present along with a neuritis which with the ophthalmoscope ap-
DISEASES OF THE OPTIC NERVE. 487

pears very pronounced. In many of these cases the blindness does not come on till later, sometimes not till the advent of neuritis atrophy.

Neither the size nor the situation of the new growth is of importance in determining the development of a choked disk. Choked disk has been seen with tumors which scarcely reached the size of a walnut; at other times neuritis is absent, although the tumors are very large. Similarly, neuritis is found both with tumors which lie in the neighborhood of the optic tracts and with those which are far removed from them—e.g., in the cerebellum. Moreover, with tumors of the brain there may occur not only engorgement neuritis, but also descending neuritis and simple atrophy of the optic nerve. Descending neuritis takes place when the tumor excites, in its immediate neighborhood, an inflammation which is transmitted to the optic nerve. Simple atrophy may be produced because the tumor exerts a direct pressure upon the chiasm or the optic tracts, and thus causes their effacement. An example of this is furnished by the interesting cases of tumor of the hypophysis, which, by pressing upon the chiasm causes atrophy of the optic nerves with temporal hemiplegia, and at the same time gives rise to the complex of symptoms of acromegaly. In other cases an accumulation of fluid takes place in the third ventricle in consequence of the tumor, so that the greatly distended anterior inferior extremity of the ventricle presses upon the chiasm. In this way amaurosis develops with cerebral tumors, either without any ophthalmoscopic evidence at all or under the guise of a primary atrophy.

Among the focal affections of the brain which may, although but rarely, cause neuritis must be enumerated foci of softening, abscesses, thrombosis of the sinuses, aneurisms, apoplexies, and cysts (among these cysticercus and echinococcus cysts). Among the diffuse affections, disseminated sclerosis, acute and chronic meningitis, and hydrocephalus give rise to neuritis. The two affections last named, together with tubercles of the brain, are the most frequent cause of neuritis in children. Frequently such children are not brought to the oculist until later in life, when he finds a neuritic atrophy as the cause of the blindness, and can determine from the history of the case that a severe cerebral affection has preceded it. This form of blindness is incurable. Not to be confounded with it are those rare cases in which children become blind without known cause and without any ophthalmoscopic change in the fundus. This variety of blindness, the cause of which is at present unknown, sometimes gets well (Nettleship). Some cases of neuritis due to hydrocephalus are known in which a continual dropping of fluid (cerebro-spinal fluid) takes place from the nose. Neuritis also occurs sometimes in malformations of the skull (particularly the kind known as peaked skull—"Thurmschädel") and injuries of the skull (especially fractures of the base, with consequent meningitis).

Neuritis has also been observed as a rare complication in spinal diseases, particularly in acute myelitis, in tetany, and in multiple neuritis.

The optic nerve reacts in a most sensitive way to disturbances of nutrition of the general organism. Among such disturbances must be classed above all the infectious diseases; and neuritis occurs, although rarely, in the acute exanthemata (measles, smallpox, scarlet fever), and also in typhus, diphtheria, pneumonia, influenza, and whooping cough. Among chronic diseases that are to be placed in the same category are albuminuria, diabetes, scrofulosis, and anemia. In the female sex there is sometimes a connection between the neuritis and the genital system, in that neuritis sets in simultaneously with disturbances of
menstruation, with pregnancy, or with lactation. These cases usually give a
good prognosis, even when they get to the point of producing complete blindness for the time being.

Of poisoning in the narrower sense of the term, there should be mentioned besides lead-poisoning, that produced by alcohol and iodoform. Moreover, a few cases of neuritis have been known that have undoubtedly developed in consequence of great chilling of the body. Lastly, there should be mentioned in this connection the cases of neuritis and atrophy of the optic nerve that have been produced by a stroke of lightning.

(b) Retrobulbar Neuritis.

102. Retrobulbar neuritis is located in the orbital division of the optic nerve. Hence, upon ophthalmoscopic examination, we find in the papilla either no changes at all or changes that are insignificant and not characteristic; but later, after the disease has subsided, the signs of atrophy frequently make their appearance there. This is the case when destruction of the fibers of the optic nerve has taken place within the region occupied by the focus of inflammation. The peripheral portions of the divided fibers then undergo an atrophy, which is slowly transmitted to the papilla, where it becomes visible with the ophthalmoscope (descending atrophy). Owing to the absence of distinct ophthalmoscopic changes in the recent cases, the diagnosis of retrobulbar neuritis must be made from the other symptoms, and mainly, in fact, from the way in which the vision is affected. In a few cases the disturbance of vision may increase to the point of complete blindness, but in most cases is confined to the central portions of the visual field which are supplied by the papillo-macular bundle. There is, therefore, a central scotoma in the field of vision.

Retrobulbar neuritis is either acute or chronic in its development. The chronic cases usually depend upon chronic poisoning, particularly that produced by tobacco (tobacco amblyopia). In general, retrobulbar neuritis affords a good prognosis, since in cases which are not too far advanced the sight can be brought back again to the normal.

The acute form of retrobulbar neuritis is characterized by the suddenness with which the disturbance of vision develops. In the severe cases this failure of sight may attain such a degree within a few days that all perception of light is abolished. Externally, the diseased eye looks normal; at most the pupil is dilated. The ophthalmoscope, too, shows scarcely anything besides some distention of the retinal vessels.* These symptoms are often accompanied by violent headache or by dull pain in the orbit, the latter being aggravated if the patient moves his eye or if the attempt is made to push it back in the orbit. Sometimes both eyes are attacked by this disease at the same time.

* Sometimes, on the contrary, ischaemia of the retina is present when the central vessels are subjected to compression in the inflamed portion of the optic nerve.
DISEASES OF THE OPTIC NERVE.

The disease usually goes on to a complete or partial cure. In the first case the sight becomes normal again, in the second case a central scotoma generally remains. A pretty long time (one or more months) is required for the process of healing. In a few cases, however, the total blindness remains permanent, so that it is impossible to state the prognosis with certainty at the beginning of the disease.

The most frequent cause of acute retrobulbar neuritis is great chilling of the body. Hence a violent coryza is sometimes found either with the neuritis or as its precursor. I once saw it result from excessive exertion in a young man who, under the stimulus of a bet, had covered a very great distance upon a bicycle in one day; on the next day he had a bilateral retrobulbar neuritis. Furthermore, acute retrobulbar neuritis, like papillitis, may develop as a result of acute infectious diseases, poisoning, and other disturbances of nutrition. The hereditary form of neuritis may also appear under the guise of acute retrobulbar neuritis. The treatment of the disease is that of neuritis in general. In the acute stage energetic diaphoresis proves particularly efficient.

Chronic retrobulbar neuritis has as its typical representative tobacco amblyopia (amblyopia nicotinica), which originates in chronic poisoning by nicotine. It was first described by Arit as retinitis nyctalopia, because the symptom of nyctalopia was the one that struck his attention most forcibly.

Tobacco amblyopia makes itself evident only by the disturbance of vision, and this sets in so gradually that the patients are for the most part unable to tell exactly when it begins. At first medium-sized print can still be read, afterward the reading of ordinary print becomes impossible. The reduction in the visual acuity is almost always the same in both eyes—a fact which distinguishes this from other intra-ocular affections, such as cataract, chorioiditis, atrophy of the optic nerve, etc., in which the two eyes are usually affected to a different degree.

The symptom of nyctalopia is particularly characteristic. The patient declares that he sees much better in the evening than in the daytime; indeed, in recent cases he often imagines that in the evening he still sees as well as he used to do, and that it is only in the daytime that he has a troublesome cloud that dazzles his sight. Objective examination shows that really in most cases no observable improvement takes place when the illumination is reduced; but the annoying sense of dazzling is done away with, so that the patient believes that he sees better. In some cases, however, I have been able to make out a real improvement in the sight upon diminishing the illumination. One of these patients read finer print and read it better when he put on dark gray goggles than he could do with the naked eye. Another patient, a coachman, could still recognize in the evening the numbers of the houses to which he had to go, while in the daytime he no longer was able to do it.

Many patients also declare that they can not recognize red colors, particularly of small objects, as well as they used to do. Their acquaintances, they find, look ill because their cheeks appear to them to be of a waxen yellow.

Objective examination shows but slight ophthalmoscopic changes. In recent cases the papilla is usually somewhat hyperemic; in the older cases, on the contrary, it has grown paler in its temporal half. But these changes are often so little pronounced that one may say that the result of examination is negative. Examination of the vision shows a moderate diminution of the visual acuity, which has its cause in a central scotoma. This scotoma forms a hori-
horizontal oval, extending from the macula lutea to the blind spot, and corresponding, therefore, to the maculo-papillary region of the retina (Fig. 158). At first there is simply a color scotoma. No gap is found in the field of vision if it is tested by means of a white object; but a red or green mark undergoes a change of color in the region of the scotoma. It appears less highly colored than in the other portions of the field of vision, and later on appears perfectly colorless. Later still, the mark disappears altogether from view in this portion of the visual field; the scotoma has now become absolute (see page 33), and the vision has become reduced to the lowest point that it can reach in this disease. The outer limits of the visual field always remain normal, and complete blindness is therefore not to be apprehended, but direct vision is destroyed, and with it the ability to carry on any fine work. Owing to the chronic course of the disease, it takes a series of months for the sight to be reduced as low as this; and, moreover, this extreme reduction does not occur in every case.

The cause of tobacco amblyopia is the excessive use of tobacco, whether by smoking or chewing. The disease is hence found almost exclusively in the male sex, and in them not generally until middle life. It would thus appear as if the resistance to nicotine diminishes with age. The quantity of tobacco which is sufficient to bring on a tobacco amblyopia varies according to the susceptibility of the individual, in many cases comparatively small amounts of tobacco sufficing for this purpose. The cheap varieties, which are usually richer in nicotine, and also moist tobacco, are more dangerous than the better, dry qualities. The abuse of spirited beverages, which, to be sure, is very usual with great smokers, favors the development of tobacco amblyopia; but the amblyopia also occurs in smokers who abstain altogether from alcoholic drinks.

Treatment consists, above all, in abstinence from tobacco, and it is probable that in light cases this alone is sufficient to effect a cure. To accelerate the cure we employ iodide of potassium internally or hypodermic injections of strychnine or pilocarpine. In addition, we prescribe a suitable regimen for the eyes. Recent cases in which middle-sized print can still be read, and in which the scotoma has not yet become absolute, afford a good prognosis, since a perfect cure is usually obtained, although one to two months are required for it. In older cases, in which even quite large print can no longer be read and the scotoma is absolute, a complete cure is for the most part impossible.

Other toxic agents may, like nicotine, lead to retrobulbar neuritis through a process of chronic poisoning, and that, too, with symptoms which are the same
DISEASES OF THE OPTIC NERVE.

as those of tobacco amblyopia, or which are very similar. The most prominent agent in this category is alcohol. Besides, I once treated a patient who from his youth up had smoked stramonium leaves in great quantities on account of asthmatic attacks, and who from this cause had acquired an amblyopia with a central color scotoma (the man was neither a smoker of tobacco nor a drinker). Lastly, in this connection must also be mentioned cases of chronic poisoning by lead, arsenic, disulphide of carbon (in caoutchouc factories), dinitro-benzene (in roburite factories), extract of male fern, chloral, iodoform, iodides, sulphides, and other poisons, and also poisoning by diabetes (one of the most frequent causes):

We are indebted for the first anatomical discoveries in regard to chronic retrobulbar neuritis to Samelson, who found an interstitial neuritis in that portion of the trunk of the optic nerve which lies within the optic canal. The inflammation was limited to the fibers of the papillo-macular bundle, whose situation and course within the optic nerve it was thus possible to determine.

STRYCHNINE.—This was first recommended by Nagel for the treatment of lesions of the optic nerve. It exerts an excitant action upon the optic nerve, so that even in normal eyes it produces a slight, although not permanent, increase in the visual acuity and enlargement of the field of vision (Hippel). For therapeutic purposes, a one-half-per-cent solution, of which a quantity equal to one half or the whole of the contents of a Pravaz syringe—i.e., as much as 5 mgr. [\(\gamma\) grain] of strychnine per dose—is injected once a day beneath the skin of the temple. It acts best in disturbances of vision unattended by changes visible with the ophthalmoscope, especially in hysterical and neurasthenic forms, which, however, generally afford a good prognosis anyway. In serious lesions of the optic nerve, as in progressive atrophy, we often obtain with it an improvement in the sight and especially an enlargement of the field of vision; but these changes are commonly not permanent.

II. ATROPHY OF THE OPTIC NERVE.

103. Atrophy of the optic nerve develops either as a primary affection or as secondary to an antecedent inflammation. We accordingly distinguish between simple and inflammatory atrophy.

(a) Simple (primary or genuine or non-inflammatory) atrophy is distinguished by the papilla becoming paler, and at length perfectly white or bluish-white, and also becoming sharply defined and slightly excavated (atrophic excavation; see page 365); the gray dots of the lamina cribrosa are visible more distinctly, and over a larger area; the more minute blood-vessels of the papilla itself have disappeared, while the retinal vessels are not markedly altered (in contradistinction to inflammatory atrophy, in which the latter are narrowed, too). As the atrophy increases, the sight is reduced until there is complete blindness. The causes of simple atrophy of the optic nerve are: 1. Spinal affections, particularly tabes dorsalis, which is by far the most frequent cause of the simple form of optic-nerve atrophy. This atrophy usually develops in the initial stage of tabes at a time when the ataxic symptoms are slight or absent, and the diagnosis of tabes is not yet readily made.
It is therefore a fact of great value to us that we know two other symptoms, which, moreover, usually make their appearance very early. One of these symptoms regards the pupil, which no longer reacts to light (Argyll-Robertson pupil, page 281), and is generally also greatly contracted (spinal miosis, page 333). The other symptom, discovered by Westphal, is the absence of the patellar reflex. Spinal atrophy of the optic nerve always affects both eyes, although not necessarily both at the same time. It advances slowly but surely until there is complete blindness, and hence has rightly earned the name of progressive atrophy. 2. Among affections of the brain, disseminated sclerosis and progressive paralysis of the insane are complicated with atrophy. Moreover, tumors or other focal affections may induce simple atrophy of the optic nerve by compressing the nerve itself or its continuation within the skull. In this case the atrophy is propagated gradually from the site of the break in the line of conduction down to the intra-ocular extremity (descending atrophy). 3. The break in the line of conduction may also evidently be located nearer the periphery—i. e., in the orbit where the optic nerve may be thrown into a state of atrophy through inflammation or injury or as a result of compression by tumors.

(b) Inflammatory atrophy of the nerve is the form which occurs as the final result of a neuritis or a retinitis (neuritic or retinitic atrophy). Inflammatory atrophy is distinct from the simple variety in its ophthalmoscopic features as well as its origin, because in it the papilla is traversed by connective tissue formed by an organization of the exudate. In neuritic atrophy the papilla is at first of grayish-white color, and its margins are slightly hazy; the veins are very distended and tortuous. Afterward the papilla becomes of a pure white or bluish-white, but we do not see the lamina cribrosa exposed to view, as in simple atrophy. The papilla is now sharply defined, but is often smaller than normal, and irregular, as though it had been shrunken; both arteries and veins are contracted, and are frequently inclosed within white streaks. There is often found about the papilla an irregular decolorization of the choroidal immediately adjoining it. In retinitic atrophy the papilla looks clouded and of a dirty grayish red. Its outlines are faint, and the vessels are greatly thinned, and often have entirely disappeared (Fig. 143).

The prognosis of atrophy of the optic nerve is in general unfavorable. Cases of simple atrophy for the most part lead to complete blindness. Inflammatory atrophy affords a somewhat better prognosis, since the amount of sight which the neuritis or retinitis has left is usually permanently preserved. Treatment consists primarily in the management of the causal disease. For the lesion of the optic nerve itself potassium iodide, mercurials, injections of strychnine, and the constant current applied to the eye itself, are employed; unfortunately, however, with but slight success.
DISEASES OF THE OPTIC NERVE.

The disturbance of sight in atrophy always affects not only direct vision, but also the visual field, which is found to be diminished. Sector-shaped defects or concentric contraction of the visual field are the most frequent forms under which this occurs. Color blindness also sets in early: first for red and green, and last of all for blue, which color, therefore, is recognized the longest. By this circumstance atrophy is distinguished from glaucoma simplex, which sometimes shows much resemblance to it, but which is not ordinarily associated with color blindness until late in its course.

Simple atrophy is found most frequently in middle life. In children it almost never occurs; the atrophy of childhood is, as a rule, neuritic. Men are more frequently attacked by simple atrophy than women, a fact which is dependent upon the greater predisposition of the male sex to spinal affections. In old people a low degree of non-inflammatory atrophy of the optic nerve sometimes occurs, caused by atheromatous disease of the internal carotid or of the ophthalmic artery. In this case the vessels by the pressure they cause induce a partial atrophy of the optic nerve, which for a certain part of their course they directly adjoin (Bernheimer, Sachs, Otto).

INJURIES OF THE OPTIC NERVE.—The optic nerve may be injured within the orbit by means of penetrating foreign bodies, stab wounds, shot wounds, etc. As a result of this break in the line of the conduction, blindness—partial or complete, according to the severity of the lesion—is present immediately after the injury. With this there are at first no ophthalmoscopic changes that can be demonstrated in the optic papilla. It is not until later, after weeks have elapsed, when the descending atrophy has traveled down from the site of injury to the optic papilla, that the latter becomes paler and presents the picture of simple atrophy. It is only when the optic nerve has been injured so far forward that the central vessels are at the same time divided that characteristic ophthalmoscopic symptoms can be made out at once. In such cases there develops immediately after the injury a picture analogous to that of embolism of the central artery. The arteries of the papilla and retina are bloodless, and the retina soon becomes clouded—a sign of its death.

Indirect injuries of the optic nerve occur not infrequently in consequence of injuries of the skull by the impact of a blunt object (a blow or fall upon the head, etc.). In such cases there is partial or complete blindness associated with the symptoms of a severe injury of the skull (the signs of concussion of the brain or of fracture of the base of the skull). Such blindness may be unilateral or bilateral. It has been demonstrated by the investigations of Hölder and Berlin that in these cases we are dealing with indirect fractures of the walls, particularly of the upper wall, of the orbit, which fractures are continued into the optic canal, so that the optic nerve in the latter is crushed or lacerated. Several weeks or months afterward there is developed in the papilla the picture of simple atrophy. These cases of blindness are incurable.

TUMORS OF THE OPTIC NERVE.—The optic nerve may be affected with tumor formation, either primarily or secondarily. The latter most frequently happens through the growth of intra-ocular tumors, such as sarcoma of the choroid and glioma of the retina, backward along the optic nerve. Primary tumors of the optic nerve are rare. They comprise fibromata and sarcomata with varieties (myxosarcoma, psammomasarcoma, gliosarcoma, etc.) of the latter, springing from the interstitial supporting tissue or from the sheaths of the optic.
nerve; some cases of endothelioma and of tuberculous new growths are also known. Pure neuratomy, originating from the nerve fibers, have up to the present time not been observed with certainty in the optic nerve. Primary tumors of the optic nerve begin generally in youth, and grow very slowly. They cause a form of exophthalmus, which is distinguished from that occurring with other orbital tumors by the fact that the lateral displacement is either entirely absent or is at all events insignificant. The mobility of the eye remains good for a comparatively long time; on the other hand—and this is a characteristic sign—blindness sets in very early. With the ophthalmoscope we find at first neuritis with the venous engorgement particularly marked; afterward atrophy. Treatment consists in extirpation of the tumor; in doing which we may, under certain circumstances, leave the eye in its place. Recurrences after operation are comparatively rare.

Anatomy of Affections of the Optic Nerve.—Inflammation of the optic nerve starts from its connective-tissue portions—that is, from the sheaths and the connective-tissue septa. In the sheaths there is found, besides the drop-sical condition already mentioned, actual inflammation with a formation of a cellular exudate (perineuritis; Stellwag, H. Pagenstecher). Within the trunk of the optic nerve the inflammation attacks the septa, which show thickening with multiplication of their nuclei (interstitial neuritis). Owing to this, the bundles of nerve fibers, which are inclosed by them, are compressed and, undergoing atrophy, are destroyed. Accordingly, in neuritis the nerve fibers act mainly a passive part.

In engorgement neuritis the inflammatory symptoms are limited to the papilla, while the trunk of the optic nerve back of the lamina cribrosa suffers little or no change. In the first place, the papilla is found to be greatly swollen by an accumulation of edematous liquid, so that it projects like a mushroom into the interior of the eye, and is thickened at its base so as to form an actual tumefaction (neuritic swelling, Fig. 156 B, a). The retina is pushed aside and thrown into folds by the enlarged optic nerve. Besides the edema there are also found extravasations of blood, swelling of the nerve fibers, and the evidences of a scanty cellular infiltration, particularly along the blood-vessels (Fig. 156 B, c). Later on the cellular exudation becomes more and more prominent, and in the subsequent course of the disease leads to a new formation of connective tissue within the papilla, due to organization of the exudate. By the subsequent shrinking of the connective tissue the fibers of the optic nerve are rendered atrophic, and the picture of neuritic atrophy of the optic nerve is produced. We then find in place of the papilla a network of connective-tissue strands, and among them blood-vessels whose walls are thickened.

Simple atrophy of the optic nerve occurring in spinal lesions first makes its appearance in insular spots; isolated foci of disease, which appear gray upon cross section, showing themselves in the trunk of the optic nerve. In this case we are dealing with the same gray degeneration that exists in the posterior columns of the spinal cord in tabs. The nerve fibers lose their white medullary substance, and are transformed into extremely minute fibrillae, and hence the entire tissue acquires a gray and translucent appearance. Between the remains of the nerve fibers are found cells filled with granules of fat; symptoms of inflammation proper, however, are wanting.

The anatomical condition found in descending or ascending atrophy is similar to that occurring in gray degeneration of the optic nerve. The atrophy
reaches its highest degree in those cases in which the eyeball has been completely destroyed, the optic nerve in this instance shrinking in the course of time to a thin strand consisting simply of connective tissue.

**Disturbances of Vision without Apparent Lesion.**

104. The expressions amblyopia* (weak sight) and amaurosis† (absolute blindness) are in use as terms to designate disturbances of vision. The former designation is now applied only to those cases in which the weakness of sight can not be relieved by suitable glasses. For instance, a myope who sees badly with the naked eye, but possesses the full amount of visual acuity with the correcting concave glass, is not amblyopic but simply myopic. Under the name of amaurosis were formerly known those cases of blindness in which the eye had externally a normal appearance, so that this designation was equivalent to the expression "black cataract" ("schwarzer Staar"). The ophthalmoscope has thrown light upon these cases, which are for the most part referable to affections of the choroid, the retina, and the optic nerve. At the present day the expressions cerebral amaurosis and spinal amaurosis are used in the old sense; those cases being designated by these names in which blindness has set in as a result of diseases of the brain and spinal cord, while the external appearance of the eye is normal. But the word amaurosis is also employed at present in a wider sense as equivalent to total blindness, even when the eye shows external changes. Thus we say of an eye blinded by irido-cyclitis that it is amaurotic.

Thanks to the refined methods of examination with glasses, but most of all thanks to the ophthalmoscope, it is at present possible in most cases to discover the cause of weak sight or of blindness. Nevertheless, there remains a small number of cases in which we are unable even now to demonstrate any changes in the eye as a cause for the disturbance of vision. In some of these cases of disturbance of vision without apparent lesion, the changes are so minute or have such a situation that they are not discoverable by our present methods of examination. In other cases there are no anatomical lesions whatever, and what we have before us is simply the so-called functional affections—i. e., altered conditions of circulation and nutrition resulting in disturbance of function.

The most frequent varieties of disturbance of vision without apparent lesion are:

1. **Congenital Amblyopia.**—We assume this to exist in those cases in which, according to the account given by the patient, the weakness of sight has existed for a long time, and in which all other causes for it can be excluded. We are justified in making this assumption when-

---

* Properly blunt-sightedness, from ἄμβλυς, blunt, and ἀφθ, sight.
† ἀμαυρός, dark.
ever other congenital anomalies are also present in the amblyopic eye, such as an extreme degree of hypermetropia or astigmatism, coloboma of the iris or the deeper membranes, microphthalmus, etc. For experience shows that such eyes almost always display a reduction of the visual power, which can not be brought to the point of normal vision even by the correction of the error of refraction that is present.

Congenital amblyopia is usually unilateral; the affected eye is then very prone to fall into a state of squint. If the amblyopia affects both eyes, nystagmus develops (see § 128).

2. Amblyopia ex Anopsia.*—Amblyopia from non-use occurs when there has been present from earliest youth an obstacle to vision in the eye, which makes the formation of sharp images upon the retina impossible. In this category belong cases of opacities either of congenital origin or acquired early in life, situated in the cornea, lens, or in the region of the pupil (pupillary membrane). Amblyopia also develops in an eye which has squinted since childhood, because in this case the perception of the retinal images in this eye is suppressed, and the eye is thus purposely excluded from participation in the act of vision. In all these cases, the retina, owing to lack of exercise, fails to attain to that delicacy of function which belongs to normal eyes, or the functional capacity which has been already acquired is lost; but absolute blindness never occurs. The function of the retina never again becomes perfectly normal, even if the cause of the visual disturbance is done away with either through removal of the optical obstacle to sight or through correction of the squint by an operation.

When—as in an adult man—the development of the retina has once been completed, an obstacle to vision may last for many years without the retina suffering any harm. Thus cataracts which have formed in adults have been operated upon with perfect success after lasting twenty years or more.

Treatment consists in the earliest possible removal of obstacle to vision. This rule holds good particularly for the cataracts of childhood, the performance of an operation upon which was formerly as a matter of choice put off till the age of puberty, although we may operate upon cataract (by discission) in children even at the age of a few months with the best results. Exercising of the amblyopic eye is of service in bringing up the functional power of the retina. This is particularly employed in cases of strabismus, where by bandaging the sound eye we force the eye which squints to see (see § 127).

3. Hemeralopia † (Night Blindness).—By this term when used in its widest sense we understand that condition in which one sees well by day, but at night or under feeble illumination from any cause sees poorly or not at all. This condition is not in itself a disease, but simply a

* From ἀ priv., and θυ, sight. † From ἡμαίρα, day, and θυ, sight.
symptom which may belong to various diseases. These latter are divided into two groups—opacities in the media and diseases of the light-perceiving apparatus. The former may excite the symptom of hemeralopia when they occupy the periphery and leave the center free, as in the case of peripheral opacities of the cornea and lens. Under brilliant illumination, when the pupil is contracted, these no longer fall within the area of the latter, while, when the illumination is diminished and the pupil is dilated, they project into the pupil and interfere with sight. Again when there are faint diffuse opacities distributed uniformly over the entire cornea, the sight is often better when the pupil is contracted, because the dazzling due to diffused light is then less. The diseases of the light-perceiving apparatus that are associated with hemeralopia are those in which the peripheral portions of the retina are under-sensitive. In such cases we find the field of vision sufficiently large in bright daylight but so contracted when the illumination is diminished, that orientation and therefore the power of going about are rendered difficult at night. This symptom appertains most especially to retinitis pigmentosa, but is also sometimes observed in other forms of inflammation of the retina and the choroid. Idiopathic hemeralopia, which will be discussed more at length further on, also depends upon a lesion of the light-perceiving apparatus, although it is impossible to demonstrate any material changes in the latter.

The symptom opposed to hemeralopia is nyctalopia*—i.e., that condition in which the sight is better at night or in diminished illumination than in bright daylight. This symptom, too, occurs in two groups of diseases which have their seat either in the media or in the light-perceiving apparatus—only, in this case the site of the changes is just the reverse of that found in hemeralopia. The opacities of the media causing nyctalopia are centrally situated (in the cornea, pupil, or lens), so that when the pupil is contracted they occupy its entire area, but, when upon diminution of the illumination the pupil dilates, the peripheral portions which are still transparent can be used for seeing. The affection of the light-perceiving apparatus are those in which the outlying portions of the field of vision are normal, while in the center there is a scotoma. In these cases, to be sure, the visual acuity is ordinarily no better with diminished illumination than it is in full daylight, but the feeling that central vision is blunted is less unpleasant, so that the patient imagines that he sees better in the evening. This symptom is most pronounced in tobacco amblyopia (see page 489).

Besides the above-mentioned cases in which hemeralopia exists as a symptom of other changes, there are some in which apparently hemeralopia occurs idiomopathically, i.e., without perceptible changes in the eye.

* From νύξ, night, and αὐτός, sight.
These are denoted by the name of idiopathic hemeralopia or night blindness, in the narrower sense of the word. If tests of the vision are made in such a case, it is found that, according to the statements of the patient, the visual acuity is normal when the illumination is good, but sinks with unusual rapidity when the illumination is diminished. If the room is darkened, by letting down the window curtains to such an extent that the examining physician can still read medium-sized print, the patient will perhaps no longer recognize the large letters, or he will even in walking through the room stumble over the chairs which stand in his way. A more accurate examination made by means of Förster's photometer (see page 35) shows a considerable reduction of the light sense. If the retina is set in action by sufficiently strong stimuli—i.e., by brilliant images—it performs its functions normally; but as soon as the stimuli sink below a certain limit it no longer reacts toward them. This condition is called torpor retinae. In its examination with the ophthalmoscope shows no changes whatever in the interior of the eye. But in most cases a xerosis of the bulbar conjunctiva exists (see page 130); i.e., we find in the latter upon the outer and inner side of the cornea a small rounded or triangular spot, over which the surface of the conjunctiva looks dry and seems as if covered with a fine, whitish foam. Xerosis of the conjunctiva has no other connection with torpor retinae than that both are symptoms of a reduced state of nutrition of the eyeball.

Hemeralopia originates in a disturbance of nutrition of the retina, the real nature of which has not yet been discovered. The disease attacks more especially men and those of middle age; less often women. Its development is formed by a reduction of the general nutrition. The disease accordingly is found in people who in general are insufficiently nourished, as the inmates of workhouses, penal establishments, and orphan asylums, and soldiers and sailors (in the latter occurring simultaneously with scurvy). In Russia, the disease is found especially during and after the long fast at Easter, during which time the people eat no meat. Furthermore, hemeralopia is sometimes observed with jaundice, with intermittent fever, with chronic alcoholism, and also in pregnant women. Whether dazzling of the eyes by a bright light may give rise to hemeralopia is questionable. The disease develops almost exclusively in spring, when it sometimes affects a number of persons at the same time, so that we should probably conceive of it as having a miasmatic origin.

The prognosis of hemeralopia is favorable, as the disease usually gets well of itself after some weeks or months. It, however, leaves behind it a tendency to recurrences which usually make their appearance in the spring or summer of the following years.

As regards the treatment, the use of cooked liver and of cod-liver oil has for a long time enjoyed a great and deserved repute among the
DISEASES OF THE OPTIC NERVE. 499

laity. In addition we take care to elevate the nutrition by strengthening diet and by corroborative remedies and to protect the eyes from light. In the lighter cases we make the patient wear dark glasses, in the severer cases we keep him for several days in a dark room. By this treatment an abbreviation of the disease is secured.

Hemeralopia in conjunction with xerosis of the conjunctiva is also found as a precursor of keratomalacia, which likewise must be regarded as the consequence of a disturbance of the general nutrition (see page 175).

4. Amblyopia and Amaurosis of Central Origin.—Disturbance of vision may be set up by disease of the brain without there being any ophthalmoscopically perceptible changes in the eye, such as neuritis or atrophy of the optic nerve. Disturbances of vision of this sort may be only transient, even when they amount to absolute blindness. Uremic amaurosis (see page 449), which is produced by retention of the urinary constituents, affords a good example of this. But in those cases in which gross lesions of the brain, such as inflammatory processes or new growths, give rise to the disturbance of vision, the latter is permanent, and ophthalmoscopic changes, usually under the form of a descending atrophy of the optic nerve, are often associated with it later. Disturbance of vision dependent upon a central cause makes its appearance not infrequently under the guise of hemiopia (homonymous or temporal).

5. A peculiar form of temporary blindness of central origin is the scintillating scotoma (scotoma scintillans, amaurosis partialis fugax, or teichopsis *).

The patient who suffers from it notices besides a feeling of vertigo a sparkling light that appears before his eyes, and rapidly increases until finally he can scarcely see at all. Persons who are more accurate observers of their sensations usually aver that the sparkling originates from a small spot situated not far from the point of fixation, and that within the area represented by this spot external objects are invisible (hence the name scintillating scotoma). The scintillation and with it the gap in the visual field spread rapidly, the boundaries of the scintillating area being often formed by lines zigzagging in and out, so as to form projecting and re-entrant angles. After a quarter or half an hour, the attack abates, the visual field beginning to clear up at the point first affected. Scintillating scotoma is usually accompanied by headache and sometimes also by nausea, and frequently a regular attack of migraine is joined with it.

The central origin of scintillating scotoma is apparent not only from the accompanying and following headache, but also from the fact that it always affects both eyes in the same way,† and frequently occurs under the form of hemiopia—i.e., it occupies but one half (and that, too, the homonymous half) of the field of vision in each eye. The symptoms, on account of their short dura-

* From τοῖχος, wall, and σκότος, vision, on account of the zigzag lines, resembling fortification walls, often seen on the edge of the scintillating spots.

† But was strictly unilateral in one case occurring in Dr. Knapp's practice, and reported by the translator.—D.]
tion, can scarcely be referred to anything but circulatory disturbances, the site of which is probably the optical areas of the cortex in the occipital lobes. The circulatory disturbance sets up an irritation of the optical elements—an irritation which according to the laws of projection is referred to the external world, and appears under the form of a colored scintillation, while at the same time the perception of peripheral impressions is abolished. So also at the beginning of a fainting attack, which in fact is likewise due to circulatory disturbances in the brain, symptoms make their appearance which are perhaps identical with scintillating scotoma; the patients averring that everything looks green and blue, or scintillates, or grows dark before their eyes.

Scintillating scotoma is an uncommonly widespread affection. If it occurs infrequently—at intervals of several years—no significance is attached to it by the patient, as it disappears again rapidly, and without leaving any bad results. It is only when the symptom is repeated frequently—and it may even recur several times a day—that those who are troubled with it come to the physician. Such patients allege as the cause of their scintillating scotoma excessive physical or mental exertion, straining of the eyes, dazzling light, or a great sense of hunger; often, however, no definite cause can be made out. The treatment must be confined to opposing the cause of the scotoma. Such treatment consists in increasing the general strength, excessive exertion being at the same time avoided. A glass of wine drank quickly at the beginning of an attack suffices not infrequently to cut it short (in those cases in which it is caused by anemia of the brain). Ordinary cases of scintillating scotoma are associated with no evil consequences. It is otherwise with those in which other symptoms of central disturbance, such as weakness or paralysis of an extremity, aphasia, etc., make their appearance at the same time with the scotoma; here the latter is not infrequently the precursor of a serious affection of the brain.

6. The disturbances of vision in hysteria and neurasthenia are likewise of central origin. These are hysterical amblyopia and hysterical asthenopia.

Hysterical amblyopia consists in a diminution of the visual acuity, a contraction of the field of vision, and a diminution in the color sense and light sense. The contraction of the visual field is concentric; and in many cases the field gets smaller and smaller the longer the patient is tested with the perimeter (reaction of exhaustion, Förster). This depends upon the rapid exhaustion of the nervous system that is peculiar to patients of this sort. Hysterical amblyopia is found to the most marked degree in those cases of hysteria that are associated with disturbances of sensibility (hemianesthesia, etc.). It generally exists in both eyes, although for the most part to a greater degree on the side upon which the general sensibility is affected.

The diagnosis of hysterical amblyopia is based principally upon two points. The first of these is the absence of any demonstrable changes in the eye which might explain the enfeeblement of sight. The second is the failure of the separate symptoms constituting the disturbance of vision to show that agreement with each other that they ordinarily present. Thus, the acuity of vision and the extent of the visual field change frequently (usually doing so as the other hysterical symptoms grow better or worse); the relations of the color limits within the visual field are not in accordance with the rule (see page 34) and are not properly proportioned to the total extent of the visual field; persons whose visual field is unusually contracted still move with perfect security and without stumbling in a space which is not well known to them; in fact, even
in those who are absolutely blind we sometimes find the same thing occur, if they think that they are not observed. It can be seen from these statements that it is often difficult to draw the line between simulation and a hysterical blindness—i.e., one having an actual existence in the imagination. In the latter case there may be other evidences of hysteria or neurasthenia associated with the symptoms of the hysterical amblyopia, which will render the diagnosis more certain.

Hysterical amblyopia chiefly attacks young people, particularly of the female sex. It is sometimes produced by injuries, even when they do not affect the eye itself (traumatic neurosis). Hysterical amblyopia affords a good prognosis, as ordinarily a complete cure takes place. The disease, however, usually lasts for a long time, often for years. Treatment consists in the management of the causal lesion, reinforced locally by hypodermic injections of strychnine and the application of the constant current. The brilliant results sometimes obtained by the two last-named remedies is, however, mainly ascribable to their psychic influence upon the patient when the latter has confidence in the treatment and anticipates a cure from it.

*Hysterical* or nervous *asthenopia* *consists in an incapacity of the eye for any continuous exertion, in spite of there being good visual power. Some complain that after reading or working for even a short time everything becomes covered with a cloud, so that the work has to be laid aside. Others, again, allege that after pursuing their occupation for a little while, indeed even after reading a few lines, they have violent pains in the lids, eyeball, or head, which render the continuance of the work impossible (copioopia † hysteria, Förster). When no strain is put upon the eyes, there is generally no trouble; in other cases, however, the pains never entirely disappear, or a great sensitiveness to light is constantly present.

In making the diagnosis, proof must first of all be forthcoming that there is no error of the refraction or of the muscular equilibrium to cause the trouble. Nervous asthenopia, like hysterical amblyopia, with which it frequently is associated, is often extremely obstinate, and sometimes for years prevents the patient affected by it from engaging in any serious occupation. In it, too, the psychical factor plays a great part in the treatment. I have found electricity the most efficient means.

Cases have been described under the name of *dyslexia* by Berlin, which might easily be confounded with asthenopia. In these cases reading often becomes impossible even after a few words have been read, without there being any blurring of the print or any pain. In several of these cases autopsy has demonstrated the presence of disease in the left cerebral hemisphere, more particularly in the neighborhood of the third frontal convolution.

7. **Color Blindness.**—Color blindness occurs both as a congenital and an acquired affection. The former is not a disease but an imperfection of vision dependent upon unknown causes; the latter accompanies many diseases of the retina and optic nerve.

*Congenital color blindness* is known as daltonism, after the English physicist Dalton, who was himself color blind, and was the first to describe this defect accurately. It may be *total*, so that no color is recognized, and the external

---

* From *άσθενις*, weak, and *άφα*, sight.
† From *νοσία*, exhaustion, and *άφα*, sight.
world looks to be of various shades of gray like an engraving; or it may be partial, only a certain group of colors being deficient. The former variety is extremely rare; the latter, on the other hand, is pretty frequent. Very often it is not complete blindness for any special color that exists, but only a rather less marked ability to distinguish one from the other, so that colors are not recognized with the same certainty and at the same distance as is the case in the normal eye (weakness of the color sense). There are thus all sorts of transition forms between normal color sense and total color blindness.

How we are to distribute the cases of partial color blindness into their different categories depends upon the theory of color perception that we adopt as the fundamental one. In the following discussion we shall first start with the Young-Helmholtz theory. This assumes the existence of three fundamental sensations, corresponding to the fundamental colors red, green, and violet; and supposes the other color sensations to originate through a varying mixture of the fundamental sensations. Partial color blindness would then consist in the deficiency of the sensation for one of the primary colors, so that the color sensations of the affected individual would be compounded only of the other two fundamental colors. According to the fundamental color that is deficient we make the distinction between red blindness, green blindness, and violet blindness.

Now, in what way does a color-blind person—for instance, one affected with red blindness—comport himself? We are not to suppose that such a one does not perceive red objects at all, or that, if he sees them, they appear perfectly colorless. The fact is simply that the sensation which he has in looking at red objects is the same as that which green objects excite in him, so that he confounds red and green with each other. To understand this, we must for the present adhere to the Young-Helmholtz theory. According to this, there are in the retina three species of fibers corresponding to the three primary colors. Each one of these species of fibers is set into action by all kinds of colored light, but to a different degree of intensity. Some fibers are set into action most strongly by red rays, less so by yellow, still less by green, and least of all by violet. They are hence designated simply as the fibers for the perception of red. The curve represented in Fig. 159 A illustrates the way in which these fibers act. The different colors of the spectrum are laid off upon the abscissa, while the ordinate shows the intensity of the excitation produced by each individual color. In analogous fashion the second set of fibers is set into action most strongly by the green rays (Fig. 159 B), the third group of fibers most strongly by the violet rays (Fig. 159 C).

In Fig. 159 D the curves of all three groups of fibers are erected upon the same abscissa. The red ray, \( r \), excites most strongly the fibers for the perception of red, more feebly those for the perception of green, and least of all those for the perception of violet. Under these circumstances we get a sensation of red, because the degree of excitation of the fibers for the perception of red exceeds that of the other fibers. In like fashion, a green ray, \( gr \), stimulates the fibers for the perception of green more strongly than it does the other two kinds, and excites the sensation of green. An analogous statement holds good for the sensation of violet (\( v \)).

Now, a man afflicted with red blindness presents a condition differing from this normal one, in that the fibers for the perception of red are absent (Fig. 159 E). If he looks at the spectrum it appears to him shortened at its red end,
since he sees only blackness at spots where others still perceive red. A red ray, \( r^1 \), which falls upon this man’s retina sets into action only the fibers for the perception of green and those for the perception of violet—and of these the former more markedly, so that the resultant effect will be a green. If green light falls upon the retina, the fibers for the perception of green are again stimulated more strongly than those for the perception of violet, and again the sensation of green is produced. Where, then, we have two different sorts of sensations, viz., red and green, a person with red blindness has two that are similar—namely, both green. (The shade of green which appears to most persons with red blindness to have the same color as red is that hue of bluish-green which is complementary to red.) A person with red blindness, however, can distinguish these two sensations from each other, for, though similar indeed, they are not quite the same. They are distinguished from each other by their difference in brilliancy. For let us assume that the red and green rays selected as an example are of the same brilliancy to a normal eye. Such an eye can still distinguish them apart, owing to their difference in color. The case is otherwise with a red-blind man; in him the red ray, in spite of its luminous intensity, causes but slight stimulation of the fibers for the perception of green, simply because these fibers are in any case but slightly sensitive to red rays. The sensation produced by the red ray is hence a feeble one, and the color which is seen looks dark. The green ray, on the other hand, is perceived in its full brilliancy, because the fibers for the perception of green are stimulated by it in the normal fashion. In this way it is generally possible for the man with red blindness to distinguish red
from green, not indeed by the difference in color, but by their difference in brilliancy. This difference, however, between the character of his own sensation and that of a man with normal vision usually remains unknown to the color-blind person. When growing up, he learns the expressions red and green from his associates, certain objects being pointed out to him as red and others as green. He is told that the leaves of the cherry tree are green and the cherries between them red. And, as he too notices a difference between the leaves and the cherries, although it is a difference of brilliancy and not of color, he thinks that he sees just as other people do. On account of the sensitiveness to differences of brilliancy, which color-blind persons usually possess, they can generally tell correctly the color of objects even when they have never seen them before. Thus it happens that, in the case of many color-blind persons, neither do they themselves know anything of their defect nor are their associates aware of it. Thus a physician once came to me who was charged with the task of testing the employees of a railroad for color blindness. He wished to inform himself under my tuition in regard to the methods of investigating the color sense. When I came to show him the different tests, it soon turned out that he himself was red blind. Up to that time he had known nothing of this fact, and indeed was quite offended at the imputation of being color blind. And it even happens that the color blind carry on occupations which in a peculiar degree demand an excellent sense of color; thus there are color-blind painters.

While with many of the color blind the defect remains undiscovered during their whole life, in others it is disclosed by their committing some gross mistake in the choice of colors, as, for instance, in the case of the tailor who wished to mend a black coat with a patch of red cloth. How does a color-blind man commit such mistakes? We have seen above that a man with red blindness distinguishes red and green of equal brilliancy by the fact that the former looks darker to him than the latter. If now we gradually diminish the brilliancy of the green, we must finally reach a point at which this color looks no lighter to the man with red blindness than does the red which has not been altered in brilliancy. At this moment he is deprived of the means of discriminating between the two colors, afforded by their difference in brilliancy, and is now unable in any way to distinguish the two colors apart. Colors chosen upon this principle are hence known as confusion colors. On account of the great sensitiveness of color-blind people to differences in brilliancy, the preparation of these confusion colors requires great care, and is best performed by painters who are themselves color blind, and who keep toning down two different colors until they seem to them to be alike. Confusion colors prepared in this way are very well adapted for the detection of color blindness (Stilling).

What has been said in regard to those affected with red blindness is also true of the other two classes of the color blind, those affected with green blindness and those affected with violet blindness. The circumstance that is common to all people affected with partial color blindness is that one of the three fundamental sensations is deficient. It is not necessary that one of the three species of fibers should be completely absent, as, for the sake of simplicity, has been assumed in the example above adduced. On the contrary, it is probable from various reasons that the excitability of one kind of fibers has simply become altered so that its curve is to be imagined as something different from that which the plan outlined above presents; the curve of the fibers for the percep-
tion of red, for example, approximating to that of the fibers for the perception
of green.

Many authors place Hering’s theory of color perception at the basis of their
classification of color blindness. This theory starts from an analysis of the sensa-
tions which we have in looking at a color. Most colors excite in us a mixed
sensation. Thus, in orange we see besides yellow a certain amount of red; an-
other sort of yellow, again, has a tinge of green, etc. Still, among all the shades
of yellow, there is one in which we can perceive no other color besides yellow;
this is the pure or primitive yellow. Of such pure colors which excite in us a
simple, unmixed sensation there are besides yellow only three—namely, pure
red, pure green, and pure blue. These four primary colors form two pairs—
namely, red and green and yellow and blue. The two colors of each pair are
called contrary colors, because they have this peculiarity that they never can
be perceived at the same time in the same color. We can conceive of a blue
which affords simultaneously the impression of some green or some red, but
we cannot conceive of one which would also excite the sensation of yellow.
The contrary colors, therefore, are mutually exclusive, so far as sensation is con-
cerned.

Every color may occur in different degrees of concentration and of brilliancy.
This depends upon the fact that every color produces in us besides the sensation
of color also that of white. Colors along with their color “value” have also a
white “value,” and upon the mutual relations of these two values depend the
concentration and brilliancy of the color. The primary colors have along with
the white “value” only one color value, but the mixed colors have two. Thus,
there belong to violet a blue, a red, and a white value. Now, the way in which
the action of light upon the terminations of the nerves in our retina takes place
is that bodies (“visual substances”) are present in the latter which suffer chemi-
cal changes due to the light. Such changes may be of two different and in-
deed opposite kinds, the visual substances being either decomposed (“dis-
asimilated”) or regenerated (“assimilated”) by the light. The white value which
all colors possess depends upon the disassimilative action which they exert upon
the visual substance for the perception of black and white. In the absence
of light, assimilation of this substance takes place, so that we have the sensation
blackness. Besides the black and white visual substance there are two others—
namely, a red-green and a blue-yellow substance, as we will call them for short.
These are not altered by every kind of light, but only by that kind which has
the corresponding color value. Pure red, for instance, would disassimilate only
the red-green substance, pure green would cause its assimilation, while violet
acts both on the red-green and upon the blue-yellow substance. If pure red
and pure green light fall at the same time upon the same spot of the retina, it
depends upon the proportion between the two whether disassimilation prevails
over assimilation or the contrary. The resulting sensation consequently is either
red or green, but never both together. If the two contrary colors are so chosen
with respect to their quantity that they are in equilibrium in their action upon
the visual substance, their color values are abrogated; there only remains the
action of the two kinds of light upon the black-white substance, so that there is
a sensation of white of a certain degree of brilliancy. For these reasons, there-
fore, the contrary colors mutually exclude each other in sensation, and when
mixed in certain proportions afford a sensation of absence of color (i.e., they
are complementary colors).
According to Hering's theory of colors, the cause of color blindness must be conceived to consist in the absence of one or of both of the colored visual substances. In the latter case, in which nothing but the black-white visual substance is left, total color blindness exists; all colors now act simply by reason of their black-white values, and hence are perceived as white of different degrees of brilliancy (i.e., gray). Absence of the red-green visual substance causes red-green blindness, absence of the blue-yellow substance, blue-yellow blindness. The former comprises the great majority of cases—namely, those which according to the theory of Helmholtz are called red blind and green blind. A man with red-green blindness sees in the spectrum only two colors, yellow and blue. These are separated by a gray space (the "neutral" space) which corresponds to the pure green. Pure red and pure green act upon the eye affected with red-green blindness only with their white values and hence both appear gray, on which account they are by such an eye confounded with one another. Mixed colors undergo an alteration of their tone, inasmuch as of their two color values but one comes into play.

By far the most frequent form of congenital color blindness is red blindness (according to Hering, red-green blindness). It occurs, as observations upon a great number of men have shown, in from three to four per cent of the male population. In women color blindness is much more rare, perhaps because their color sense undergoes a sort of education through having such frequent occasion to be busy with colored objects (in dressmaking, etc.).

Color blindness entails no disadvantage upon those who are troubled with it beyond rendering them less fit for the performance of certain callings. Among these are all those occupations which require precise discrimination of colors, e.g., that of the painter, the dyer, etc. Recently particular attention has been called to the fact that the railroad and nautical service also require an accurate sense of color. The signals used on railroads or ships are most frequently red or green, which are just the colors that are confounded by most color-blind persons; in this way accidents might be caused. For this reason the employees upon railroads and seagoing vessels are at present in most countries tested with reference to their color sense, and their entry into the service is made conditional upon the proof that their color sense is perfect.

The demonstration of the existence of color blindness requires accurate and cautious testing. Many of the color blind who are aware of their defect try to conceal it from the examiner, especially if some material advantage, such as, for instance, a business position, depends upon the result of the testing. Accordingly, in the case of such persons we must be on the lookout for all sorts of artifices, and particularly on the lookout for previous practice in the ordinary methods of testing the color sense. On the other hand, people with a good color sense might be considered to be color blind if from want of imagination or practice they call the colors that are set before them by incorrect names. We should not, therefore, undertake to test the color sense by setting colored objects before the person and asking him the name of the color. If we do so, the man who is color blind will in many cases by using a little attention give the right answer, while, on the other hand, an uneducated man will not infrequently call the colors wrong. The test is better performed by placing before the person under examination those colors which according to experience color-blind persons readily confound with each other, and by then seeing whether mistakes are actually committed. For this purpose a large assortment
DISEASES OF THE OPTIC NERVE.

of colored worsteds are the best adapted (Seebeck, Holmgren). One of the worsteds is set before the person to be tested, and he is asked to place with it all the worsteds that look like it. If, then, samples of different and indeed quite dissimilar colors are placed together—for instance, gray and red with green—these give the special confusion colors of the person under examination, and make it possible to determine the kind of color blindness that he has. Some have had embroidery patterns to serve as test objects made out of those worsteds the colors of which are most frequently confounded (Daas, Reuss). Colored papers or powders may also be employed instead of worsteds.

The test most in use besides Holmgren's worsted test is the pseudo-isochromatic diagrams of Stillig. These consist of patterns arranged like a chessboard and composed of squares of different colors, which are disposed so as to form letters or figures. The colors of the squares are selected by the aid of a color-blind painter so as to correspond to the confusion colors of a man who is color blind. To the latter, then, all the squares appear of the same color, so that he can not recognize the letters or figures formed by them.

For the scientific examination of the color blind, the spectroscope is indispensable. By its aid we determine whether the color-blind man sees the spectrum shortened at one of its two ends, and what colors he can distinguish in it. Furthermore, by means of the apparatus we show him isolated portions of the spectrum and make him tell, both by naming the colors and by comparing them with specimens of other colors, how the different parts of the spectrum look to him. For a quantitative determination of the color sense, the method of Donders, Weber, Wolffberg, and others is adapted. Here small disks of colored paper upon a background of black satin serve as test objects. When the color sense is normal, disks of a definite size must be recognized at a definite distance, which to be sure is different for the different colors. The weaker the color sense of the person under examination, the nearer must he get to be able to tell the color correctly, even supposing that he recognizes it at all. The distance at which the color begins to be recognized gives the intensity of the color sense for the color in question. Instead of colored paper we may use colored glasses which are lighted from behind. These last tests (lantern tests) approximate nearest to the conditions which are present in the railroad service.

Many other methods of testing the color sense have been proposed, all of which are of use, as in doubtful cases we can arrive at definite results only by means of numerous corroborative experiments. Only one of them need be mentioned here—namely, the tissue-paper test of Meyer. If a border of gray paper is placed upon red paper, it appears to have the complementary color of its background (that is, green). This is particularly apparent when the whole is covered with a sheet of tissue paper. A color-blind man, who does not recognize the color of the paper forming the background, will also fail to tell correctly the complementary color of the border.

It is impossible to cure congenital color blindness.

Acquired color blindness is a frequent symptom of affections of the light-perceiving apparatus—that is, of the retina, of the optic nerve, and even of the central terminations of the optic tracts. Affections of the optic nerve, particularly its atrophy, are, however, by far the most frequent cause of disturbances of the color sense. Such disturbances are never absent when once the visual acuity has become considerably reduced as a consequence of the affection of the
optic nerve. In these cases the color blindness does not set in suddenly, nor for all the colors at once; but first and very gradually the perception of green and red is extinguished, then that of yellow, and last of all that of blue. Acquired color blindness may therefore be utilized for purposes of diagnosis. If the sight is impaired simply by dioptic obstacles (e.g., by opacities in the cornea and in the lens), the perception of color remains intact, even when the general features of objects can no longer be recognized; but as soon as the color sense proves to be defective, an affection of the light-perceiving apparatus must be assumed to exist. (For the color sense in the periphery of the visual field, cf. page 33 and Fig. 19.)
CHAPTER XII.

DISEASES OF THE LIDS.

ANATOMY AND PHYSIOLOGY.

105. The lids (palpebrae *) are, in origin, folds of the external skin, which push their way over the eyeball to cover and protect it. The boundaries of the upper lid are formed by the eyebrow (supercilium), but the lower lid passes without any sharp line of demarcation into the cheek. The lids bound the palpebral fissure, at the two extremities of which (the angles of the eye) they unite. The external angle of the eye (canthus externus) runs out to a sharp point; when the lids are drawn apart there is put upon the stretch a delicate reduplication of skin (the external commissure), connecting the upper and lower lids in this situation. The inner angle of the eye, on the contrary, presents a horseshoe-shaped notch, at the bottom of which lies the caruncle (Fig. 30, C). The mean width of aperture of the palpebral fissure varies with the individual. On an average, the fissure opens so far that, with the ordinary way of looking, the upper lid covers the uppermost part of the cornea, while the lower lid leaves the lower margin of the cornea free. The shape and width of the palpebral fissure are of the greatest influence upon the expression of the eye. Eyes which have the reputation of being large and beautiful are generally not really large eyeballs, but eyes with a wide-open palpebral fissure. So, too, the expression of the laity that “the eye is smaller” usually has reference not to an actual diminution in the size of the eyeball, but to a lesser degree of patency of the palpebral fissure.

The skin covering the lids is about the thinnest in the human body. As, moreover, it is but very loosely attached to its bed through the medium of a lax and non-fatty connective tissue, it can very readily be made to shift its position. For the same reason it can readily wrinkle up and stretch out again, as the lids open and shut. In old people it is thrown into numerous wrinkles. Because of the ease with which it is displaced, it is readily distorted by cicatrices in its vicinity, so that ectropion cicatriciale is produced. So, too, on account of the laxity of its attachment, it is very prone to be affected by extensive ecchymoses and

* From palpēra, to stroke.
edema. It is only in the neighborhood of the free border of the lid that the skin is closely united to the subjacent tarsus by rigid connective tissue. This free border of the lid forms a narrow surface which looks downward in the upper lid, upward in the lower lid (r, r, Fig. 24). When the lids are closed, these two surfaces are adjusted to each other with perfect accuracy, so that, with the aid of the lubrication afforded by the secretion of the Meibomian glands, they are able to keep the lachrymal fluid in. When we open the lids forcibly in people affected with lachrymation and blepharospasm, we not infrequently see spurt from the eye a stream of tears which had been kept in by the closed lids—a proof that the closure of the lids is water-tight.

The lines along which the surfaces of the free border of the lids is reflected on to the anterior and the posterior surface, respectively, of the lid are called the anterior and posterior margins of the lids (Fig. 160, v and h); the narrow surface lying between them is the intermarginal strip. The anterior margin of the lid is rounded off, and has jutting from it the eyelashes (cilia), which are arranged in several rows one behind the other. The cilia upon the upper lid are larger and more numerous than upon the lower. The posterior margin of the lid, where the free border of the lid passes into the conjunctival surface of the latter, is sharp. Directly in front of it lies a single row of small puncta, the orifice of the Meibomian glands (m, Figs. 161 and 162). Between these and the cilia runs a fine gray line (i, Fig. 161) which divides the intermarginal strip into two parts, anterior and posterior. The description here given of the structure of the lid answers for its whole extent as far inward as the spot where the punctum lacrimale is situated, a spot the position of which corresponds to the inner extremity of the tarsus (p, Fig. 161 and Fig. 162).

On evertting the lids we get a view of their posterior surface, which is covered with the conjunctiva. This is intimately adherent to the tarsus, and, particularly in the upper lid, allows the Meibomian glands situated in the tarsus to show through clearly.

The movements of the lids are performed in the following way: In opening the eye the upper lid is raised by the levator palpebrae superioris, while the lower lid sinks by its own weight, although it does so but very little. Owing to the fact that fibers from the tendon of the levator (Fig. 160, f) run to it, the skin of the lids above the convex border of the tarsus is drawn quite far in between the eyeball and the upper margin of the orbit, at the same time that the upper lid is raised. In this way there is formed a furrow, over which the lax skin of the lid hangs down under the form of a fold (covering fold, d, Figs. 24 and 160). In many cases this is so large as to reach down beyond the free border of the lid, and thus cause disfigurement (ptosis adiposa; see § 113).

With regard to the closure of the lid, we must distinguish between
DISEASES OF THE LIDS.

moderate closure, such as takes place during the act of winking and in sleep, and the act of squeezing the lids tightly together. In the former the upper lid sinks by its own weight, while the lower lid is raised, al-

![Diagram of the upper lid with labels](image)

**Fig. 100.—Perpendicular Section through the Upper Lid. Magnified 5 × 1.**

The skin of the lid presents in the upper part, above a sulcus, the covering fold, \( d \); below, it covers the anterior edge of the lid, \( c \). In the skin are found fine hairs, \( e c \), sweat glands, \( a \), cilia, \( e c c \), and in the neighborhood of the latter Zeiss's glands, \( z \), and the modified sweat glands, \( s \). Beneath the skin lie the transversely divided bundles of fibers of the orbicularis, \( o o \), of which those placed most internally, \( r r \), form the musculus ciliaris Riolani. The posterior surface of the lid is covered by conjunctiva which is intimately adherent to the subjacent tarsus, \( f \), and over the latter shows papillae, especially at a point corresponding to the convex (upper) border, \( c o \), of the tarsus. Still higher up (at \( h \)) in the neighborhood of the retrotarsal fold it acquires an adenoid character. The Mebboshian glands, \( g \), have their orifices, \( w \), in front of the posterior edge, \( b \), of the lid; above them lie the mucous glands, \( w \), and still higher Müller's musculus tarsalis superior, \( p \), and the levator palpebrae superioris, \( l \). From the latter the lash of fibers, \( f \), passes to the skin of the lid. \( a s \) is the arcus tarsalis superior; \( a i \), the arcus tarsalis inferior; from the latter the rami perforantes, \( r p \), run, at first straight downward, then backward, through the tarsus.

though quite imperceptibly, by the orbicularis muscle. Contact of the free borders of the two lids does not take place throughout their whole extent at once, but begins at the external canthus and is then
made all along the lid successively to the internal canthus. Because of this fact, the lachrymal fluid which the lids may be said to wipe off from the surface of the eyeball is propelled along in the palpebral fissure, as it closes, toward the inner canthus, and thus arrives at the punctum lacrimale. When the lids become closed in sleep the eyeball also performs a movement, rolling upward. Any one, when he is fighting against sleep and his lids are shutting together, can feel that the eyes are being drawn up as by an invisible force. In persons with thin lids (women and children) we can recognize the convex cornea through the upper lid, and determine that it is directed upward beneath the closed lids. It is still easier to do this in cases of staphyloma of the cornea. This behavior on the part of the eyeball is important, inasmuch as the protection of the cornea by the upper lid is thus provided for, even when the palpebral fissure is not completely closed in sleep. It is not till lagophthalmus reaches quite a high degree that a portion of the cornea remains constantly visible in the palpebral fissure; and this portion is, in fact, always the lowest part of the cornea, which consequently is most exposed to the danger of undergoing desiccation (keratitis e lagophthalmico; see page 174).

In squeezing the eyes together not only are the lids closed, but also the skin in the vicinity is drawn in toward the palpebral fissure, and is thus thrown into numerous wrinkles.

Winking can be performed voluntarily, but usually results through reflex action, which is excited by the sense of dryness in the eye or by the presence of foreign bodies—dust, smoke, etc. It is effected by means of the trigeminus, which is the sensory nerve of the eye and its vicinity, and is hence rightly called the sentinel of the eye. The effect of winking is threefold: It covers the surface of the eyeball with a uniform layer of lachrymal fluid, and hence prevents its desiccation; it wipes the dust off from the eye; and, lastly, it propels the lachrymal fluid toward the inner angles and into the puncta. Hence, interference with winking entails serious disturbance. Epiphora develops, since the tears, instead of entering the puncta, run over the border of the lower lid and down upon the cheek, and the cornea becomes diseased because it is neither properly moistened nor cleansed from the dust which falls upon it.

Dissection of the lids presents the following structural conditions: In the lids are found two voluntary muscles, the orbicularis (sive sphincter) palpebrarum and the levator palpebræ superioris. The orbicularis lies directly beneath the skin of the lid to which it belongs; it is nothing but a flat expanded cutaneous muscle which surrounds the palpebral fissure in the form of a circle. We can distinguish in it two portions, an internal and an external. The internal portion lies in the lids themselves, and is thence called the palpebral portion (portio palpebralis). Its fibers (H, Fig. 161) originate from the internal palpebral
DISEASES OF THE LIDS.

ligament, the *ligamentum canthi mediale* (sive *canthi internum*). This is a firm, fibrous ligament (l) which is attached to the frontal process of the superior maxilla (F), and lies directly beneath the skin of the internal angle of the eye (Fig. 162). Hence, it is visible even in the living, especially in lean persons with thin skins, if the eyelids are drawn outward, a manoeuvre that causes the internal palpebral ligament to project and bulge the skin forward. From the internal palpebral ligament the fibers of the palpebral portion of the orbicularis run in arches over the anterior surface of the two lids, covering them from the free border of the lids to the margin of the orbit, and finally meeting at the outer side of the palpebral fissure. Here they partly unite with each other and partly are inserted into the external palpebral ligament (the *rhaphe palpebralis lateralis*; *Fig. 161, le, and Fig. 162*) which is here situated. The external portion of the orbicularis is the orbital portion (portio orbitalis). It lies outside of the palpebral portion, upon and in the vicinity of the margin of the orbit.

The palpebral portion of the orbicularis moves only the lids themselves, and is the only part that comes into play in the ordinary act of winking as well as in the moderate closure of the palpebral fissure. The orbital portion contracts the skin in the vicinity of the lids, and thus makes it possible to squeeze or screw the lids firmly together, in which act, therefore, the entire orbicularis participates.

The *levator palpebrae superioris* arises at the bottom of the orbit from the circumference of the optic canal, and from this point runs forward, lying as it does so upon the superior rectus. Spreading out in the form of a fan, it is attached by means of a short tendon to the upper margin and the anterior surface of the tarsus of the upper lid (l, Fig. 160). Besides this striated levator muscle of the lid, there is also an organic muscle discovered by Heinrich Müller, and called the *musculus tarsalis superior*. The smooth fibers of this arise from between the striated fibers of the levator, along the under surface of which they too run to the upper margin of the tarsus (p, Fig. 160). An analogous bundle of smooth muscular fibers also exists in the lower lid, where it lies to the lower side of the inferior rectus, and is attached to the tarsus of the lower lid (*musculus tarsalis inferior* of Müller).

The orbicularis is innervated by the facial nerve, the levator by the oculo-motor nerve, and the two tarsal muscles of Müller by the sympathetic.

At the free border of the lids there are found, in the vicinity of the cilia, hair follicles and the sebaceous glands (here called Zeiss's glands; z, Fig. 160) connected with them. Moreover, close to the margin of the free border of the lids, sweat glands occur, the structure of which varies somewhat from that of the ordinary sweat glands, for which rea-

* Synonym: *Ligamentum canthi externum.*
son they are designated under the name of modified sweat glands or Moll's glands (s, Fig. 160). They empty into the glands of the ciliary hair follicles.

The tarsus (t, Fig. 160) forms, so to speak, the skeleton of the lid, giving it rigidity of form and affording it firm support. The tarsus of the upper lid is broader (higher) than that of the lower (Fig. 162). In the tarsus are distinguished a free and an attached (convex) border, and also an anterior and a posterior surface. The fibers of the orbicularis (o, Fig. 160) lie upon the anterior surface, while the posterior surface is covered by the conjunctiva. The two extremities of the tarsus are continuous with the external and internal palpebral ligaments. To the convex border of the tarsus is attached a fascia which runs from it to the margin of the orbit, and upon either side is connected with the palpebral ligaments (fascia tarso-orbitalis). Hence, when the lids are shut the orbit is closed in all over anteriorly by fibrous structures which together form the orbital septum—namely, the two tarsi in conjunction with the fascia tarso-orbitalis and the two palpebral ligaments (Fig. 162).

The tarsus consists of fibro-cartilage, in which are imbedded the Meibomian glands (g, Fig. 160). These are elongated acinous glands, which, lying parallel with each other, traverse the tarsus from its attached to its free border. They are longest in the middle of the tarsus, where the latter attains its greatest height, and grow progressively shorter toward the edges of the tarsus (Fig. 162). In their essential character the Meibomian glands are nothing but large sebaceous glands. Like the latter they secrete sebum, which lubricates the edges of the lids. By this the overflow of tears over the free border of the lids is hindered; the closure of the palpebral fissure is rendered water-tight; and, lastly, the skin of the border of the lid is protected from maceration by the tears. Acinous mucous glands are frequently found near the convex border of the tarsus (Fig. 160, w, and Fig. 162).

In accordance with its anatomical structure, the lid can be readily divided into two parts. The anterior or cutaneous portion contains the skin, together with the cilia and also the fibers of the orbicularis. The posterior or conjunctival portion consists of the tarsus with the

EXPLANATION OF FIG. 160.—The nasal wall of the orbit is formed by the lamina papyracea (os planum) of the ethmoid, L, the lacrimal bone, T, and the frontal process, F, of the superior maxilla. The last two bones bound the fossa sacci lacrimalis, in which lies the lacrimal sac, S. The bony walls of the orbit are covered by a periosteum (periostracum), P, from which the palpebral ligaments take their origin. The internal palpebral ligament, t, divides into an anterior limb, a, and a posterior limb, b, which together inclose the lacrimal sac. From the posterior limb arise the fibers of Horner's muscle, H. le, external palpebral ligament; l, and its, the slips of fascia, likewise originating from the periosteum, going to the internal rectus muscle, I, and the external rectus, E. The skin, X, of the dorsum of the nose passes into the lower lid, at whose free border are seen the cilia and the orifices of the Meibomian glands, m, between the two extends a gray line. i. At the inner extremity of the lid lies the inferior punctum lacrimalis, p, and farther along in the conjunctival sac the caruncle, c, and the plica semilunaris, n. From the eyeball, the lower half of which is exhibited, the lens and along with it the vitreous humor have been taken out, and the pigment epithelium has been removed by pencilling. The anterior chamber, k, the iris, ir, and the ciliary body, consisting of the corona ciliaris, c., and the orbiculus ciliaris, or, are visible. Back of the ora serrata, o, is the choroid with its veins which are aggregated into vortices, v. j, fovea centralis retinae; c, central vessels of the optic nerve, O, entering it at e.
Meibomian glands and of the conjunctiva. The two portions are joined together simply by loose connective tissue, and can therefore be very readily separated from each other. For this purpose we only need to make a plunge with a knife into the gray line that runs between the

![Diagram](image)

**Fig. 162.—Septum Orbitalis and Lacrimal Sac. Natural size.**

The skin and the muscular fibers of the orbicularis have been removed from the lids and the parts surrounding them, so that the septum orbitalis lies exposed to view within the bony circumference of the orbital cavity. The septum orbitalis consists of the tarsus, which is broader in the upper lid, narrower in the lower, and of the fascia tarsal-oralis. The external extremities of the tarsal are attached by the broad, but not very dense raphæ palpebrai internæ to the malar bone, somewhat below the suture, N, between this bone and the sgyomatic process of the frontal bone. The internal palpebral ligament is narrow, but stout: its anterior limb, which is the only one visible in the drawing, runs from the fronto-orbital process of the superior maxilla, S, outward, and divides so as to be inserted into the inner extremities of both the upper and lower tarsal cartilages. (At the point of insertion is seen the somewhat projecting papilla lacrimalis.) The fascia tarsal-oralis, represented in the drawing by the radial lines of shading, runs from the convex border of both tarsal cartilages, and from the palpebral ligaments to the margin of the orbit, and together with these parts closes the orbit in front. The tarsal cartilages and the fascia are here supposed to be transparent. Hence, in the former there can be seen the Meibomian glands, which, in consonance with the varying breadth of the tarsus, diminish in height from the center of the latter to its two ends. Moreover, in the upper lid three acinous glands (cf. Fig. 160, r) are visible along the upper border of the tarsus. Still higher up a curved line shows the situation of the fornix conjunctivae. Upon the fornix, especially in its nasal half, lie the acinous glands of Krause, while in the temporal half of the tarsus are found lobules similar in character, but more densely packed, representing the inferior lacrimal gland. This adjoins the excretory ducts of the superior lacrimal gland, whose anterior border comes into sight just below the upper margin of the orbit. At the inner and lower margin of the orbit the bone has been chiselled away to show the lacrimal passages. The lacrimal sac lies behind the internal palpebral ligament, its apex rising a little above the latter. The line that in the drawing runs straight upward from the apex of the lacrimal sac to the horizontal suture is the suture between the frontal process of the superior maxilla and the lacrimal bone, upon which two bones the lacrimal sac rests (cf. Fig. 161, F and T). The lacrimal sac, after undergoing a slight constriction, passes into the nasal duct. To the outside of this is the antrum of Highmore, H, which has been opened up and is accessible to view. Z, suture between the superior maxilla and the malar bone. F, supra-orbital foramen.

cilia on the one hand and the orifices of the Meibomian glands on the other (Fig. 161, i). The division of the lid into its two layers forms an important part of many operations for trichiasis.

The ligamentum palpebrale mediale requires a more precise description than that given above. It arises from the fronto-orbital process of the superior maxilla (F, Fig. 161) and first passes straight outward, skirting the anterior wall of the lacrimal sac (S). Then it bends back, winding about the anterior and external walls of the lacrimal sac, and runs backward to the crista lacrimalis posterior of the
lachrymal bone (T). We accordingly distinguish in the internal palpebral ligament two branches, which meet at the point where it bends backward. The anterior branch (a) is situated directly beneath the skin, and hence is visible in the living subject; at its point of reflection it gives off a process to the upper and lower tarsus respectively (Fig. 162). The posterior branch (b), which starts from the point of reflection and extends to the crista lacrimalis, can be brought to view only by dissection. The two branches together with the lachrymal bone (T) bound a space, triangular on cross-section, in which lies the lachrymal sac, the walls of the latter being united by loose connective tissue with the inner surface of the ligament. Into the external surface of the ligament are inserted the fibers of the palpebral portion of the orbicularis. One portion of the fibers of the latter springs from the anterior, another portion from the posterior branch of the ligament. The latter fibers, whose insertion is in part continued out beyond the posterior extremity of the ligament upon the inner wall of the orbit, are called the pars lacrimalis musculi orbicularis,* or, from their discoverer, Horner's muscle (H). The insertion of the fibers of the orbicularis into the internal palpebral ligament is of significance for the conduction of tears. When these fibers contract, they draw up the ligament, and hence also indirectly draw up the wall of the lachrymal sac so far as it adjoins the ligament. By means of this the sac is dilated, and is thus enabled to draw the tears toward it by a sort of suction process. This, then, is an additional factor which we must take into account in considering the part which the closure of the lids plays in the conduction of the tears.

The external ligament, or rhaphes palpebralis lateralis (Fig. 161, le, and Fig. 162), is neither as large nor as sharply defined as the ligamentum internum. It is represented simply by a rather pronounced accumulation of connective tissue in the substance of the orbicularis, a sort of inscriptio tendinea of the latter.

The fibers of the orbicularis fuse with the anterior surface of the tarsus. In the neighborhood of the free borders of the lid there are some bundles which lie near the inner margin of the lid, partly in front of, partly behind the excretory ducts of the Meibomian glands (musculus ciliaris Riolani sive subalaris; r r, Fig. 160).

The blood-vessels of the upper lid arise from two arterial arches, the arcus tarsaeus superior and inferior (as and ai, Fig. 160), which run along the upper and lower margins of the tarsus. From them fine twigs are given off to all parts of the lid. The most vascular portions are the free border of the lid and the conjunctiva (cf. page 39).

The veins of the lids are still more numerous and of wider caliber than the arteries. They form, beneath the upper and lower retrotarsal folds, a dense plexus, which even in the living subject can be seen in this situation shining through the conjunctiva of the fornix when the lid is everted. The veins of the lids in part empty into the veins of the forehead, in part into the branches supplying the ophthalmic vein. The latter set, in order to reach to the veins of the orbit, must pass between the fibers of the orbicularis. Hence, permanent contraction of the orbicularis, such as occurs in blepharospasm, may lead to engorgement of the veins, and consequently to oedema of the lids, a result which, in fact, we very frequently observe, especially in children with conjunctivitis eczematosa and coincident blepharospasm.

The lymphatic vessels of the lids are abundant, especially in the conjunctiva. Furthermore, lymph spaces of larger size (periacinous spaces) are found about the acini of the Meibomian glands. The lymphatic vessels of the lids run to the lymphatic gland situated in front of the ear, which, consequently, is often found to be

* [The tensor tarsi of many anatomists.—D.]
swollen in affections of the conjunctiva (particularly in conjunctivitis eczematosa and acute blennorhea).

That part of the cornea and of the scleral conjunctiva which ordinarily is not covered by the lids is called the interpalpebral zone. Since in this situation the eyeball is deprived of the protection of the lids, it is particularly exposed to many sorts of disorders, and it is therefore important to know its situation. This situation changes according to circumstances—namely, in the following way: 1. In the ordinary way of looking the interpalpebral zone comprises the entire cornea, with the exception of its extreme upper part, and comprises also a corresponding large triangular area of the conjunctiva on both sides of the cornea. 2. When the eyes are a little screwed together—e.g., when we are walking in the face of the wind or rain or in the midst of smoke—the interpalpebral zone diminishes in size, and at the same time is depressed so as to occupy the lower half of the cornea. The lower lid is raised a little and covers the extreme lower part of the cornea, and the upper lid drops a good deal, so that its border lies only a little above the center of the cornea. Then the interpalpebral zone forms upon the cornea a zone from four to six millimetres in breadth which occupies the lower half of the cornea, with the exception of its extreme lower part, and with which there is connected on either side a very small triangle of scleral conjunctiva. The interpalpebral zone as thus defined is the part which more than any other is constantly exposed to external injuries. Hence, in many men we find this portion of the scleral conjunctiva somewhat injected all the time, and later on in life we find it occupied by the pinguecula. In this spot are developed pterygium, zonular opacity of the cornea, and xerosis of the conjunctiva and cornea. In inflammations of the conjunctiva this division of the latter is frequently distinguished by being somewhat more swollen than the rest, or it may even protrude into the palpebral fissure under the form of a transversely placed, very oedematous swelling. 3. When the eye is turned upward in sleep the interpalpebral zone, in case the lids are not completely closed, is displaced, so as to occupy mainly the scleral conjunctiva beneath the cornea, and at most the extreme lower portion of the latter. Affections within the confines of the interpalpebral zone as thus defined are found when the palpebral fissure is kept open during sleep, and hence mainly in lagophthalmus, in which the conjunctiva beneath the cornea is found injected or oedematous, and in which, when the affection is of greater extent, the lowermost division of the cornea also suffers damage. The same turning upward of the eyeball that occurs in sleep takes place also when one winks because of the approach of anything endangering the eye, for which reason injuries by burns and caustic substances affect principally the extreme lower portion of the cornea.

I. Inflammation of the Skin of the Lids.

106. In the skin of the lids we find almost all those diseases which appertain to the skin in general. With regard to them, therefore, reference must be made to the text-books on skin diseases. In this place only such affections of the skin of the lids will be considered as are of comparatively frequent occurrence in the lids, or which, in consequence of the peculiar anatomical structure of the latter, present some special features in their course and their results.

1. Ezanthemata.

Among the acute exanthemata erysipelas requires special mention. If this attacks the skin of the face, the lids participate very markedly
in the inflammation, so that they are very greatly swollen, and the patient for several days together can not open his eyes. When the swelling and infiltration are specially marked, the skin of the lids becomes gradually discolored and blackish, and at length to a large extent gangrenous (erysipelas gangrénosum). Not infrequently the erysipelatous process penetrates under the guise of a phlegmonous inflammation into the deeper parts, so that abscesses are produced in the lids or even in the orbit itself. In the latter case, implication of the optic nerve may occur, and, by transmission of the suppuration to the cranial cavity, meningitis may take place and lead to a fatal issue.

*Herpes zoster* is an affection of the skin which consists in the formation of vesicles along the terminal expansions of a nerve. Among the cranial nerves the trigeminus is the one in whose area of distribution this affection occurs. The efflorescences are then found in the vicinity of the eye, for which reason herpes of the trigeminus is known as herpes zoster ophthalmicus or zona ophthalmica.

Violent neuralgic pains in the course of the trigeminus usually precede for some days the outbreak of herpes. Then the exanthem makes its appearance, with accompanying febrile symptoms—vesicles, which for the most part are arranged in groups, starting up upon the reddened skin. The vesicles most frequently occupy the region of distribution of the first branch of the nerve, so that they are found upon the upper lid, upon the forehead as far as the scalp, and also upon the nose. When the district supplied by the second branch of the trigeminus is affected, the vesicles are situated upon the lower lid, over the superior maxillary region as far down as the upper lip, and over the region of the malar bone. Sometimes the terminal expansions of both branches are affected simultaneously, while it is extremely rare for the region of the third branch to be involved.

At first the vesicles contain a limpid fluid, which soon becomes cloudy and purulent, and finally dries up into a crust. If this is removed, an ulcer is found beneath it, a proof that the suppuration has penetrated into the corium. After the ulcer heals, cicatrices remain which are visible during the whole life, and by their characteristic arrangement render it possible to diagnosticate the previous existence of a herpes zoster even years afterward. By this formation of cicatrices the vesicles of herpes zoster are distinguished from those of herpes febrilis, in which the epidermis alone is detached by the fluid, so that they heal without leaving any trace of their existence behind (see page 189).

The affection of the skin is very frequently complicated with an analogous affection of the cornea, upon which small vesicles likewise form. By the presence of such a complication the prognosis of herpes zoster is rendered essentially worse; for then the disease is protracted, and, moreover, often leaves behind permanent corneal opacities.
An inflammatory affection of the trigeminus, which is located either in the trunk of the nerve itself or in the Gasserian or ciliary ganglion, lies at the bottom of herpes zoster ophthalmicus. By what means the inflammation of these structures is produced remains in most cases unknown. In some cases herpes has been seen to develop as a result of cold, the use of arsenic, and poisoning by carbon monoxide gas.

The treatment of herpes zoster is purely symptomatic. We avoid opening the vesicles, as by doing so the raw surface in the skin would be exposed and pain would be excited. To prevent this we sprinkle the affected spots with dusting powder (rice starch) which causes the vesicles to dry up into crusts, beneath which the ulcers can heal undisturbed. The affection of the cornea is to be treated according to the ordinary rules. For the affection of the nerve itself the internal administration of salicylic acid is said to be of service (Leber).

Among the chronic exanthemata affecting the lids, eczema is the most frequent. It is found particularly under the form of moist eczema in children, when it is given the name of crusta lactea (milk crust, tetter). In children it forms the most frequent concomitant of conjunctivitis eczematoso. The connection between the eczema and the conjunctivitis is either that the two owe their origin to the same disease, scrofula, or that the eczema is the result of the conjunctival affection; or, as the latter is associated with profuse lachrymation, the lids are kept constantly moist with the overflowing tears, and thus become eczematous. Moreover, children are in the habit of rubbing the eyes with the hands, and by means of this the whole vicinity of the eye is made wet with the lachrymal fluid. A similar eczema due to a permanent wetting of the skin also occurs frequently in adults when they suffer from epiphora in consequence of catarrh, blennorrhoea of the lachrymal sac, or ectropion; the eczema is then localized upon the lower lid.

Eczema requires treatment, both upon its own account and also because of any conjunctivitis eczematoso that may chance to be present. The progress of the latter to a cure is distinctly more rapid if the eczema is at the same time done away with; contrary to the popular belief, which is prone to assume the opposite. (We often hear the complaint made that "the eruption which the physician has driven from the skin has struck into the eye.") Treatment is usually carried on by means of ointments, of which Hebra's diachylon ointment, or ointments of oxide of zinc or of white precipitate (one to two per cent), are the ones generally selected. The ointments are spread thickly upon a pledget of linen, which is laid upon the closed lids and retained in place by a bandage. In extensive eczema the entire face may be covered with a linen mask smeared with ointment on the inside. Another efficient method of treatment consists in the application of a five- to ten-per-cent solution of nitrate of silver (see page 98).
DISEASES OF THE LIDS.

At the border of the lids eczema, being modified by the peculiar anatomical structure of this region, appears under a special form, and will receive a separate description later on as blepharitis ciliaris.

2. Phlegmonous Inflammations of the Lids.

Under this head belong: 1. Abscesses of the lids. These originate most frequently after injuries. In other cases the affection starts from the bones; periostitis and caries of the margin of the orbit lying at the root of it. This is especially apt to be the case in scrofulous children, in whom, moreover, the carious disease of the margin of the orbit is frequently referable to injury. Lastly, erysipelas not infrequently gives rise to abscesses of the lids if the inflammation penetrates from the skin into the deeper parts. 2. Furuncles and carbuncles, which, however, are of comparatively infrequent occurrence in the lids. 3. Anthrax pustule (malignant pustule). This arises through a transfer, by a process of inoculation, of the poison of anthrax (the Bacillus anthracis) from animals affected with anthrax to man. It is hence most frequently found in those persons who have to do with animals or the products obtained from them—e.g., in hostlers, shepherds, graziers, butchers, tanners, and furriers. In the Vienna clinics most of these patients come from Hungary. The disease often terminates fatally.

The symptoms of the phlegmonous processes in the lids are marked inflammatory oedema and indurated infiltration in the skin of the lid or beneath it. With this are associated swelling of the lymphatic glands in front of the ear and near the lower jaw, and fever and prostration. In the after-course of the disease disintegration of the infiltrated portions of the skin takes place, or, if the case is one of abscess, softening of the infiltrate sets in, with escape of the pus externally by its breaking through the skin. Not infrequently extensive gangrene of the skin of the lids occurs. The result of this is cicatricial shrinking of the lid in the course of healing and its consequent contraction, so that lagophthalmus or ectropion is produced. In both erysipelas and malignant pustule it is not uncommon for both lids to be affected by the destructive process. This latter presents the peculiarity that even when it is of great extent it leaves exempt the free borders of the lids together with the cilia that they bear. This exemption is perhaps to be ascribed to the fact that of all portions of the lids the free border is most abundantly supplied with blood-vessels, and hence less readily falls a prey to necrosis. The preservation of the border of the lid is a very favorable circumstance for those cases in which a plastic operation upon the lids afterward becomes necessary, since the border of the lids can be used to skirt the edge of the implanted flap.

Treatment follows the general rules of surgery. In abscesses of the lids an incision should be made as early as possible (that is, as soon as we are able to make the diagnosis), in order to prevent the extension
of the suppuration into the deeper parts (orbit and meninges). When the skin of the lids is destroyed by inflammation, it is our business to strive to prevent as far as possible the subsequent contraction of the lids due to cicatization. In large losses of substance in the lids it is best to refresh the edges of the two lids in isolated spots and unite them by sutures. As long as the palpebral fissure is kept closed in this way, lagophthalmus can not develop, and the cicatrix that forms is broader. It is also advisable in such cases to graft bits of skin upon the granulating surface of the injured lids. In order not to endanger the result by a secondary shrinking of the newly formed cicatrix, the lids that have been thus artificially united are separated again some months after the cicatization has been completed. If in spite of these measures, such a considerable contraction takes place, that lagophthalmus or ectropion is caused by it, the skin which has been destroyed must be replaced by blepharoplasty.

3. Ulcers of the Skin of the Lids.

Ulcers are produced partly as the result of injuries (burns, the action of caustic substances, and contusion), partly spontaneously. Among ulcers of the latter kind are scrofulous, lupous, and syphilitic ulcers. In children scrofulous ulcers are found not infrequently in conjunction with caries of the adjacent bone. Lupus is likewise of frequent occurrence in the lids, usually migrating to them from the neighboring regions (nose or cheek). From the lids it may pass over to the conjunctiva and even to the eyeball; and so, when lupus of the face has lasted for a long time, considerable changes in the lids and eyeballs are often found, which may even produce complete blindness.

After the subsidence of herpes zoster, anomalies in the function of the trigeminal often remain; anesthesia or neuralgia, or both combined, persisting for a long time in the area supplied by the affected branches. The cornea, which even while the inflammation is still present is less sensitive than normal, usually retains this condition of diminished sensibility for a long time. The two following phenomena likewise must be referred to alterations in the nervous influence: The first consists in the abnormally low tension that the eyeball frequently shows when it participates in the inflammation; the second is the striking elevation of temperature of the skin upon the affected side, which not only is present while the inflammation is recent, but often lasts for quite a long time afterward.

The cornea may be implicated in various ways in herpes zoster. In the first place, it may be implicated through the breaking out upon it of herpes vesicles from which quite large ulcers may develop (page 182). In other cases deep parenchymatous infiltrates may form which do not undergo purulent disintegration, but are very slow in disappearing. The cornea may also be affected indirectly, in that a paralysis of the trigeminal remains, and as a consequence of this a keratitis neuroparalytica is set up. Then I have seen two cases in which herpes was complicated with facial paralysis, and, as a result of the latter, a keratitis e lagophthalmico developed. Iritis if often associated with these various diseases of the cornea, and iritis and irido-cyclitis may also develop as a result of herpes spontaneously—i. e.,
DISEASES OF THE LIDS.

without there being any simultaneous affection of the cornea at all. Paralysis of
the oculo-motor nerve also occurs in consequence of herpes zoster.

From what has been said, herpes zoster is to be looked upon as a serious disease,
which in some few cases has actually caused death. Refrigeration, the use of ar-
senic, and poisoning by carbonic-oxide gas, have been observed as causes of herpes
zoster, but in most cases all clue to the etiology is wanting.

Ecema of the lids is not infrequently artificial—that is, caused by the appli-
cation of irritant ointments, by compresses, or by moist dressings. It hence often
arises as an unpleasant complication when there is a necessity of keeping an eye
for a long time beneath a bandage. Adhesive plaster, too, such as is employed in
bandaging the eyes, excites ecema in many persons.

In adults, ecema squamosum sometimes occurs as a chronic affection of the
skin of the lids.

Among the ulcers of the skin of the lids must also be mentioned vaccine ulcers.
The way in which they develop is that by some carelessness secretion is carried
from children’s vaccine pustules to the lids. They are found most frequently in
women whose children have been vaccinated a short time before. They form
pretty large, very coated ulcers, which are situated upon the edges of the lids, and
are accompanied by considerable edema of the lids and even of the conjunctiva.
To these symptoms are added swelling of the lymphatic gland in front of the ear,
and sometimes also fever (cf. page 109).

Elephantiasis affects the lids under the form of a monstrous thickening, espe-
cially pronounced in the upper lid which hangs down over the lower and upon the
cheek, and which, on account of its weight, can not be raised, and thus renders
vision with the eye so covered impossible. The treatment consists in excision of the
skin to a sufficient extent for the lid to regain approximately its normal dimensions.

Under the name of chromidrosis * is denoted that rare affection in which the
sweat from the skin of the lids is colored. As a result of it blue spots come out
upon the lids, which can easily be wiped away with a cloth that has been dipped in
oil, although in a short time they make their appearance again. This disease is
said to occur especially in women. A large number of the known cases must prob-
ably be referred to simulation—i. e., to the intentional application of some blue
coloring matter to the lids.

* From χρώμα, color, προκύω, sweating.

Edema of the Lids.—Edema of the lids is of course not a disease, but only
a symptom, yet as such it is so frequent and at the same time so conspicuous that
it deserves quite a detailed description. Its development is favored in a very great
degree by the anatomical structure of the lid (see page 500); hence it is found not
only in connection with every violent inflammation of the lids themselves or of the
neighboring parts, but also in consequence of simple venous congestion. In the
former case we are dealing with inflammatory edema (edema calidum), in the sec-
ond case with a non-inflammatory edema (edema frigidum). As long as the
edema is on the increase, the skin of the lid is found to be smooth and tense; but
as soon as the edema begins to decrease, this is at once made manifest by the for-
mation of minute wrinkles in the skin of the lid—a phenomenon which is therefore
of value as affording evidence that the process has already passed its acme (as, for
instance, in acute blepharorrhea).

Edema of the lids often causes the patient more alarm than does the lesion
which lies at the bottom of it, because he can not open the swollen eye, and hence
can not see with it. And for the less experienced physician marked edema pre-
sents difficulties, inasmuch as it hinders the accurate inspection of the eyeball. If, in consequence, the physician gets but a transient view of the eye, or no view at all, he may easily make a false diagnosis, and may cause the patient great anxiety for what is perhaps an insignificant affection. For the benefit of the general practitioner, therefore, those affections which are associated with oedema of the lids will be enumerated in the following lines, and at the same time the symptoms will be given from which the diagnosis can be made.

The first thing to be done is to open the lids sufficiently in spite of the oedema, for which purpose we may with advantage use Desmarres's elevator, especially in the presence of marked swelling or violent blepharospasm. We then see whether the conjunctiva is free from redness, and the eyeball itself is normal, not protruding, and freely movable; or whether, on the contrary, morbid changes can be made out to exist in these parts.

(a) Upon Separating the Lids the Deeper Parts appear Normal.

It is necessary first to determine whether what we have before us is an inflammatory or a non-inflammatory oedema. The former is distinguished from the latter by the redness, the increased temperature, and not infrequently also by the sensitiveness to touch. Let us assume that we are dealing with an inflammatory oedema. In order to find out what affection lies at the bottom of it, we now try to ascertain whether in palpating the swollen part we do not come upon some one spot which is distinguished by greater induration and special painfulness.

1. If such a spot is found close to the free border of the lid, we are usually dealing with a hordeolum. In the very inception of this affection nothing besides the above-mentioned symptoms are noticeable. But, in the days immediately following, a yellowish point of discoloration is discovered even between the cilia, or, if we are dealing with a Meibomian stye, upon the inner surface of the lid.

2. If the indurated and sensitive spot occupies the internal angle of the eye, our first thought must be of an acute inflammation of the lacrimal sac—a dacryocystitis. This diagnosis is confirmed if, upon pressure in the region of the lacrimal sac, pus is evacuated from the puncta, or if the patient says that epiphora has for a long time preceded the inflammation. To be sure, a furuncle or a periostitis may also develop in the region of the lacrimal sac, but these cases, in comparison with the frequently occurring dacryocystitis, are extremely rare.

3. In erysipelas the redness and swelling of the lid are uniform. The skin itself when grasped between the fingers feels thicker and harder; while, on the other hand, circumscribed infiltration is absent. The swelling, as a rule, occupies both lids and also extends to the neighboring parts; and when we have had the case under observation for some time, we can see that the swelling migrates. If in the course of the inflammation an induration develops which can be felt to be deeply seated, it is a proof that the process has penetrated into the deeper tissues, and that an abscess of the lid is forming.

Cases of erysipelas sometimes occur which are very slight in intensity and extent, and present correspondingly insignificant inflammatory symptoms. Then only the lids themselves, and perhaps the dorsum of the nose, too, are swollen; these parts are not tense but of doughy consistence, and are scarcely reddened: and fever and pain are absent. The swelling disappears within a few days, and the skin then peels off. Such cases of erysipelas usually recur, and thus acquire a resemblance to the cases of—

4. Recurrent neurotic oedema of the lids. In this a very marked oedematous swelling of the lids—a swelling, however, which is usually free from redness—suddenly makes its appearance, and then very rapidly—often within a few hours—disappears again. Frequently there are associated with it similar oedematous
swellings in other parts of the body—e. g., on the lips, the trunk, or the extremities, more rarely in the larynx or pharynx. These transient attacks of edema are referred to temporary disturbances in the innervation of the vessels (angioneuroses), and are allied to urticaria. They occur most frequently in women, and especially at the time of the menses.

5. In edema of the lids due to a furuncle or a malignant pustule there is felt, contrary to what takes place in erysipelas, a circumscribed, indurated, and painful nodule of considerable extent in the skin of the lid itself; while, if the infiltration lies deep in the tissues, we are dealing with a commencing abscess of the lid. In periostitis of the margin of the orbit the latter can be felt through the edematous lid, and it is then found to be not sharp, but thickened and enlarged, and tender to the touch.

6. Edema of the lid due to traumatism is almost always accompanied by extensive hemorrhagic suffusion of the lid, and from this fact can readily be recognized. If edema of the lid develops in consequence of the sting of an insect, it is easy to make the diagnosis when we are able to discover the site of the sting.

Non-inflammatory edema is met with as one of the symptoms of general edema, as, for example, in heart disease, in hydrops, and in nephritis. Not infrequently the lids are the very first part of the body in which these varieties of edema show themselves, and thus give warning of the causal disease. In such cases the edema of the lids sometimes appears under the guise of flying edema (edema fugax)—i. e., it comes suddenly and disappears again within a few days or even a few hours, only to return after a short interval of time.

A variety of edema holding an intermediate position between the inflammatory and the non-inflammatory kinds, is that which is observed in connection with blepharospasm that has lasted a long time (especially in children with conjunctivitis eczematosa). This chiefly affects the upper lid, and is mainly referable to the compression of the palpebral veins by the contracted orbicularis (see page 517).

Finally, edema of the lids both of inflammatory and non-inflammatory nature occurs, for which no cause whatever can be discovered.

(b) Upon Separating the Lids Changes are Found in the Conjunctiva or Eyeball.

1. Among affections of the conjunctiva, those associated with edema of the lids are acute blennorhea and diphtheria, less frequently a violent catarh, or, as above stated, a conjunctivitis eczematosa. The diagnosis is easily made, from the appearance of the conjunctiva and from the character of the secretion.

2. Violent inflammations in the interior of the eyeball lead to edema of the lids; severe irido-cyclitis and acute glaucoma doing so to a less extent, panophthalmitis to a more considerable degree. In the latter disease, as in acute blennorhea, chemosis is also present. A confusion between the two diseases can, however, be readily avoided; since in panophthalmitis the purulent secretion in the conjunctiva is wanting, while a purulent exudate is visible in the interior of the eye (in the anterior chamber or in the vitreous). An important differential sign is the protrusion of the eyeball and the consequent diminution in its mobility in panophthalmitis, symptoms which are never present in acute blennorhea.

2. Tenonitis, phlegmon of the orbit, and thrombosis of the cavernous sinus share with panophthalmitis the symptoms of edema of the lids, chemosis, and protrusion and immobility of the eyeball. These affections might hence be confounded with each other and with panophthalmitis. From the latter, however, they are at once distinguished by the fact that in all three the eyeball itself, except for the edema of the conjunctiva, looks normal in its anterior portion, while in panophthalmitis the suppuration in the interior of the eye is visible. The differential
DISEASES OF THE EYE.

diagnosis between the three affections first named is rather more difficult. Serous
tenonitis and phlegm of the orbit are very similar to each other at their com-
menence, but in the former the chemosis and also the impairment of mobility
of the eyeball are very considerable, and the protrusion of the eyeball is compar-
avatively slight; while in the latter, on the contrary, the edema of the conjunctiva
is not very great in comparison with the extreme protrusion of the eyeball, and is
not uniform, but is principally developed in the region of the palpebral fissure.
In phlegm of the orbit the fever and pain attain a much greater pitch. Later
in the course of the two diseases their differentiation becomes more and more
easy. In serous tenonitis all the symptoms soon abate, while in phlegm of the
orbit they constantly increase until the pus breaks through and is evacuated.

Thrombosis of the sinus is distinguished from both affections by the fact that
along with the edema of the lid there is also edema behind the ear in the mastoid
region, and also by the fact that serious cerebral symptoms are present.

A tumor developing in the depth of the orbit may also, along with the pro-
trusion of the eyeball, cause edema of the lid due to congestion. In this case, how-
ever, inflammatory concomitants are either slight or are absent altogether.

II. INFLAMMATION OF THE BORDER OF THE LIDS.

107. The free border of the lid is simply a part of the skin of the
lid, which, however, is distinguished by many anatomical peculiarities,
such as its cilia with their hair follicles and glands, its particularly
abundant vascular supply, etc., so that its diseases bear a special stamp.
Affections of the borders of the lids are among the most frequent of all
diseases.

Hyperæmia of the border of the lid manifests itself by the reddening
of it, so that the eyes look as if rimmed with red. It occurs in many
people in consequence of insignificant injurious influences, such as pro-
longed weeping, great straining of the eyes, the being in vitiated air, a
wakeful night, etc. This is especially true of persons with a delicate
skin, who at the same time have a light complexion and blonde or red-
dish hair. In many of these persons the hyperæmia of the lids is present
all the time, and sometimes lasts for their whole life. With respect to
the troubles that it causes, and also with respect to its treatment, the
same statements hold good that will be made in speaking of blepharitis.

Inflammation of the border of the lids (blepharitis ciliaris or
blepharo-adenitis *) appears under the two following principal forms:

1. Blepharitis squamosa. In this the skin between the cilia and in
their vicinity is covered with small white or gray scales like the dandruff
upon the scalp, or, as some have said, the border of the lids looks
as though strewed with bran. If the scales are removed by washing, the
skin beneath them is found to be hyperæmic but not ulcerated. Upon
removing the scales, some cilia usually fall out—a proof that they are
less firmly attached than usual; but, as their follicles are not injured,
they grow again afterward.

* From βλεφαρος, lid, and αδημος, gland; i.e., inflammation of the glands of
the lid.
DISEASES OF THE LIDS.

A sub-variety of blepharitis squamosa, which is of less frequent occurrence, appears under the following form: The border of the lid is covered with yellow crusts, which are sometimes rigid, sometimes flexible and fatty (like wax or honey). When they are removed, no ulcers are found beneath them, but simply reddening of the skin of the lid. The yellow crusts are therefore not inspissated pus, but simply the excessively abundant secretion of the sebaceous glands, which has solidified in the air into yellow crusts.

2. Blepharitis ulcerosa. In this form also the border of the lid is covered with yellow crusts; but, after washing them off, we find not merely a hyperemia of the skin but ulcerative processes as well. Thus we see here and there in spots small yellow elevations, from the center of which rises a cilium. These are abscesses, which have originated from suppuration of a hair follicle and of the sebaceous gland belonging to it. With these we find little excavations—that is, ulcers which have been formed out of small abscesses that have opened. Again, in other spots we notice small cicatrices, the remains of similar ulcers. At the site of the cicatrices the cilia remain deficient, because their hair follicles have been destroyed by suppuration. Since new hair follicles are constantly being transformed, one after another, into abscesses, the row of cilia, when the process has kept up for a long time, becomes more and more thinned out; the cilia that are still present are arranged in separate groups, which for the most part are glued together into tufts by the dried secretion. Blepharitis ulcerosa, accordingly, is distinguished from blepharitis squamosa by its deeper situation and the purulent character of the inflammation. It is hence to be regarded as the more serious of the two forms, the one in which both the inflammatory symptoms are more pronounced, and permanent sequelae, particularly destruction of the cilia, remain.

The annoyance suffered by the patient is slight in the lightest cases of blepharitis, so that many patients visit the physician more on account of the disfigurement due to the reddened border of the lids than on account of any distress they experience. But in most cases the patients are annoyed by the increased sensitiveness of the eyes, which water readily, especially during work and in the evening, are sensitive to light, heat, and dust, and become tired quickly. In the morning the lids are stuck together.

Blepharitis is distinguished by its eminently chronic course, which often extends over a series of years. In young patients the disease often disappears of itself when they grow up; in others it continues during the whole life. Proper treatment always produces considerable improvement, or even effects a cure, which latter, however, is in most cases not lasting, as after the discontinuance of the treatment the disease usually returns; a permanent cure is obtained in only a few cases.
After lasting some time blepharitis entails a series of sequelas, which to a certain extent react in their turn upon the blepharitis and render it worse. These are—

1. **Chronic conjunctival catarrh.** This is the constant concomitant of blepharitis, the annoyance produced by which is in no small part dependent upon it.

2. Blepharitis ulcerosa leads to permanent destruction of the cilia, which may go on till nearly all the cilia are lost. In that case there are found upon the border of the lid a few scattered, minute, and abortive hairs. This condition, called madarosis,\* produces marked disfigurement. As soon as all the cilia are destroyed, the blepharitis ceases of itself, and there are no longer any hair follicles to undergo suppuration.

3. By the traction produced by cicatrices which remain after suppuration of the hair follicles, neighboring cilia may be given a false direction, so as to turn backward toward the cornea (trichiasis).

4. **Hypertrophy** of the border of the lid may develop in consequence of its being constantly congested and swollen by inflammation. The lid is then found to be thicker and more misshapen at its free border, and drooping in consequence of its weight (tylosis †). This change affects mainly the upper lid.

5. The lower lid very often undergoes, as a result of blepharitis, a change of position under the form of ectropion. This develops in the following way: Owing to the formation of the cicatrices, the conjunctiva is drawn a little forward over the border of the lid. The border of the lid then looks as if it had a rim of red conjunctiva about it, and the posterior margin of the lid, which before was sharp, is now rounded off, and can no longer be distinctly made out. In consequence of this change of form, the borders of the two lids no longer fit exactly to each other when the latter are shut together. Furthermore, on account of the absence of its sharp posterior margin, the lid is no longer perfectly applied to the eyeball, and a shallow groove remains between the eyeball and the border of the lid (eversion of the border of the lid). In common with the border of the lids, the puncta are also turned forward so as no longer to dip into the lacus lacrimalis (eversion of the puncta). Owing both to the imperfect closure of the lids in winking and also to the eversion of the puncta, the conduction of tears into the lacrymal sac is interfered with, so that epiphora develops. A portion of the tears run down over the lower border of the lid upon the skin of the latter, which because of this continual wetting becomes reddened, exoriated, and even ezeematous; consequently it loses its pliability and becomes gradually contracted. In this way the lower lid is drawn farther and farther away from the eyeball, so that an ectropion of the entire lid is gradually developed from the eversion of its border. At the same time

---

\* From μαλακω, to melt away, to fall off.  † From τόλως, a callous spot.
the lachrymation also constantly increases, and this in turn reacts injuriously upon the blepharitis, the border of the lid being irritated to the point of inflammation by the tears that are constantly flowing over it.

**Etiology.**—The causes of blepharitis are either of a general or a local nature.

The *general causes* lie partly in the constitution of the patient, partly in external injurious influences. In the first category are to be mentioned anaemia, scrofula, and tuberculosis, which particularly in children and young people furnish a frequent cause of blepharitis. When with increasing age the constitution improves, the blepharitis also disappears. In many families blepharitis is hereditary, being a kind of family disease. Among external injurious influences are to be considered all those which are known to be also causes of chronic conjunctival catarrh (see page 53). Among these belong vitiated air, smoke, dust, heat (for example, in the case of stokers), staying up late at night, etc. Blepharitis produced by general causes is always bilateral.

Among the *local causes* of blepharitis the most frequent are chronic inflammations of the conjunctiva (chronic catarrh, conjunctivitis eczematosa, and trachoma) and epiphora. The latter excites inflammation of the border of the lid by keeping it continually wet. The epiphora may be caused either by increased secretion of tears or by interference with their discharge into the nose. The former is the case, for example, in conjunctivitis eczematosa, which is characterized by profuse lachrymation. Since in this case the inflammation of the conjunctiva and the scrofulous diathesis of the patient act both at the same time to favor the development of blepharitis, it is easy to understand why conjunctivitis eczematosa should so exceedingly often be found combined with blepharitis.

Epiphora may, however, also be produced by interference with the conduction of tears, as a result, for instance, of an affection of the lachrymal sac; in this case the blepharitis is found only in that eye in which the affection of the lachrymal sac exists. Hence the rule is in unilateral blepharitis to examine the lachrymal sac at once, just as, on the contrary, in bilateral blepharitis, we shall first have to look for a general condition as the cause of it. Other causes of interference with the conduction of tears, and hence also of blepharitis, are imperfect closure of the lids due to ectropion, to paralysis of the facial nerve, to congenital and acquired contraction of lids, etc.

The *treatment* of blepharitis must take account both of the causal indication and also of the local changes. Regard to the causal indication requires the improvement of the patient’s constitution and of the hygienic conditions under which he lives. In most cases, it is true, the object aimed at can not be attained, owing to external circumstances. Local causes of blepharitis, such as lesions of the conjunctiva and the lachrymal sac, lagophthalmus, etc., are to be removed as far as possible.
In the treatment of the diseased borders of the lids themselves ointments play the chief part. Their action is to be principally attributed to the fat they contain. This softens the scales and crusts and thus facilitates their removal, and also prevents the occlusion of the orifices of the palpebral glands; it renders the skin more pliable, and protects it from being wet by the overflowing tears. Hence some soft, pliable fat, the unguentum emolliens [cold cream] or vaselin, must be chosen as the basis of the ointment. For the additional ingredient of the ointment a mercurial precipitate is most frequently selected, the red, yellow, and white precipitates all being employed. Since the ointment ought not to irritate the already inflamed border of the lid, the white precipitate [ammoniated mercury], as being the mildest, is to be preferred to the yellow and the red precipitates [red and yellow oxides]. For the same reason it is advisable to add it in small quantities only (one to two per cent to the fat). The patient applies the precipitate ointment by rubbing it upon the closed eyelids with his fingers before going to bed. On the following morning, after the ointment is wiped off, the crusts and scales adhering to the border of the lids must be removed as carefully as possible by washing with lukewarm water.*

The physician must insist very particularly upon this point, since the act of cleansing the lids is often painful, and hence, especially in children, is frequently not performed with sufficient care. When by means of this treatment we have finally succeeded in bringing the borders of the lids back to their normal state, we continue the use of the salve for some time longer, as otherwise the blepharitis will very soon recur.

In blepharitis ulcerosa, in addition to the employment of the ointment, the abscesses which form must be opened every day, and the cilia that project from them must be epilated. For this purpose we make use of the ciliun forceps—that is, of a forceps with broad rounded ends. The healing of the ulcers can be accelerated by touching them lightly with a pointed stick of nitrate of silver.

Since the border of the lids is simply a modified portion of the external skin, it would be proper to consider the affections of it from the dermatological standpoint—that is, to compare them with analogous affections of the skin. From this point of view blepharitis squamosa might be regarded as seborrhea. That form which is associated with furfuraceous scales would correspond to seborrhea squamosa or seborrhea sicca of the skin, which we most frequently observe, under the guise of increased formation of scales, upon the scalp. The form of blepharitis squamosa which is characterized by yellow, fatty crusts, is probably identical with the seborrhea oleosa, which is likewise found upon the scalp, particularly in children, and in this situation is known under the names of scurf or scall. In blepharitis ulcerosa it is probably the case that phlogogenic bacteria pass from the border of the lid and enter the sebaceous follicles. We might therefore class blepharitis ulcerosa as an eczema, which, on account of the hairy character of the

[*This should also be done thoroughly before applying the ointment.—D.]
border of the lid, is associated with suppuration of the hair follicles, such as is the case in other hairy portions of the skin (eczema sycomatosum).

For the correct diagnosis of blepharitis the crusts covering the border of the lid must be removed, in order to determine the state of the skin beneath them. If the skin beneath the crusts is normal, we are not dealing with blepharitis at all, but with a disease of the conjunctiva, the dried secretion from which forms the yellow crusts. In blepharitis the skin is at least found to be reddened (in blepharitis squamosa), or it is covered with ulcers (in blepharitis ulcerosa). In the vicinity of the ulcers the skin of the palpebral border not infrequently is thickened by hypertrophy of the papillae, so that warty excrescences are formed, which are painful and bleed readily, and which must be removed.

In the treatment of blepharitis the mistake is very frequently committed of prescribing highly irritant ointments, by which the inflammation is simply aggravated. I therefore prefer the one-per-cent ointment of white precipitate, as being the mildest of all. If we select as the basis of the ointment the unguentum emollientis, which I regard as the best for this purpose, we must take care that the ointment is prepared fresh from time to time, as otherwise the fat would become rancid and cause irritation. In severe cases of blepharitis ulcerosa it is advisable to smear the ointment thickly upon a pledget of linen and apply it overnight to the eyes by means of a bandage. In this way the ointment acts in a much more penetrating way than if it were merely smeared upon the borders of the lids. This procedure is particularly indicated when the blepharitis is caused by congenital shortness of the lids, because here the closure of the palpebral fissure during sleep is at the same time insured (see § 112).

In obstinate blepharitis squamosa the employment of tar ointment has been recommended. For this purpose the oleum fagi (or oleum rusci*), mixed with equal parts of olive oil, is prescribed, and this mixture is applied upon the borders of the shut lids at night by means of a brush; or pix liquida and spiritus vini, equal parts, are brushed over the borders of the lids, upon which the solution rapidly dries owing to the evaporation of the alcohol. In either case, the entrance of the fluid into the conjunctival sac must be carefully avoided, as it would greatly irritate it. Many people can not stand the tar ointments at all, on account of the great irritation they produce. A less irritating form of treatment is the use of a one-to-two-per-cent. ointment of resorcin or salicylic acid, or the use of tar soap, with which the lids should be carefully washed every morning.

In many cases of blepharitis ulcerosa, particularly if tylosis is present at the same time, we will fail to accomplish our object until we have epilated all the cilia. We do this in several sittings, and subsequently also remove the cilia that grow in afterward, keeping on in this way until the border of the lid once more looks perfectly normal. We need not fear that the cilia, even if we have epilated them ever so often, will ultimately fail to grow in again. For the tylosis itself, massage of the lid, with the aid of the white-precipitate ointment, does good service. This acts partly by exciting resorption, partly because it helps to remove mechanically the contents of the palpebral glands, and thus prevents their occlusion.

Not to be confounded with blepharitis is the condition called phthiriasis palpebrarum—i.e., the presence of crab lice (Phthirius inguinalis or Pediculus pubis) upon the eyelashes. Here the borders of the lids look strikingly dark. Upon more careful inspection we discover as the cause of the discoloration the black nits of the crab lice sticking fast to the cilia; sometimes, too, a grown specimen is found lodged between the cilia. The disease, which is rare and which is found almost exclusively in children, sometimes itself gives rise to blepharitis.

* [Oleum rusci, empyreumatic oil of birch (birch tar).—D.]}
III. Diseases of the Palpebral Glands.

108. The glands which here come under consideration are the glands of the hair follicles of the cilia (Zeiss's glands) and the Meibomian glands. The affections of the former have already been treated of in part under the head of blepharitis, a disease which presents a diffuse inflammation extending over the whole border of the lid, and in which the hair follicles play an important part. To be distinguished from this is the isolated inflammation which is limited to one or a few of these glands, and forms an independent affection. If such an inflammation develops as an acute affection, it is known as hordeolum; if as a chronic affection, it is known as chalazion. From these, again, are to be distinguished the cases of simple occlusion of the glands with inspissation of their contents but without inflammation—cases which form the starting point of the infarcts in the Meibomian glands.

1. Hordeolum* (Sty).

There are a hordeolum externum and a hordeolum internum.  

**Hordeolum externum** [or hordeolum zeissianum] is produced by suppuration of one of Zeiss's glands. There is first noticed an inflammatory oedema of the affected lid, which in violent cases may even extend to the conjunctiva bulbi. Upon careful palpation there is discovered in the swollen lid a spot which is distinguished by greater resistance and by special sensitiveness to touch. It lies near the border of the lid, and corresponds to the inflamed gland. In the next day or two the swelling at this spot increases, and the skin over it grows red, afterward shows a yellowish discoloration, and finally is perforated near the border of the lids with a discharge of pus. After the evacuation of the pus the inflammatory symptoms rapidly abate, the small abscess cavity soon closes, and the entire process comes to an end. In spite of the fact that the duration of the disease is but a few days, the affection itself is still very burdensome to the patient on account of the pain, which is often considerable, in the tense and greatly swollen lids. Added to this is the fact that many persons have quite a number of repeated attacks.

**Hordeolum internum** is much rarer than hordeolum externum. It consists in a suppuration of one of the Meibomian glands, and is hence also called hordeolum meibomianum. The course of the disease is, on the whole, the same as that of the hordeolum externum; but as the Meibomian glands are larger than those of Zeiss, and are enveloped in the firm connective tissue of the tarsus, the inflammatory symptoms

* From hordeum, barley.
are more violent, and it takes a longer time for the pus to be evacuated. The pus at first, as long as it is shut in in the affected gland, appears upon eversion of the lid as a yellowish spot shining through the conjunctiva. Afterward it breaks through the conjunctiva or is evacuated through the orifice of the gland. Perforation through the skin occurs only as an exception, in contradistinction to hordeolum externum, in which this is the rule.

Hordeolum externum and internum are essentially the same process—i.e., they are both an acute suppuration of a sebaceous gland, for the Meibomian glands are nothing but modified sebaceous glands. Both, accordingly, present nearly the same clinical picture. They are analogous to acne of the external skin (hence also they were called by Stellwag acne ciliaris). The violent inflammatory symptoms, and particularly the marked edema which distinguish a hordeolum from ordinary acne pustules of the skin, are caused by the peculiar anatomical structure of the lids, which especially predisposes the latter to inflammatory swelling.

Hordeolum is found principally in young people, particularly if they are of anemic or scrofulous constitution and at the same time suffer from blepharitis. The latter, by causing accumulation of scales and crusts upon the border of the lids, favors the multiplication of the bacteria that are always present there, and which can thence readily penetrate into the orifices of the glands. An additional factor is the swelling of the border of the lid, which may cause occlusion of the excretory ducts of the glands.

The treatment of hordeolum in the beginning of the disease consists in the use of moist warm compresses, which are applied to the lids in order to convert the hard infiltrate more rapidly into pus. When the yellow color of the pus is visible beneath the skin or the conjunctiva, the abscess may be opened by a small incision, and thus the duration of the inflammation may be shortened by several days. The prime means for avoiding a recurrence of the hordeolum is the treatment of any blepharitis that may be present.

2. Chalazion.*

Chalazion is a chronic affection of the Meibomian glands. It forms a hard swelling which develops very gradually in the lid. In many cases this occurs without any inflammatory symptoms whatever, so that the swelling is not noticed by the patient until it has become quite large. In other cases, however, there are moderate inflammatory concomitants, which, nevertheless, are insignificant in comparison with those which accompany a hordeolum. The tumor keeps constantly enlarging for months until it reaches the size of a pea or a bean; it then

* From χάλαζα, hail.
bulges the skin far enough forward to produce a perceptible disfigurement of the lid. Upon palpating the tumor we can make out that it is pretty resistant, and that it is intimately connected with the tarsus, while the skin lying over it can be displaced from side to side. Upon evertting the lid we find the conjunctiva over the tumor reddened, thickened, and somewhat protuding. Later on, the tumor assumes a grayish look as seen through the conjunctiva, and ultimately the latter is perforated; then a viscid, rather turbid fluid flows out, which represents the central softened portions of the tumor. But the main portion of the latter, consisting of spongy granulations, remains behind, for which reason the tumor after it has been opened does not at once disappear completely. On the contrary, it diminishes very gradually in size, and meanwhile it is not uncommon for the granulation masses to project like a fungoid growth through the perforation in the conjunctiva. It requires months more for the tumor to disappear completely.

Chalazion shares with the hordeolum internum its situation in the Meibomian glands, but is distinguished by the character of the process. Hordeolum is an acute inflammation, which goes on to suppuration and is over in a few days. Chalazion is a chronic disease, which does not lead to suppuration but to the formation of granulation tissue, and lasts for months or even years.

Chalazion affects adults more frequently than children. Not infrequently several chalazia are found at once in the same patient. A chalazion annoys the person who has it by the disfigurement it produces, and also by the condition of irritation which it keeps up in the eye. This condition of irritation is partly the result of the chronic inflammation of the lids, partly the result of the mechanical injury done to the eyeball by the uneven and bulging conjunctiva covering the inner surface of the tumor.

Treatment.—Quite small chalazia are best left alone. Larger chalazia are removed by an operation, in order to do away with the disfigurement and also with the irritation of the eye. The lid is everted, and the conjunctiva and the wall of the chalazion lying beneath it are divided in a vertical direction by an incision with a sharp-pointed scalpel. After the fluid portion of the contents has escaped, the granulation masses which still remain are removed by scraping (with a small, sharp spoon, or with a Davel's scoop, or even with a grooved sound). Even then the tumor does not disappear completely, because its resistant capsule remains, although this shrinks up after a short time. If the contents of the chalazion are not completely removed, it is apt to form again, so that the operation has to be repeated.
3. Infarcts in the Meibomian Glands.

In elderly people we frequently see, upon everting the lids, small, bright-yellow spots beneath the conjunctiva. These are the inspissated contents of the Meibomian glands, which accumulate in their acini and distend them. These infarcts usually cause no disturbance. But sometimes they are transformed by the deposition of lime salts into hard, stony masses (lithiasis conjunctivae). These bulge the conjunctiva forward and even perforate it with their sharp edges, which then cause mechanical injury to the eye. In this case they must be removed from their bed, after an incision has been made in the conjunctiva, and thus be got rid of.

The of infarcts the Meibomian glands should not be confounded with the much more frequently occurring concretions that develop within new-formed glands in the conjunctiva of the tarsus. These also appear under the guise of yellow spots, but are more superficial (see page 43).

The older physicians considered a chalazion as a hordeolum which had become hardened—i.e., had not gone on to suppuration—a view which is still at present widely diffused among the laity. Others supposed that the chalazion was a simple retention cyst of the Meibomian glands, and analogous to atheroma of the sebaceous glands. Such retention cysts do occur, but they are rare, and are essentially different from chalazia. In a chalazion there is a peculiar chronic inflammation, which produces not pus but granulation tissue, and which is probably caused by a micro-organism differing from the ordinary cocci of pus. Perhaps this micro-organism is the bacillus discovered by Deyl, which greatly resembles the Bacillus xerosis. Microscopic examination of a chalazion shows that first the epithelium of the acinus proliferates and an inflammatory infiltration is produced in the surrounding tissue of the tarsus. The latter process soon becomes the predominant one, so that both the acini of the gland and the tissue of the tarsus ultimately are lost in that overgrowth of small cells (Fig. 168). This growth of cells forms a soft tissue of the nature of granulation tissue, and, like the latter, contains also giant cells. In the granulation tumor are found amorphous flakes representing the remains of the inspissated contents of the acini; and on the outside it is inclosed by a capsule of connective tissue. The way in which the latter develops is that the tissue surrounding the growing tumor is compressed by it and condensed more and more all the time. Finally, the central portions of the granulation tumor which are very poor in vessels break down by a sort of mucilaginous softening, so that a cavity filled with a turbid liquid is formed in the center of the growth.

Horner was the first to call attention to the analogy between chalazion and acne rosacea of the skin. In the latter affection the sebaceous glands play the same part that the Meibomian glands do in chalazion.

In old chalazia, in which perforation has failed to take place, the entire contents sometimes become liquefied. The chalazia are then transformed into a sort of cyst with thick envelope and with turbid, mucilaginous contents. Those chalazia which are developed upon the excretory duct of a Meibomian gland assume a special appearance. They are then situated near the free border of the lid, from which they project like a kind of nipple, while on their posterior side they are flattened out by the counter-pressure of the eyeball. If they do harm to the eye mechanically, they are to be removed by ablation.

* From lithos, a stone.
DISEASES OF THE EYE.

It not infrequently happens that persons who have never suffered from chalazia begin all of a sudden to have one after another. New chalazia keep developing at intervals of one or more weeks, manifesting their presence each time by the renewal of the slight inflammatory symptoms. Finally, one or more chalazia are found in each of the four lids. In particularly bad cases an actual degeneration of the lids, especially of the upper, takes place. The lids are thickened, so that it is with difficulty they can be everted. In one of the cases observed by me the lid had become one centimetre thick. The skin of the lids forms nodular projections, but can be displaced upon its bed and is not essentially altered. The conjunctival surface of the lids, on the contrary, appears uneven, nodular, and redden and velvety in some spots, while in others it is gray and translucent or is perforated by sprouting granulations.

In extreme cases of this sort we might at first sight be disposed to suspect the existence of a tarsitis or of a neoplasm. In operating upon such cases it can be seen that the entire tarsus has disappeared from view in a spongy and partially softened granulation tissue.

Instead of merely opening the chalazia, we may extirpate them by dividing the skin over them and then cutting them out of the tarsus. A fenestra is thus made in the tarsus and in the conjunctiva as well. Such an extirpation of the chalazia is pretty tedious and painful, for which reason we in most cases prefer the simple incision, and are perfectly successful with it too. Exirpation is only indicated when we are dealing with large chalazia, which project far forward and have a particularly thick capsule.

AFFECTIONS OF THE TARSUS.—The tarsus is implicated not only in the diseases of the Meibomian glands, but also in those of the conjunctiva. This is particularly true of trachoma and of amyloid degeneration of the conjunctiva. In the former we can often feel, when we evert the upper lid, that the tarsus has become thicker and more unshapely. This depends upon its inflammatory infiltration, which subsequently leads to atrophy and distortion through cicatricial contraction, and which must therefore be looked upon as the chief cause of trachiasis. In tarsal cartilages that have undergone this change, the Meibomian glands are also in great part found to be destroyed. In amyloid degeneration of the conjunctiva the tarsus itself falls a victim to the same degeneration, so that it is transformed into a large, unshapely, friable structure (see page 106).

There is a primary affection of the tarsus (tarsitis syphilatica) which occurs as a consequence of syphilis. This develops very gradually, and as a rule without
any notable pain. When it has reached its acme we find one or both lids of the same eye greatly enlarged and the skin of the lid tense and reddened. Upon palpation we can convince ourselves that the cause of the enlargement lies in the tarsus, which can be felt through the skin as a thick structure of cartilaginous hardness and ungainly form. The swelling of the tarsus is usually so great that the lid cannot longer be everted. The enlarged tarsus consists, as is evident when it is cut into, of a laraceous, bloodless tissue. The cilia upon the affected lid fall out, and the lymphatic gland in front of the ear upon the same side swells up. After the swelling has been for weeks maintained at the same height, it disappears very slowly again until the tarsus has reached its former volume, or has even, in consequence of atrophy, fallen somewhat below it. It takes several months for the disease to run all through its course. Tarsitis makes its appearance in the third stage of syphilis, and is accordingly to be looked upon as a gummatous infiltration of the tarsus.

IV. Anomalies of Position and Connection of the Lids.

1. Trichiasis and Distichiasis.

109. Trichiasis* consists in a distortion of the cilia, which, instead of looking forward, are directed more or less backward so as to come into contact with the cornea. This anomaly of position either affects all the cilia or only those which project posteriorly; it may also extend over the whole length of the border of the lid, or be present over a part of it only (total and partial trichiasis). The inverted cilia are seldom normal, being for the most part stunted, and consisting of short stumps or of minute, pale, and scarcely visible hairs.

Trichiasis causes a continual irritation of the eyeball, due to the action of the cilia; there are photophobia, lachrymation, and a constant sense of a foreign body in the eye. The cornea itself suffers more considerable injury. Superficial opacities are produced in it, since the epithelium, in consequence of the constant irritation, undergoes a sort of callous thickening, and thus in a way protects the cornea against the effect of the external injury. In other cases deposits like pannus or ulcers of the cornea are formed. It not infrequently happens that persons are tormented by frequent recurrences of corneal ulcers, until at length the physician discovers one minute cilium which is directed against the cornea, and which has been the cause of the formation of ulcers.

The most frequent cause of trichiasis is trachoma (page 70). The conjunctiva, which in the regressive stage of trachoma undergoes cicatricial shrinking and contracts, tends to draw the skin of the lid backward over the free border of the latter, and thus puts the cilia more and more in a false direction. At first the most posterior cilia, afterward the anterior rows, too, are turned backward. The distortion of the tarsus acts to produce the same effect. Owing to this distortion,

* From φις, hair.
that portion of the tarsus which adjoins the free border of the lid bends off at an angle from the rest of the cartilage and is turned backward (\( t_{1} \), Fig. 24 B), and in so doing it draws with it the covering of the free border of the lid which is firmly attached to it.

Partial trichiasis, in which only some of the cilia are turned backward, develops in consequence of cicatrices which have been left by blepharitis, hordeolum, diphtheria, burns, operations, etc., upon the free border of the lid or in the conjunctiva.

Under the name of distichiasis * is designated the condition in which, the lids being otherwise normally formed, there are two rows of cilia, one of which looks forward, and the other, which is usually less perfectly developed, is directed backward. This condition occurs as a congenital anomaly, and is sometimes present in all four lids.

**Treatment.**—When only a few of the cilia have an improper position they can be removed by epilation. Inasmuch as they grow again, epilation must be repeated at intervals of a few weeks—a thing which can very often be attended to by the patient himself. It is still better to employ a method in which, with the performance of epilation, the follicle of the cilium is at the same time destroyed, so that the latter does not grow again. The best procedure for this purpose is electrolysis. The two poles of a constant-current battery are so arranged that the positive pole is formed by a plate electrode, the negative pole by a fine sewing needle. The former is applied to the temple, and the latter is introduced into the hair follicle of the cilium, and then the circuit is closed. At once a light foam is seen to exude from the root of the cilium. This is formed by the bubbles of hydrogen gas which are developed at the negative pole and give evidence of the chemical decomposition of the tissue fluids produced by the electric current. By virtue of this decomposition an adequate destruction of the hair follicle results without any eschar being produced. The cilium can now be very readily drawn out, or it falls out afterward of itself and it never grows again. The operation is pretty painful, and hence it is a good plan to inject some cocaine solution beneath the skin of the lid near its free border. When quite a large number of the cilia or all of them are directed toward the eyeball, epilation is not suitable; in that case those methods are indicated by means of which the cilia are brought to their proper position by a shifting of the place in which the hair bulbs are implanted (see section on Operations, § 167).

The term distichiasis is employed by most authors not only for the condition in which there are congenitally two rows of cilia, but also for the acquired anomaly of position due to trachoma, when simply the posterior rows of cilia are set backward, while the anterior are still directed forward. But this condition is identical in its nature with trichiasis proper, and differs from it only in degree. At the commencement of the cicatricial contraction the rows of cilia are first drawn apart;

---

* From δί, double, and στρίξας, a row.
then the posterior, and last of all the anterior row are turned backward. Accordingly, distichiasis is developed first and trichiasis afterward, and a sharp line of distinction can not be drawn between the two. I hence prefer to use the expression trichiasis for this condition in all its phases, and to confine the term distichiasis to the congenital cases in which two regular series of cilia are present. Then trichiasis and distichiasis really denote two conditions which differ absolutely in their nature.

2. Entropion.

110. Entropion * is a rolling inward of the lid. The distinction between entropion and trichiasis is one of degree. In the latter the border of the lid, as a whole, is properly situated, but the posterior margin of the lid is rounded off and the cilia are turned backward. In entropion the whole margin of the lid is revolved back so as not to be visible at all when the open eye is seen from in front. Hence, to get a view of the border of the lid we have to roll the lid out again by drawing it up toward the margin of the orbit. The evil consequences of entropion are the same as those of trichiasis. According to their etiology we distinguish two varieties of entropion:

(a) Entropion Spasticum is that form which is produced by the contraction of the orbicularis. The fibers of the palpebral portion of the orbicularis (see page 512) describe arcs having a curvature in two different directions. One sort of curvature is due to the fact that the muscular fibers encircle the palpebral fissure; the concavity of these arcs accordingly looks toward the palpebral fissure and is directed downward in the upper lid, upward in the lower. The second variety of curvature is caused by the fact that the muscular fibers in conjunction with the lids are molded to the anterior convex surface of the eyeball; the concavity of these arcs looks backward in both lids. When the fibers of the orbicularis contract, they tend to shorten from the form of an arc to that of its chord. In so doing they exert a double action: by the flattening out of the first set of curves they narrow the palpebral fissure; by the flattening out of the second set they press the lids against the surface of the eyeball. Either component may lead to inversion of the tarsus, if the character of the subjacent structures is such as to give rise to this condition. In virtue of the action of the orbicularis in the sense of the first component, the lids are forcibly opposed to each other by their narrow edges when the palpebral fissure is being closed. We may conceive of the two tarsi as represented by two visiting cards, standing one over the other in the same vertical plane, so that the lower edge of the upper rests upon the upper edge of the lower, and the edges of the two are forcibly opposed. Then slight pressure with the finger upon the line of contact of the two edges suffices to produce inversion of the cards in a sense opposite to

* From ἐς, in, and πένεω, to turn.
that in which the pressure is made. In like fashion the opposed tarsi bend forward or backward, according as the subjacent structures either tend to press them forward or, on the other hand, fail to afford them a sufficiently firm support. Much more important, however, for the production of a change of position in the lids is the second component, in accordance with which the fibers of the orbicularis press the lid against the eyeball; for the lids are in perfect contact with the eyeball only so long as the latter furnishes them a uniform bed to lie upon. When then, owing to lack of uniformity in the bed, either the free or the attached border of the tarsus receives insufficient support posteriorly, a bending of tarsus results in the sense either of an entropion or an ectropion.

The stronger the contraction of the fibers of the orbicularis in general, the more readily will the mechanical causes mentioned lead to an alteration in the position of the lids. And from what has been said it is easy to understand that there is a spastic ectropion as well as entropion; it depending upon the mechanical conditions above described and also upon other circumstances (especially upon the character of the skin of the lids) whether blepharospasm causes the lids to bend forward or backward. For an entropion to develop, two conditions are necessary: deficient support of the free border of the lid, and an abundant amount of extensible skin upon the lid. The former condition obtains when the eyeball is wanting; entropion spasticum, therefore, develops above all when the orbit is empty (entropion organicum of Stellwag). For entropion to develop, however, it is not necessary for the eyeball to be entirely absent; it is sufficient that it should be diminished in size, or should simply be situated more deeply in the orbit, as it is in the old and lean. Again, when the border of the lid is rolled inward, the skin of the lid is drawn after it. If this is prevented an entropion can not develop. If the entropionized lid is put back in place, and then the skin of the lid is drawn a little up toward the margin of the orbit and fixed there by pressure, the rolling in again of the lid is rendered impossible. Entropion spasticum, therefore, does not develop in persons having rigid and elastic skin upon the lids, but requires the presence of a large amount of wrinkly, readily displaceable skin, such as we meet with in old persons.

It is clear that the rolling in of the lids is favored when the fibers of the orbicularis are very forcibly contracted, as in blepharospasm, and also when the pressure with which the muscular bundles of the orbicularis are squeezed against the border of the lid is aggravated by an external pressure—i.e., by a bandage. Similarly blepharophimosis acts to favor the development of entropion, since it draws the skin toward the free border of the lid.

If we summarize what has just been said, it follows that entropion spasticum develops mainly in elderly people with flabby lids, and that its
production is favored by deep situation, diminution in size, or absence of the eyeball, by the existence of a blepharospasm or a blepharophimosis, and by the wearing of a bandage. For the last-named reason entropion is a frequent and unpleasant complication during the after-treatment of cataract operations where the patients are elderly people whose eyes have to be kept bandaged for quite a long time.

Entropion spasticum is found almost invariably to be restricted to the lower lid.

(b) Entropion Cicatrieum is caused by cicatricial contraction of the conjunctiva by means of which the free border of the lid is drawn inward. It may be said to form one step further on the way upon which trichiasis has started. Like the latter, it is observed after trachoma, diphtheria, burns of the conjunctiva, etc.

The treatment of entropion is either with or without operation. In entropion spasticum which has formed beneath a bandage, the discontinuance of the latter is often all that is required. If we are compelled by important reasons to continue the bandage, we place upon the lower lid in the neighborhood of the margin of the orbit a roll of adhesive plaster, which is kept pressed against the lid by the bandage. This procedure depends upon the observation that the entropionized lower lid takes a correct position spontaneously when we press back with our fingers that portion of it which lies next to the margin of the orbit. Another method of exerting a constant pressure of this sort has been proposed by Arlt: One end of a narrow strip of linen is fastened with collodion to the inner extremity of the lid beneath the internal angle of the eye; from this point the strip is stretched tightly over the lower part of the lid toward the outer side, and is there again fastened by means of collodion. If entropion is due to absence of the eyeball, we enjoin the wearing of an artificial eye. If we can not attain our object by bloodless measures, we must proceed to the performance of an operation (see section on Operations, § 170).

3. Ectropion.

111. Ectropion consists in the revolution of the lid outward, so that its conjunctival surface looks forward. It is, therefore, the opposite of entropion. There are different degrees of ectropion. The lowest degree is that in which the internal margin of the lid stands off a little from the eyeball (eversion of the border of the lid). Even this very slight degree, however, bears within itself the conditions for its own increase. With the eversion of the border of the lid there is also associated eversion of the puncta, in consequence of which epiphora develops, and by this a contraction of the skin of the lower lid and hence an increase of the ectropion are produced. Ectropion may present all degrees up to complete eversion of the entire lid. The consequences of ectropion are epiphora and also redness and thickening of the con-
junctiva wherever it is exposed to the air. The hypertrophy of the conjunctiva may reach such a high degree, especially if this membrane has already been considerably altered (by acute blennorrhoea or by trachoma), that the conjunctiva looks like exuberant "prolific" flesh (wound granulations), whence the old designations ectropion luxurians or ectropion sarcomatosum. In high degrees of ectropion the cornea is incompletely covered by the lids, so that keratitis lagophthalmos is set up.

According to differences in their etiology the following kinds of ectropion are distinguished:

(a) Ectropion Spasticum. It was shown, in speaking of entropion, that the lids can be bent by blepharospasm, and that the direction in which they are bent depends upon the mechanical relations of the individual parts. In ectropion these conditions are the direct opposite of those which we have found to be the causes of entropion. They consist partly in the displacement forward of the tarsal portion of the lid, and partly in a firm, elastic character of the skin of the lid, by virtue of which the palpebral border is drawn up toward the margin of the orbit. We often have the opportunity to observe the effect of a traction of this sort when we try to open the palpebral fissure in a child with swollen lids and with blepharospasm. As soon as we draw the lids apart they become spontaneously everted, and in such cases if we should not carefully put the lids back in place we might readily set up a permanent spastic ectropion; for the peripheral bundles of the palpebral portion of the muscle contract spasmodically behind the everted tarsal portions of the lid, and maintain them in their faulty position. Then the everted lids owing to their engorgement swell up, and this swelling renders their reposition the more difficult the longer the condition lasts. Inasmuch as a certain degree of tension of the skin of the lids is requisite for the development of spastic ectropion, this condition is found principally in children and young persons.

The second condition mentioned above for the development of ectropion is the forcing of the edge of the lid away from the eyeball so that eversion of the tarsus is facilitated. It occurs mostly as a result of thickening of the conjunctiva, particularly when due to acute blennorrhoea and trachoma. Moreover, the eyeball itself may force the lids so far forward that they become ectropionized, as is the case in enlargement or protrusion of the eyeball (ectropion mechanism of Stellwag).

The two antecedent determining causes above mentioned will be the more apt to induce eversion of the lid, the greater the blepharospasm present.

From what has been said, it follows that ectropion spasticum is particularly prone to occur in young persons who at the same time suffer from inflammation of the conjunctiva with swelling of the latter and
with coincident blepharospasm. Ectropion spasticum frequently affects the upper and lower lids simultaneously.

(b) Ectropion Paralyticum arises as a result of paralysis of the orbicularis. The lids are then no longer kept pressed against the eyeball by the contraction of the fibers of the orbicularis, and thus the lower lid sinks down of its own weight. For this reason ectropion paralyticum is found only in the lower lid; the upper lid, because of its weight, remaining applied to the eyeball even when there is no action of the muscle. In conjunction with the drooping of the lower lid there is an inability to lift it in the act of closing the lids. Consequently the palpebral fissure can not be perfectly shut (lagophthalmus).

(c) Ectropion Senile also is found only in the lower lid. Its mode of development is that in old people the lower lid is relaxed in all its parts and is pressed with insufficient force against the eyeball by the enfeebled fibers of the orbicularis. Another factor that here comes into play is the chronic catarrh of the conjunctiva (catarrhus senilis), which is so frequent in old people.

Ectropion of the lower lid also occurs as a result of enfeeblement of the action of the orbicularis when the lid has been divided in a vertical direction at any spot, or when the external commissure has been destroyed, so that the continuity of the orbicularis is interrupted somewhere.

(d) Ectropion Cicatriceum develops when some part of the skin of the lid has been destroyed and has been replaced by cicatrices so that the lid is contracted. Injuries (particularly burns), ulcers, gangrene, excision of the skin in operations, etc., may give rise to it. Ectropion frequently develops as a sequel to caries of the orbit in scrofulous children. Here, in addition to the contraction of the skin of the lid, its fixation to the osseous cicatrix upon the margin of the orbit is of moment, and with this there is associated marked retraction of the skin. So also ectropion is set up by the contraction of the skin and the loss of its elasticity that results from the eczema which occurs in connection with the continual wetting of the skin of the lid by the tears or from other causes. Ectropion is therefore frequently found along with a blepharitis of long standing and with disorders of the conjunctiva and the lachrymal sac.

Non-operative treatment is successful mainly in ectropion spasticum. It consists in putting the lid back in place and keeping it pressed against the eyeball by a well-fitting bandage. In ectropion paralyticum we must employ, besides the bandage, the remedies indicated for the cure of the facial paralysis, particularly electricity. Ectropion senile is curable without an operation only as long as it has not reached any very high degree. For quite a long space of time the eye must be bandaged at night, and the patient must be told, when wiping away the tears that flow down over his cheek, to apply his handkerchief from
below upward, and not, as is ordinarily done, from above downward, a
procedure by which the lid is drawn down only so much the more.
It is furthermore, advisable to slit up the inferior canaliculus in order
to diminish the epiphora due to the eversion of the punctum. The
higher degrees of ectropion, and particularly ectropion cicatricium,
require treatment by an operation, of which the section on Operations
(§ 171) contains a description.

4. Ankyloblepharon.

112. Ankyloblepharon * consists in an adhesion of the upper to the
lower lid along the palpebral margin. It is either partial or total, and
is very often combined with an adhesion between the lid and the eye-
ball, or symblepharon. It also has a common etiology with the latter;
it originates, that is, when, as a result of burns, ulcers, etc., the borders
of the two lids are converted into raw surfaces at opposed points and so
become adherent.

Through ankyloblepharon the palpebral fissure is diminished in
size and the movements of the lids are hindered; in total ankylobleph-
aron there is complete occlusion of the palpebral fissure. The treat-
ment, when we are dealing with simple ankyloblepharon without coinci-
dent symblepharon, consists in separating the adherent lids by an
operation. If the adhesion extends as far as the angle of the lid, the
latter must be supplied with a lining of conjunctiva, as otherwise the
adhesion would form again, starting from the angle. In the cases in
which symblepharon is present along with the ankyloblepharon, it de-
pends mainly upon the extent of the former whether an operation is
practicable at all or not.

5. Symblepharon (see page 117).


In blepharophimosis † the palpebral fissure appears to be contracted
at the external angle of the eye. Upon drawing the lids apart we see
that the contraction is produced by a fold of skin which extends in a
vertical direction at the external angle of the eye and juts out in front
of it like a sliding screen. If we draw the fold of skin outward, we
disclose behind it the normally formed external palpebral angle with
the delicate ligament uniting the borders of the two lids. The dis-
tinction between ankyloblepharon and blepharophimosis, two conditions
which are commonly confounded, is therefore as follows: In ankylo-
blepharon the borders of the lids are adherent to each other, but in

* From ἀγκύλα, a stiff limb [or a thong], and βλέφαρον, eyelid.
† From βλεφαρόν, lid, and φιανωσίς, contraction, from φιάμει, a muzzle.
blepharophimosis they are normal, and the contraction of the palpebral fissure is only apparent, being caused by the drawing of a fold of skin over its outer extremity.

Blepharophimosis is most frequently found in persons who suffer from epiphora and blepharospasm of long standing—that is, it is especially met with in chronic inflammations of the conjunctiva. It originates in a contraction of the skin of the lids due to their being frequently moistened with the tears or with secretion. If this contraction is particularly marked in a horizontal direction, the skin from the adjacent part is drawn up so as to project over the palpebral fissure on the temporal side like a sliding screen. This effect is re-enforced by the action of the fibers of the orbicularis, which in blepharospasm draws the skin on the outer side of the face in toward the external angle of the eye. We can artificially imitate blepharophimosis by pushing the skin from the temple over the palpebral fissure with our fingers; and conversely can make an existing blepharophimosis disappear by drawing the skin out toward the temple. Blepharophimosis is ordinarily not found at the inner angle of the eye, because the adjoining skin of the bridge of the nose is not so readily displaced, although in old persons with thin skins a projecting fold of skin is sometimes formed here too.

Blepharophimosis accordingly, like that form of ectropion which occurs in connection with chronic catarrh, epiphora, etc., owes its origin to a contraction of the skin of the lid. The difference between the two lies in the fact that, in the first case, the contraction makes itself apparent chiefly in the horizontal direction; in the second case, in the vertical direction. Blepharospasm and ectropion, therefore, as originating from the same cause, may be both present at the same time. That this in general is but rarely the case is due to the upward traction which the vertical fold of skin forming the blepharophimosis exerts upon the lower lid and which opposes the eversion of the latter. In fact, therefore, blepharophimosis actually favors the development of an entropion, which in such cases can often be cured simply by the abolition of the blepharophimosis. Another consequence of blepharophimosis is the contraction—to be sure, an apparent one only—of the palpebral fissure, which consequently can not be opened as wide as usual.

Blepharophimosis, at least in young persons with elastic skin, may gradually disappear of itself, provided its causes (epiphora, blepharospasm) have ceased to act. If it does not disappear spontaneously and if it causes any trouble, it may be removed by widening the palpebral fissure by means of canthoplasty (see section on Operations, § 168).
7. Lagophthalmus.

By lagophthalmus* is meant an incomplete closure of the palpebral fissure when the lids are shut together. In the lesser degrees of lagophthalmus complete closure of the palpebral fissure is still possible by squeezing the lids together; but since during sleep there is no such squeezing up of the lids, but only a gentle closure of them, such patients sleep with their eyes open, and from this the disease derives its name. In the higher degrees of lagophthalmus it is no longer possible for the patients, even by squeezing their lids together, to bring them into contact.

The evil consequences of lagophthalmus depend upon the harm which the eyeball suffers from being insufficiently covered. What part of the eyeball is it that remains uncovered by the lids in lagophthalmus? If we tell a patient with lagophthalmus of slight degree to shut his lids lightly together, we see that the borders of the lids remain separated some millimetres from each other, and that between them there lies the part of the sclera that is below the cornea, but not the cornea itself. The reason for this is that at the same time that the lids are shut the eye is turned upward, so that the cornea is concealed beneath the upper lid. The same is the case during sleep. Hence the only part of the conjunctiva sclera that is constantly exposed to the air is that situated below the cornea. As a result of this exposure it is injected, and the patient suffers from the symptoms of a chronic conjunctival catarrh. In the higher degrees of lagophthalmus the cornea, too, is seen to lie in the slit which remains open when the lids are closed together; and, because the cornea is turned upward, it is the lower part of it that is seen. Lagophthalmus but seldom reaches a degree such that the cornea remains completely uncovered.

The cornea may suffer in two ways from being covered insufficiently: either it dries up wherever it is constantly exposed to the air, and, the dried portions becoming necrotic, keratitis e lagophthalmo ensues (see page 174); or the cornea protects itself against the exposure by a change in its epithelium which becomes thicker and epidermoid, so that the deeper layers of the cornea are preserved from desiccation (xerosis of the cornea, see page 120). But as opacity both of the epithelium and of the cornea itself is associated with this process, the sight is thereby prejudiced. In any case, therefore, vision is endangered in lagophthalmus if the latter is so considerable that the cornea is no longer sufficiently covered. Another result of lagophthalmus is epiphora, since complete closure of the lids is requisite for the normal conduction of tears into the nose.

---

* I. e., hare's eye, from λαγός, hare, because it was believed that hares sleep with their eyes open.
The causes of lagophthalmus are: 1. Narrowing of the lids. This is in most cases caused by the loss of a portion of the skin of the lids in consequence of burns, ulcers (particularly lupus), operations, etc. Less frequent are the cases of congenital narrowness of the lids. These are characterized by the fact that the palpebral fissure still remains open a distance of some millimetres when the lids are shut lightly together, and that, nevertheless, no signs whatever are present of loss of the skin of the lids under the form of cicatrices. There often exist in these cases the symptoms of a chronic blepharitis ulcerosa. 2. Ectropion. 3. Paralysis of the orbicularis. In this case it is mainly the lower lid that is accountable for the lagophthalmus, it not being raised when the eyes are closed. 4. Constant patency of the eyes, occurring in persons who are very ill or who are unconscious, and due to a reduction of the sensitiveness of the cornea, so that the reflex acts of winking and of shutting the eyes are no longer initiated. 5. Enlargement or protrusion of the eye, so that the lids, in spite of being normal in size and mobility, are unable to cover it completely. In this connection particular mention must be made of Basedow’s disease, in which the lagophthalmus is bilateral, so that bilateral blindness sometimes occurs as a result of it.

The treatment of lagophthalmus consists first of all in regarding the causal indication—i.e., in the removal of those conditions which prevent the complete closure of the lids. Under this head belong the remodeling of contraction of the lids by means of blepharoplasty, the cure of ectropion, the treatment of facial paralysis, etc. Until we have succeeded in doing away with the lagophthalmus itself, for which often quite a long time is required, the eye must be protected from the evil consequences of the disease. This is accomplished by closing the palpebral fissure artificially with a bandage. For this purpose we first bring the borders of the lids into perfect apposition, and keep them so by strips of sticking plaster which are attached vertically across the lids; over this is applied an ordinary protective bandage with dry cotton. In the lighter cases it is sufficient to apply this bandage only at night, since then the danger of desiccation of the cornea is the greatest, and during the day the act of winking suffices to keep the cornea moist. But in the higher degrees of lagophthalmus, or in cases in which the cornea is already attacked, the bandage must be worn constantly. In those cases in which the removal of the cause of the lagophthalmus is impossible, or is likely to require a very long time (as, for example, in the cure of a case of Basedow’s disease), it would be disagreeable for the patient to have to wear a bandage for so long a time—a year or so. For these cases tarsorrhaphy (see section on Operations, § 169) is advisable. By this the palpebral fissure is abbreviated and the borders of the lids are brought nearer each other, so that the closure of the eyes is facilitated.
If we except the rare cases of extreme smallness of the lids that are observed in monsters and constitute microblepharia, congenital narrowness of the lids does not usually reach any considerable degree. The palpebral fissure, when the lids are closed lightly, gapes a few millimetres, so that a narrow line of sclera (but not the cornea) is visible in it. Another sign of congenital narrowness of the lids is that such people sleep with the eyes not perfectly shut. This, to be sure, also occurs in persons with normal lids. I have, in fact, found that the peculiarity of sleeping with the eyes half open is hereditary in many families. But in this case the individual concerned will, when told to close the lids gently together, do it properly and perfectly, while the man whose lids are too short effects their closure only by screwing them up tight. The measurement of the lids affords more exact information in regard to their relations as to size. This measurement can only be performed in the upper lid, because the lower lid has no sharp boundary line separating it from the cheek. The measure is taken in the following way: First, the altitude of the upper lid—i.e., the vertical distance between its free border and the center of the eyebrow—is measured with the lids gently closed. Then the vertical extent of the skin of the lid when its folds are smoothed out is measured. For this purpose we grasp the lid by the cilia and put it moderately upon the stretch, and then again determine the distance between the border of the lid and the eyebrow. The altitude of the lid gives a measure of the area that has to be covered by the upper lid; the extent of the skin of the lid gives a measure of the quantity of skin available for this purpose. Upon the relation between the two, therefore, depends the completeness with which the lid can be shut. I have found by numerous measurements that in adults the vertical extent of the skin of the lid must have an amount at least one half greater than that of the altitude of the lid for a complete closure of the lids to be possible without undue effort. If the extent of the skin of the lid falls below an amount one and a half times as great as that of the altitude of the lid, there is lagophthalmus. The consequences of this are chiefly manifested in epiphora, and as a result of this in blepharitis ulcerosa. Such cases are hence ordinarily regarded as old cases of blepharitis, and the narrowness of the lids is either altogether overlooked or is considered to be the result of the blepharitis. Small losses of integument, with consequent cicatrices, do indeed develop in the course of this blepharitis from suppuration of the glands of Zeiss; but they are too inconsiderable to account for the marked narrowness of the lids, and this, therefore, if no other cause for it can be found, must be regarded as congenital. This condition is incurable. An amelioration of the troubles suffered is obtained by dressing the eyes overnight with an ointment of white precipitate smeared upon linen; in this way the accompanying blepharitis is kept within bounds. I have seen but few cases in which the congenital narrowness of the lids was considerable enough for the cornea to suffer harm from it so that an operative procedure (tarsorrhaphy) was required.

V. Diseases of the Palpebral Muscles.

1. Orbicularis.

113. (a) Spasm of the Orbicularis (Blepharospasm*). This manifests itself by the screwing of the lids tightly together. It is either an accompanying symptom of other eye diseases (symptomatic blepharospasm), or it forms a disease by itself (essential blepharospasm).

* From βλέφαρον, lid, and σφίγγει, to draw tight.
Symptomatic blepharospasm accompanies all irritative states of the eye, and is hence found in conjunction with the presence of foreign bodies in the conjunctival sac, with trichiasis, with the most various forms of inflammation of the eye, etc. The violence of the blepharospasm is by no means in direct proportion to the severity of the disease of the eye, so that no sort of conclusion can be drawn from it with respect to the violence or the duration of the ocular affection that lies at the root of it. It often renders the examination of the eye extremely difficult. Blepharospasm is usually most violent and most obstinate in conjunctivitis eczematosa. It reacts unfavorably upon the eye trouble; moreover, it often leads to oedema of the lids, to blepharophimosis, and to spastic ectropion and entropion. The treatment of symptomatic blepharospasm consists in the removal of the ocular disease which lies at the root of it (cf. page 101).

Essential blepharospasm is distinguished from the symptomatic variety by the fact that in it the eyes themselves are found to be perfectly normal. In young persons, particularly of the female sex, it manifests itself by the eyes suddenly shutting up and then remaining closed as if in sleep (blepharospasmus hystericus). In elderly people blepharospasm (blepharospasmus senilis) appears either under the form of clonic spasms—i.e., continual winking (nictitatio)—or as a tonic spasm by which the eyes are kept tightly closed all the time. Essential blepharospasm is extremely annoying to the patient; indeed, in severe cases it has, as far as he is concerned, almost the same results as a real blindness, since the patient can not make use of his eyes when they are shut. Hysterical blepharospasm in time disappears of itself, while senile blepharospasm resists treatment for a long time, and sometimes, indeed, is absolutely incurable.

(b) Paralysis of the Orbicularis.—If the case is one of recent paralysis, no changes are noticed while the eye is open; but if the patient has cause to shut his eye, it is apparent that the closure is but incompletely performed, because the lower lid can not be lifted properly. This is particularly striking in the inner half of the lid. In consequence of the incomplete closure of the lid there is epiphora, which in light cases often constitutes the only complaint the patient makes. After the paralysis has lasted quite a long time further changes set in. The lower lid falls away from the eyeball and keeps drooping lower and lower all the time (ectropion paralyticum). The cornea during sleep is exposed to desiccation in its lowermost part, so that keratitis lagophthalmic develops.

Paralysis of the orbicularis is caused by an affection of the facial nerve which innervates it. A lesion of the facial nerve may have either a central or a peripheral situation. In the former case it is located in

* From nictare, to wink.
the course of the nerve fibers extending from the cortex of the brain to
the nucleus of the facial nerve; in the second case it is located in the
nerve trunk itself. Central paralyses of the facial nerve chiefly affect
its oral branches, while the orbicularis is usually normal. Hence, in a
paralysis of this muscle we have ordinarily to do with a peripheral
lesion of the nerve. Most frequently we have to deal with a so-called
rheumatic paralysis; but the paralysis may also be caused by injury
(particularly by operations in the region of the parotid gland), by an
otitis media, by tumors, and by syphilis. The rheumatic paralyses of
the orbicularis give a favorable prognosis, but even in them several
months are required before the cure takes place. The treatment must
first of all endeavor to remove the cause of the paralysis. Sympto-
matic treatment consists mainly in the application of the electric cur-
rent, both constant and induced. As long as the closure of the lids
is imperfectly performed, the palpebral fissure must be kept closed by
a bandage (see Lagophthalmus), to prevent the development of ectro-
pion and of keratitis. In the severe cases the bandage must be worn
constantly; in the light cases it is sufficient to apply it at night only. If
the paralysis proves to be incurable, tarsorrhaphy is indicated in order
to facilitate the closure of the lids.

2. Levator Palpebrae Superioris.

Paralysis of the levator palpebrae superioris manifests itself by a
drooping of the upper lid (ptosis*). All degrees of ptosis occur, from
a just noticeable depression of the upper lid, to a prolapse of it so
complete that it hangs down quite relaxed and devoid of wrinkles, and
covers the whole eyeball. The higher degrees of ptosis, in which the
lid hangs down in front of the pupil, interfere with vision, unless the
patient lifts up the lid with his finger, or unless it is possible for him
to draw it up sufficiently by a forced action of the frontalis muscle.
By the contraction of the latter the forehead is wrinkled and the skin
over it is thus contracted, so that the eyebrows and indirectly the upper
lid as well are elevated. But since this elevation is not sufficient, the
patient is in addition compelled to throw his head back, because then
in looking forward the eyes are directed down, and thus the pupils get
to lie in the palpebral fissure even though lowered. The wrinkled fore-
head, updrawn eyebrows, and backward pose of the head are character-
istic of persons with bilateral ptosis.

Ptosis is either acquired or congenital in its occurrence. Acquired
ptosis may be caused by a lesion either of the muscle itself or of the
nerve supplying it. The former condition is most frequently due to
injuries. The nerve supplying the levator is a branch of the oculo-
motor nerve, and hence ptosis is often found in conjunction with paral-

* From πίπτειν, to fall.
DISEASES OF THE LIDS.

ysis of other muscles supplied by the oculo-motor nerve. The cases of isolated ptosis without any other signs of oculo-motor paralysis are caused mainly by central disease.

In congenital ptosis the levator palpebrae superioris is found to be either deficiently developed or entirely absent, and at the same time there is a partial degeneration of the oculo-motor nucleus. In contradistinction to acquired ptosis, which usually affects only one eye, congenital ptosis is generally bilateral. Not infrequently is it transmitted by inheritance through several generations.

As regards the treatment, our endeavor should be, in acquired ptosis, to find out the cause of the paralysis and remove it by suitable measures. But if we have to do with a ptosis which has already become inveterate, or if it is congenital, an improvement of the condition can be obtained only by way of an operation (see section on Operations, § 172).

Essential Blepharospasm.—In hysterical blepharospasm both eyes shut up suddenly and usually without any known cause. It may take some hours, but it may also take days and even months, before the eyes open again, which they do, and just as suddenly. Such attacks may be repeated quite often, and may also vary greatly in their duration. The spasm almost always affects both eyes; once only have I seen a unilateral hysterical blepharospasm. Other symptoms of hysteria are often present coincidently with the blepharospasm. In a young girl who suffered with blepharospasm of this sort, and whom I had already treated in vain with different remedies, I was finally successful in relieving the blepharospasm by means of a single instillation of cocaine; but a few minutes after the girl had opened her eyes both legs became paralyzed, and remained so for several days.

In the examination of patients with hysterical blepharospasm it is often possible to find so-called pressure points—i.e., portions of the body upon which we simply have to press for the eyes to open as if by magic (Von Graefe). In the majority of cases the pressure points lie in the region supplied by the trigeminal, as at the point of exit of the supra-orbital and infra-orbital nerves at the upper and lower margins of the orbit. But often these points are more difficult to find, being situated, for example, in the cavities of the nose, the mouth (when there are carious teeth), or the throat; sometimes the pressure points are not found in the region supplied by the branches of the trigeminal at all. Thus cases occur in which the blepharospasm can be made to disappear by pressure upon one of the costal cartilages or the vertebrae, or upon some spot of the arm or leg, etc. Often the patient himself calls the physician's attention to the position of the pressure points, the knowledge of which he has already utilized for his own relief. The most frequent cases are those in which the patient allays the blepharospasm by pressure upon the forehead, a pressure which acts upon the branches of the supra-orbital nerve. Young men wear a hat with a stiff crown which they press down hard upon their face; girls tie a ribbon tight about their head. But as soon as the pressure ceases—a g. by taking off the hat—the eyes shut together again. In many cases the diversion of the attention to other things suffices to temporarily relieve the blepharospasm.

The form of hysterical blepharospasm, in which the eyes remain quietly closed without any apparent spasm, present a great similarity to ptosis. We can, however, readily recognize it to be a spasm if we try to open the eye by lifting the upper lid; for we then feel the resistance that the orbicularis offers to the opening of the eye. As indicative of the contraction of this muscle, we see that the skin
of the forehead is thrown into vertical wrinkles, and that the eyebrows are lower
than usual. In ptosis the skin of the forehead, owing to the contraction of the
frontalis, shows horizontal wrinkles, and the eyebrows are higher than usual. In
the normal state the situation of the eyebrows corresponds to the upper margin of
the orbit.

_Senile_ blepharospasm is often only one of the symptoms of a general spasm
of the face (tic convulsif). Of the two forms of this spasm the clonic variety is the
less disagreeable for the patient, because sight is but little interfered with by the
constant winking. In tonic spasm the eyes shut suddenly and remain spasmodic-
ally closed for some minutes. If the patient is attacked by this spasm in a crowd,
or while crossing the street, or under other such like conditions, he is helpless and
exposed to the likelihood of an accident. In senile blepharospasm, too, there are
frequently pressure points which influence the spasm.

Just as the normal act of winking is set up in a reflex way by irritation of
the terminal extremities of the trigeminal upon the surface of the eyeball, so,
too, blepharospasm is in most cases of reflex nature. This is beyond doubt the
case in symptomatic blepharospasm, in which the irritation of the trigeminal
due to a foreign body, to inflammation, etc., is obvious. But besides this, a reflex
action starting from the trigeminal must be assumed to exist in the majority of
cases of essential blepharospasm also. A proof of this is the fact that pressure
upon the branches of the trigeminal so often abrogates the blepharospasm, and
that at the same time the pressure points themselves are frequently sensitive to
pressure. _Treatment_ has therefore the greatest prospect of success in those cases
in which it is possible to find pressure points, as then we can attack directly the
starting point of the reflex action. This is done by applying the galvanic current
to the pressure points, or by injecting morphine at these spots. In a girl in whom
pressure upon the vortex relieved the blepharospasm the injunction, several times
repeated, of an ointment (veratrine ointment) upon this spot sufficed to do away
with the spasm. If no pressure points are discoverable, we must think of the sur-
face of the eyeball itself as a source of the reflex action. We can try to render this
insensitive by cocaine, or we may apply the galvanic current to the closed lids. In
addition we employ the remedies that are used against neuroses in general. In one
case of senile blepharospasm, in which everything else had proved futile, the re-
peated application of the moxa behind both ears effected a permanent cure.
In the most obstinate cases we may proceed to stretch or to resect those branches of the
trigeminal from which the reflex starts. Stretching of the trunk of the facial
nerve has also been performed quite often, although the results on the whole have
not been very satisfactory. It is only in senile blepharospasm that such heroic
remedies will be ventured upon, as hysterical blepharospasm always passes off
of itself in the course of time.

Children of an age from eight to fifteen years are frequently brought by their
parents to the physician on account of a habit of _continual winking_. This hap-
pens not infrequently during the occurrence of a slight conjunctivitis, and keeps on
independently after the latter has been relieved. For the most part, in this case
we have to deal with rather anaemic and nervous children. This affection—fre-
quently attributed to badness by the parents—usually passes off of itself after
some time.

Repeated _fibrillary contractions_ of single bundles of the orbicularis, which
are appreciated by the patients themselves, occur very frequently in perfectly
healthy persons with normal eyes. No sort of significance is to be attributed
to them.

_Proosis._ _Congenital ptosis_ is frequently found in conjunction with other con-
genital anomalies. Among the latter are an inability to look up, accounted for
DISEASES OF THE LIDS.

by a deficient development or actual absence of the superior rectus (Steinheim); also epicantthus (§ 116).

There are cases in which the upper lid droops somewhat owing to congenital ptosis, but rises when the mouth is opened or lateral movements of the lower jaw are made. The same connection between movements of the upper lid and of the lower jaw has been at times observed without any coexisting ptosis.

In acquired ptosis a similar sympathetic movement of the lid, and one that in this instance occurs conjointly with movements of the eyeball, is observed not infrequently. This is found in cases of oculo-motor paralysis of central origin, and it takes place in the following way: The ptosis attains its highest pitch in abduction of the eye; while in adduction (or in the attempt at adduction if the internal rectus is completely paralyzed), it diminishes, or disappears altogether, or even at times is converted into the opposed condition, so that the upper lid rises abnormally high.

There is a sort of ptosis that develops without known cause in women of middle age. It is always bilateral, and sets in so gradually that not till after a series of years is it pronounced enough to cause any considerable interference with vision. In these cases it is not a paralysis of the nerve, but a primary atrophy of muscle itself that is present (ptosis myopathy).

The name of ptosis is incorrectly used for conditions which have nothing to do with an affection of the levator palpebrae superioris—e. g., when the upper lid droops because it has become heavier in consequence of thickening due to trachoma, new growths, etc. So also the ptosis adiposa of Siechel, which consists in the fact that the covering fold of the upper lid is of unusual size, so as to hang down over the free border of the lid in the region of the palpebral fissure, does not belong under the head of ptosis proper. It was formerly assumed that this enlargement was caused by an excessive accumulation of fat in the covering fold, for which reason the name of ptosis adiposa was given to it. Its true cause, however, is that the bands of fascia connecting the skin with the tendon of the levator (f, Fig. 160) and with the upper margin of the orbit are not rigid enough; consequently the skin is not properly drawn up when the lid is raised, but hangs down in the form of a flabby pouch (Hotz).

A condition differing from ptosis adiposa is blepharochalasis (γκαλασία, relaxation). In this the skin of the upper lid becomes so thin that it lies in countless little wrinkles, and looks like rumpled tissue paper. Moreover, owing to the dilatation of numerous small superficial veins, it acquires a red appearance. In consequence of its relaxation and the looseness of its attachment it hangs down like a pouch; while the border of the lid itself is scarcely lower than usual. This change occurs in cases in which there have been frequent antecedent oedematous swellings of the lid (e. g., it occurs after recurrent neurotic oedema of the lid, see page 524), as a result of which the skin is stretched and loses its elasticity.

Except for the disfigurement they cause, neither ptosis adiposa nor blepharochalasis entails any disagreeable symptoms. They can be removed by simple ablation of the excess of skin, or we may attach the skin to the upper border of the tarsus by Hotz's operation, and thus prevent its drooping (see section on Operations, § 167).

Both paralysis and spasm are also observed in the unstriated levator or musculus tarsalis superior of Müller. Paralysis of this muscle lies at the bottom of that variety of slight ptosis which belongs to the group of symptoms induced by paralysis of the sympathetic (see page 333). Spasm of the muscle, manifested by drawing up of the upper lid and dilatation of the palpebral fissure, can be excited artificially by the instillation of cocaine. Moreover, according to some, the elevated position of the upper lid in Basedow's disease is caused by a spasm of Müller's muscle.
VI. INJURIES OF THE LIDS.

114. Injuries of the lids of all kinds, including simple contusions, incised, lacerated, and contused wounds, burns by heat or caustics, etc., are very frequent. A peculiarity of these injuries that needs to be emphasized is that, because of the great elasticity of the skin of the lids and their loose attachment to the subjacent parts, both ecchymosis and oedema in the injured lids are usually much more considerable than after a similar injury in other parts of the body. Accordingly, we must not allow ourselves to be frightened merely by the great swelling and bluish-black discoloration of the lids, as these appearances are often enough produced by comparatively slight contusions. On the contrary, the diagnosis and prognosis should not be pronounced until after a careful examination. In this, three points are chiefly to be considered: solutions of continuity of the skin of the lids, injury to the subjacent bones, and injury of the eyeball.

Solutions of continuity of the skin of the lids present a varying aspect according to their direction. Those which run horizontally—i.e., parallel to the line of fibers of the orbicularis—gape but little, so that the lips of the wound often lie in apposition spontaneously. But if the cut or rent runs in a direction perpendicular to the fibers of the orbicularis, the wound gapes widely in consequence of the retraction of the divided bundles of the muscle. Consequently, the cicatrices after horizontal wounds of the skin of the lids are scarcely visible, while those after vertical incisions are conspicuous and disfiguring. Hence, in operations upon the lids the rule is laid down that all incisions should, wherever possible, be made parallel to the course of the fibers of the orbicularis. The worst wounds are those which sever the lid in a vertical direction through its entire thickness. If these do not unite by first intention, there remains an indentation of the border of the lid, or even a deep triangular incision in it (coloboma palpebræ traumaticum). By this the complete closure of the lid is rendered impossible, so that, in addition to the disfigurement, a permanent epiphora results from the injury.

The presence of an injury of the subjacent bone is determined by palpating the margin of the orbit with the finger through the swollen lid. A fracture of the orbital margin is manifested by unevenness and special sensitiveness at some spot, symptoms to which in many cases is added distinct crepitation. A certain sign of injury of the bone is emphysema of the lids. This consists in the entrance of air into the cellular tissue beneath the skin of the lid. The lids then have a peculiar soft feeling like a feather bed, and at the same time we get in the palpating finger a sense of crepitation due to the displacement of bubbles of air beneath the pressure of the finger. The air comes from the cavities surrounding the orbit—the nasal fossæ, the ethmoid cavi-
DISEASES OF THE LIDS.

ties, the frontal sinuses, the antrum of Highmore. Its presence in the subcutaneous cellular tissue of the lids hence presupposes some abnormal communication between the latter and these cavities, such as can only have originated through a fracture of the bone. When then, by blowing the nose, straining, and coughing, the air in the nose and its accessory cavities is put under greater pressure, it is forced into the subcutaneous cellular tissue, and thus emphysema is produced.

An added significance is imparted to wounds of the lids from the fact that by their mutilation the eye itself may be exposed to danger. Through cicatricial contraction of the lids, or the formation of fissures in them, lagophthalmus and consequently inflammation of the cornea may be set up.

The treatment of injuries of the lids is carried on according to general surgical rules. In simple ecchymosis we apply cold compresses with lead water. In emphysema of the lids the air contained in the tissues usually undergoes resorption without causing any ill results. To accelerate resorption a compressing bandage is indicated; at the same time the patient must avoid straining, blowing the nose, etc., in order not to drive fresh charges of air into the tissue. Recent wounds, the edges of which are not too greatly contused, are best united at once by sutures. In wounds the edges of which are destroyed by contusion and the like, we apply an antiseptic dressing and wait for the necrotic portions to be cast off. The same rule holds good for burns and injuries caused by caustic substances. After the elimination of those portions of the skin that have been destroyed, granulating raw surfaces are presented to view which cicatrize over and thus lead to a contraction of the lids. To combat this, we proceed precisely as has been laid down for the treatment of destruction of the skin by inflammation (see page 522).

Ecchymoses are usually pretty sharply limited at a line corresponding to the margin of the orbit, because the skin is attached to this by rigid connective tissue which prevents the further advance of the blood. On the other hand, the blood not infrequently travels beneath the skin of the dorsum of the nose over to the other side. An ecchymosis is then found in the lids of the other eye also. As the skin upon the dorsum of the nose is thick, it frequently does not permit the blood to be seen through it, so that we do not notice the bridge connecting the ecchymosis of one eye with that of another. We might then easily be induced to believe that the injury had affected the other eye also, a thing which, however, can be excluded with certainty in many cases—e. g., when suckerlation of the lids of one side sets in after enucleation of the other eye.

A similar migration of extravasated blood is observed in fractures of the base of the skull. The blood oozes forward from the site of the fracture and travels along the floor of the orbit. It then makes its appearance some time after the injury under the form of an ecchymosis in the lower part of the conjunctiva of the eyeball, and also on the lower lid close to the margin of the orbit, particularly in the region of the inner angle of the eye. This symptom, although it
is not present in all cases, is of great importance for the diagnosis of fractures of the base.

Spontaneous ecchymoses sometimes occur in the lids, in the same way as they do in the conjunctiva, from violent straining, excessive coughing, and the like.

Extravasations of blood into the lids, instead of disappearing by resorption, may go on to suppuration, so that an abscess of the lids develops. This is particularly to be apprehended when there is at the same time a solution of continuity of the skin of the lids, through which infectious germs may penetrate into their tissue.

Emphysema of the lids occurs quite frequently, even when no evidence of fracture is found upon palpation of the orbital margin. The experiments of Walser have shown that in these cases the fracture affects the lamina papyracea of the ethmoid bone. The way in which this is produced is that the entire contents of the orbit are forced back by the blow that affects the region of the eye, and the portion in question of the bony wall, which here is so thin, is pushed in. Again, a force making its way in between the eyeball and the outer wall of the orbit and squeezing the eyeball against the inner orbital wall may have the same result.

VII. TUMORS OF THE LIDS.

115. (a) Benign Tumors.—Xanthelasma* is a flat tumor of a dirty sulphur-yellow color and projecting but little above the skin of the lid. It is found most frequently on the upper and lower lids in the neighborhood of the inner angle of the eye; in this situation the tumors are often located symmetrically on the two sides of the eye, like the yellow spots above the eyes of the dachshund. Xanthelasmatas occur in elderly persons, particularly of the female sex. They grow very slowly, and have no bad result besides the disfigurement they cause, which, moreover, affords the only reason for their removal by operation, as is sometimes done.

Molluscum contagiosum is a small, rounded tumor, the surface of which is somewhat flattened and has an umbilicated depression in its center. From this a substance resembling sebum is evacuated upon pressure. This form of molluscum is contagious.

Molluscum simplex (fibroma molluscum) is a tumor of the skin which is attached by a pedicle to the skin of the lids and hangs down like a pouch.

Warts and cutaneous horns are also observed on the lids.

Among cysts, milia, atheromata, and dermoid cysts occur. The latter, which may attain pretty large dimensions, will receive a more detailed description under the head of affections of the orbit (§ 134). On the borders of the lids small, transparent cysts are frequently met with, which have developed from occluded sweat glands in the border of the lid (glands of Moll).

The vascular tumors (angiomata) are found in the lids under the

* From χανθός, yellow, and ἐκχυμός, plate. It is also called xanthoma.
two forms of telangiectases and of tumores cavernosi. The former are bright-red spots situated in the skin of the lid itself, and are composed of dilated and tortuous blood-vessels. The latter lie beneath the skin of the lid, which they bulge forward and through which they can be seen shining with a bluish luster. They consist of closely aggregated, large, venous cavities, which can be felt and compressed through the skin; the arteries running to the tumors are dilated. Vascular tumors are usually congenital, but they develop still more extensively after birth, and sometimes attain such a size that they cover a great part of the face, and are also continued backward into the conjunctiva and the tissues of the orbit. Hence they should be removed as early as possible. In doing this our principal care must be to destroy the skin of the lids over as small an area as possible, as otherwise we might get shrinking of the skin, with ectropion and lagophthalmus. For this reason the simplest procedure—namely, excision of the tumor—is usually unadvisable, as in doing it we should have to sacrifice too much skin; furthermore, the great bleeding that is associated with the operation is sometimes dangerous in small children, with whom, as a rule, we have to deal. We destroy small telangiectases by cauterizing them with fuming nitric acid or by heat, applied by means of the thermo-cautery or the galvano-cautery loop. In large telangiectases it is sufficient to sear the tumor along a number of lines, since, by the cicatrization that follows, the intervening vessels which have not been destroyed are obliterated. In cavernous tumors I have seen the best results from the application of electrolysis. The two poles of a constant-current battery are armed with needles; these are introduced into the tumor successively at different points, being kept at each point until bubbles of gas begin to escape along the needle out of the puncture made by it. The positive pole under the form of a plate electrode is placed upon the temple, and then the current is passed through the circuit. Owing to the decomposition of the tissue fluids produced by the galvanic current, the blood coagulates in the vessels, which consequently become obliterated. Several sittings are always required for the complete removal of the tumor.

(b) Malignant Tumors.—Carcinomata occurring in the lids are, as a rule, epitheliomata, which start from the skin of the lid, particularly from that of its border. Subsequently they pass over upon the eyeball and even penetrate into the depth of the orbit. Sarcomata develop from the connective-tissue portion of the lids, particularly the tarsus, and are often pigmented (melano-sarcomata). With malignant tumors we find an enlargement of the lymphatic glands, occurring first in the gland in front of the ear, afterward in the glands along the lower jaw and in the neck. The extirpation of tumors is conducted according to the well-known rules. If in its performance so much of the lid must be sacrificed that the eyeball as a consequence remains uncovered, a
DISEASES OF THE EYE.

substitute for the palpebral skin that has been destroyed must be procured by a blepharoplasty done immediately after the removal of the new growth. In extensive tumors it is often necessary to remove the eyeball, and even the entire contents of the orbit.

The flat cancers of the skin that not infrequently occur upon the lids require particular mention. In these cases there is found a shallow ulcer with an uneven floor and irregular, rather hard walls. The infiltration of the walls of the ulcer is the only characteristic sign, for there is no tumor in the proper sense of the word, and for this reason inexperienced observers readily mistake the true nature of the lesion, which is nothing else than an epithelial carcinoma. The ulcer advances in one direction while it cicatrizes on the side opposite, for which reason it has been called by the name of ulcer rodens. Its progress, however, is extremely slow, so that such tumors often last many years before attaining any great size.

In consideration of the complicated structure of the lids, in which such a manifold variety of tissues take part, it should not surprise us that the most dissimilar kinds of tumors should at times come under observation in them. As rare occurrences there have been observed lymphomata, fibromata, enchondromata, myxomata, lipomata, cavernous lymphangiomata, plexiform neuro-fibromata, adenomata of the sebaceous glands, of the Meibomian glands, of the glands of Krause, of the sweat glands, and of the glands of Moll, and lastly glandular carcinomata.

VIII. CONGENITAL ANOMALIES OF THE LIDS.

116. By coloboma of the lid is meant a fissure in it, having approximately the shape of a triangle, the base of which corresponds to the border of the lid, while its apex looks toward the margin of the orbit. Coloboma is either congenital (coloboma congenitum) or is acquired, being then produced by injury (coloboma traumaticum). Congenital coloboma is on the whole rare, and is observed oftener in the upper than in the lower lid. Sometimes it is found in conjunction with a dermoid tumor of the cornea (see page 124).

Under the name of epicantus is denoted a fold of skin which juts out on both sides of the dorsum of the nose and projects over the inner angle of the eye so as partly to cover it. In the Mongolian races a moderate degree of epicantus is the rule, and produces the characteristic appearance of the palpebral fissure in these men. In the Caucasian race there is not infrequently observed in children a slight degree of epicantus, which disappears again when, in the process of growth, the dorsum of the nose becomes more prominent. Higher degrees of epicantus, which persist all through life, must be regarded as a malformation, and are sometimes found in connection with other congenital defects (e.g., ptosis). The fold of skin forming the epicantus disappears if with our fingers we pick up the skin upon the dorsum of the nose into a vertical fold and thus shorten it in a horizontal direction. Upon this observation depends the operation for epicantus recommended by Ammon, which
consists in the excision of an elliptical piece of skin upon the dor-
sum of the nose. We may also excise the projecting fold of skin
itself (Arlt).

Among anomalies of the lids which are sometimes of congenital occurrence,
the following also must be mentioned: Ptosis, distichiasis, abnormal narrowness
of the lids, and, as the extreme degree of the latter condition, entire absence
of the lids (ablepharia); furthermore, symblepharon, ankyloblepharon, and the
condition in which the eye is completely covered by the external skin, which
replaces the lids and forms a uniform covering for the aperture of the orbit
(cryptophthalmus of Zehender); and, lastly, cysts in the lower lid, in the case of
microphthalmus.
CHAPTER XIII.

DISEASES OF THE LACHRYMAL ORGANS.

ANATOMY AND PHYSIOLOGY.

117. The lachrymal organs consist of the lachrymal gland and the lachrymal passages.

The lachrymal gland (glandula lacrimalis) is an acinous gland which consists of two divisions. The larger of these, known as the superior lachrymal gland, lies in the upper external angle of the orbit in a depression in the bony wall of the latter, the fossa glandulae lacrimalis. The excretory ducts of the superior lachrymal gland pass downward and empty into the external half of the superior fornix conjunctivae.

The second division of the lachrymal gland—the inferior lachrymal gland—is much smaller, and consists only of one or two lobules, for which reason it is also known as the accessory lachrymal gland. Its lobules lie along the excretory ducts of the superior gland directly beneath the mucous membrane of the fornix (Fig. 164). If the upper lid is everted and at the same time the eye is made to look downward, we often see the conjunctiva of the fornix in the vicinity of the outer angle of the lid pushed forward by a soft mass which is in fact the accessory lachrymal gland. Krause's glands (see page 38 and Fig. 164) forms a sort of continuation of the lobules of the inferior lachrymal gland over the fornix as far as its inner end. Their structure is that of the lachrymal gland, so that they may be regarded as the ultimate scattered outlying portions of the latter.

The lachrymal passages begin with the puncta lacrimalia. These lie on the free border of the upper and lower lid (upper and lower punctum) and near the inner extremity of the lid at the spot where the tarsus terminates (Fig. 164). They are situated upon small elevations, the lachrymal papillae (papillae lacrimales), and form the orifices of the canaliculi lacrimales. These latter, starting from the puncta, run at first vertically for a short distance—i.e., in the upper lid run upward and in the lower lid downward; then they bend at a right angle and become directed toward the lachrymal sac. In so doing they first pass behind the caruncle, and converging more and more, at length reach the lachrymal sac. Into this they empty, either separately or after having united to form a short common trunk.
The lachrymal sac (saccus lacrimalis) lies in the inner angle of the eye in the cleft (fossa sacclacrimalis) which the lachrymal bone forms for its reception. The lachrymal bone bounds the lachrymal sac (S, Fig. 161) on the inside, while to the front and outside it is inclosed by the two branches of the ligamentum palpebrale mediale (a and A, Fig. 93). This relation of the lachrymal sac to the internal palpebral ligament enables us to determine the position of the former—a matter which is of importance when operations are concerned. If by drawing the lids outward we put them on the stretch and so cause the palpebral ligament to project, the lachrymal sac lies behind the latter, and in such a way as to rise just above it by its summit or fundus (Fig. 164).
At the spot where the cleft of the lachrymal bone merges into the bony canal the lachrymal sac passes into the nasal or lachrymal duct (ductus lacrimalis). The point where this transition occurs constitutes the narrowest part of the whole lachrymal channel (Fig. 164), and is therefore particularly liable to the formation of pathological contractions (strictures). From this point the lachrymal duct passes downward and empties into the nasal fossa below the inferior turbinated body. In its downward course the lachrymal duct deviates a little backward and outward from the vertical. Hence, the two lachrymal channels diverge as they go down, the lachrymal sacs being less far apart than are the lower orifices of the lachrymal ducts. We can represent the course of the lachrymal channel on the living subject by placing a straight sound in such a way as to lie at its upper part upon the middle of the internal palpebral ligament, and below upon the furrow forming the boundary line between the cheek and the alæ of the nose. This sound gives precisely the direction of the lachrymal duct (Arlt). If we place a sound in this way on each side of the nose, we see how the sounds diverge as they go down, and we can readily convince ourselves that the degree of divergence differs in different individuals. The divergence, in fact, depends upon the breadth of the root of the nose on the one hand, and upon the breadth of the inferior nasal orifice on the other. These facts are of importance with regard to the operation of sounding the lachrymal duct, in the performance of which the sound must be pushed along in the direction of the duct.

The mucous membrane of the lachrymal sac and that of the lachrymal duct forms one continuous whole. There is, therefore, no sharp dividing line between these two structures. They are mainly distinguished by the fact that the lachrymal sac lies against bone (the lachrymal bone) at one side only, and everywhere else is free, while the lachrymal duct is inclosed on all sides by bony walls. It follows from this that, in engorgement of the lachrymal channels with fluid, it is only the lachrymal sac which is distended so as to appear as a visible swelling at the inner angle of the eye. The lachrymal duct can not be distended; on the contrary, it is the favorite seat of constrictions, which again do not occur in the lachrymal sac. The formation of these constrictions is facilitated by the fact that a dense plexus of wide veins, analogous to the venous plexuses beneath the mucous membrane of the turbinated bodies, is interposed between the mucous membrane of the lachrymal duct and the bony wall. The swelling of these veins is alone sufficient to contract or to close entirely the lumen of the duct.

The lachrymal passages are always filled with a small quantity of lachrymal fluid. If air is found in them, it is to be regarded as a pathological condition.

The lachrymal secretion contains only a few solid constituents, the
main part of which is sodium chloride (hence "salty" tears). In the normal state the lachrymal gland secretes scarcely any more liquid than is lost by evaporation from the surface of the eyeball, so that but very small quantities of fluid are discharged into the nose. It is only when the secretion is increased, either in consequence of physical stimulation or of irritation of the eye, that any considerable quantity of tears is discharged into the nose, where its presence is manifested by repeated blowing of the nose.

The moistening of the eyeball is not due to the lachrymal glands alone. The secretion of the conjunctiva itself, and also of its mucous glands, participates in the performance of this act. Hence it follows that even after removal or degeneration of the lachrymal gland the eye does not become dry.

In the conduction of tears into the nose there are two factors to be considered: the entrance of the tears into the lachrymal sac, and their transmission from the latter to the nose.

(a) The conveyance of tears through the puncta into the lachrymal sac is effected by the act of winking. This takes place in such a way that the palpebral fissure is closed by a movement beginning at the outer and extending to the inner angle of the eye. In this way the tears are collected from the surface of the eyeball and forced toward the inner angle of the eye, since they cannot flow off over the border of the lids owing to the way in which the latter is lubricated with fatty matter. They accumulate in the horseshoe-shaped notch in the inner angle of the eye, and form the lacus laerimalis into which the puncta dip. If there is a perfect and water-tight closure of the lids, the pressure exerted by the latter at length forces the tears into the puncta. The passage of the tears into the lachrymal sac is facilitated by the passive dilatation of the latter that occurs as the lid is closing; for the fibers of the palpebral portion of the orbicularis arise in part from the internal palpebral ligament, and hence, in contracting as they do during the closure of the lids, draw the ligament away from the lachrymal bone. The anterior wall of the lachrymal sac being connected with the palpebral ligament, is drawn up at the same time with it, so that the lachrymal sac is dilated and the contents of the canaliculi are, so to speak, sucked into the sac.

(b) The conveyance of the tears from the lachrymal sac into the nose is due partly to the constant entrance of fresh charges of tears from the canaliculi and partly to the weight of the fluid; but the chief part in the process is performed by the elasticity of the lachrymal sac. In virtue of this elasticity the sac when distended by the tears tends to contract again and thus expels the tears. Hence, in those pathological cases in which the lachrymal sac has lost its elasticity (atony of the sac) we observe that the conduction of tears downward is arrested, even though the nasal duct is completely pervious.
DISEASES OF THE EYE.

The mucous membrane of the canaliculi is lined with laminated pavement epithelium, that of the lachrymal sac and nasal duct with a single layer of cylindrical epithelium. Acreous mucous glands are frequently found in the latter. The mucous membrane at different spots projects in the form of folds into the lumen of the lachrymal passages—a phenomenon which has been described as a formation of valves. The largest of these folds is Hasner’s valve, at the lower orifice of the nasal duct. This, however, is not a true valve, any more than are the others—that is, not a valve which could close up the lumen of the lachrymal channel. On the contrary, it is simply a fold produced by the great obliquity with which the nasal duct passes through the mucous membrane of the nasal fossa. Like the other folds of mucous membrane in the lachrymal passages, it is not of constant occurrence.

Duplication of the puncta and canaliculi, and also their absence, have been recorded as congenital anomalies.

Different theories have been put forth to account for the transmission of tears into the nose. It is certain that perfect closure of the lids forms an indispensable condition for the conduction of tears. If this closure is interfered with—e.g., by paralysis of the orbicularis, narrowing of the lids, notching of the border of the lid, etc.—epiphora at once makes its appearance. The passage of tears into the lachrymal sac takes place even when the rest of the way to the nose is cut off by the obliteration of the nasal duct. Hence it follows that the tears are not sucked into the lachrymal sac through the rarefaction of the air in the nose during inspiration (aspiration theory of E. H. Weber and Hasner.)

I. BLENNORRHOEA OF THE LACHRYMAL SAC.

118. Symptoms.—The patient comes with the complaint of the tears running over (epiphora*). On careful inspection we notice that the skin in the region of the lachrymal sac protrudes so as to appear fuller than on the other side. This swelling—tumor lacrimalis—is caused by the lachrymal sac being distended by the excessive accumulation of its contents. When pressure is made upon the tumor the contents are evacuated externally through the puncta, and appear, in recent cases, under the form of a purulent, in older cases as a mucous or even limpid liquid. Sometimes, when pressure is made upon the lachrymal sac, the contents are forced not through the puncta but downward through the nose. This is the case when, as exceptionally happens, the nasal duct is freely pervious. Associated with these symptoms, which are an evidence of distention of the lachrymal sac and of abnormality in its secretion, there is usually a contraction (stricture) of the nasal duct. The proof of this is produced when we attempt to explore the duct with a Bowman’s sound, in doing which we come upon a spot where the duct is contracted or even altogether obliterated.

Etiology.—The immediate cause of a blennorrhoea of the lachrymal sac is a stricture of the nasal duct. Such a constriction may be produced, for example, by a swelling of the mucous membrane of the nasal

*From ἐπιφέρομαι, to rush upon. We also say illacrimatio or stillicidium (from stilla, drop, and cadere, to fall).
duct. The tears can then no longer be fully discharged into the nose. But as new tears are constantly being forced, by the act of winking, into the lachrymal sac, the latter becomes more and more filled up and distended. The lachrymal fluid that thus accumulates in the sac soon decomposes. The tears, in fact, carry with them from the surface of the eyeball a quantity of germs, which find the best conditions for their development within the lachrymal sac in the fluid which remains stagnant there, and which is kept at the temperature of the body. As a matter of fact, the contents of the lachrymal sac in blennorrhoea of the latter are seen under the microscope to swarm with micro-organisms of all kinds. The decomposed fluid acts as an irritant upon the mucous membrane of the sac, which undergoes inflammation and throws out a pyoid secretion which mixes with the tears that stagnate in the sac. The contents of the sac thus grow constantly more turbid and ultimately resemble pus. Blennorrhoea of the lachrymal sac is hence nothing but a catarrhal inflammation of the mucous membrane of the sac. The name blennorrhoea is correct only in so far as it signifies purulent discharges in general; and it would be a mistake to think in this connection of a specific inflammation of the mucous membrane of the lachrymal sac analogous to blennorrhoea of the urethra or of the conjunctiva. This is proved by the fact that we can evacuate the purulent secretion of the lachrymal sac as often as we choose by pressing upon it, without any blennorrhoea of the conjunctiva ever developing in consequence. The secretion of the blennorrhetic lachrymal sac, therefore, possesses no specific poisonous property; it is only virulent in the sense that all purulent or decomposed fluids are—i.e., in containing pus cocci in great numbers. Owing to this virulence, infection of ulcers of the cornea readily occurs in blennorrhoea of the lachrymal sac, so that an ulcer serpens develops.

The constriction of the nasal duct that, as has been said, forms the starting point for blennorrhoea of the lachrymal sac, develops, as a rule, in consequence of affections in the nasal cavity. Such affections are:

1. Inflammation of the nasal mucous membrane. Under this head belongs coryza in its various forms, whether acute or chronic, and whether a simple catarrhal trouble, or one of scrofulous or syphilitic origin. In these cases a swelling of the mucous membrane of the nose exists, which, owing to the presence of the submucous cavernous tissue, may very readily reach quite a high degree, so that the nasal cavity is rendered impermeable by it. The swelling extends by continuity to the mucous membrane of the nasal duct, being particularly due to the engorgement of the numerous veins lying beneath the latter, an engorgement which of itself is sufficient to close the lumen of the nasal duct. In the ordinary form of ozena (rhinitis atrophicans) there is no swelling, but a cicatricial contraction of the nasal mucous membrane, which may be continued from the inferior orifice of the nasal duct into the
latter and may thus lead to its constriction. 2. Ulcers, such as those which are apt to be associated with the serofulous and specific inflammations of the nasal mucous membrane, and also lupous ulcers. As the ulcers heal, cicatricial constriction or even obliteration of the nasal duct takes place. This is the more to be apprehended if the subjacent bones are also implicated. 3. Tumors. These may conceal the lower orifice of the nasal duct, and thus cause stoppage of the flow of tears. The most frequent tumors of this kind are polypi.

Course.—Blennorrhoea of the lachrymal sac is an eminently chronic disease, the course of which is counted by years. A spontaneous cure may indeed occur if, as the swelling of the mucous membrane of the nasal duct abates, the lumen of the duct becomes free once more, and at the same time the catarrhal inflammation of the lachrymal sac subsides. This, however, occurs but rarely. The rule is that without artificial aid no cure takes place, but the following course of events ensues: The secretion that at first was purulent becomes after some time mucous and viscid; at length, in consequence of atrophy of the mucous membrane, its secretion ceases altogether. Then the distended lachrymal sac contains simply a clear liquid—namely, the tears which have accumulated in it. But the epiphora nevertheless keeps on, because the constriction of the nasal duct prevents the conduction of the tears into the nose.

As a result of the constant distention of the lachrymal sac by fluid, its walls at length lose their elasticity. When this condition, called atonia sacci lacrimalis, has set in, the tears are no longer carried down into the nose, even if the nasal duct again becomes perfectly pervious. The distention of the lachrymal sac may keep on increasing more and more, so that it presents a fluctuating tumor of the size of a walnut and over. This either projects far forward, or often it extends deep into the orbit, so that the eyeball is displaced by it (exophthalmus). It is filled with a clear, watery fluid, hence the name hydrops sacci lacrimalis.

Blennorrhoea of the lachrymal sac chiefly causes trouble through the epiphora, which compels the patient to dry his eye frequently. The epiphora increases in cold weather, and in wind, smoke, etc. If it lasts a long time it leads to chronic catarrh of the conjunctiva and to blepharitis ulcerosa. If these two conditions are found in one eye alone, they must always excite the suspicion of there being a lesion of the lachrymal sac. In the subsequent course of the disease the moistening of the lower lid by the tears leads to eczema of the lid, contraction of the skin covering it, and ultimately to ectropion. By these conditions, again, the epiphora itself is increased. In the presence of blennorrhoea of the lachrymal sac, ulcers of the cornea may develop from erosions of the latter, and operation wounds also may readily become infected.
119. Treatment.—This must first of all have regard to the nasal disease which lies at the root of the trouble, and, if this still exists, must apply suitable measures for its relief. As regards the lachrymal sac itself, the patient is to be told to evacuate it very frequently by pressing with the finger upon the inner angle of the eye. In this way the accumulation of the secretion and the consequent decomposition of the latter, together with the dilatation of the lachrymal sac, are combated. In addition it is advisable to cleanse the lachrymal sac by syringing. We select for this purpose disinfectant solutions (1–4,000 sublimate solution, three-per-cent solution of boric acid), which can afterward be replaced by astringent solutions. The liquid is injected through the canaliculus by means of a syringe having a slender but not sharp-pointed cannula (Anel’s syringe).

The main burden of treatment lies in the removal of the stricture of the nasal duct, by gradual dilatation with sounds according to Bowman’s method. As a preliminary to the treatment by sounds, slitting of the inferior canaliculus is performed. To do this, the inferior canaliculus is first dilated with the conical sound, the pointed extremity of which is introduced into the inferior punctum, and then pushed on in the canaliculus until it strikes against the inner wall of the lachrymal sac (lachrymal bone). After withdrawing the sound we introduce a Weber’s knife into the dilated canaliculus, in such a way that the edge of the knife looks up and a little backward. By rapidly raising the knife, the probe-pointed extremity of which rests in the lachrymal sac, the canaliculus is slit open, and is thus converted into an open groove, looking upward and a little backward. The object of slitting the canaliculus, as a preliminary to the operation of sounding, is to facilitate the introduction of the sounds into the lachrymal sac.

For sounding the nasal duct we make use of Bowman’s sounds, which are kept on hand in different sizes, numbered from one to six. The sound is first introduced through the inferior canaliculus, after this has been slit open, and is passed in until it strikes against the inner wall of the lachrymal sac; the sound taking the direction of the canaliculus—that is, extending from the outer side and below in a direction upward and inward. Then we tilt the sound—that is, we direct it so as to be about perpendicular by lifting its free extremity until its point, which is in the lachrymal sac, points to the furrow between the ala of the nose and the cheek, this giving the position of the inferior orifice of the nasal duct. The sound, being thus placed in an upright position, is now slowly and cautiously pushed downward until it rests upon the floor of the nasal fossa. In so doing we necessarily pass the contracted spot, the favorite seat of which is either the point where the lachrymal sac enters the nasal duct, or the inferior extremity of the latter—the former spot, because it is normally the narrowest point in the lachrymal passages; the latter, because it is affected sooner than is
the rest of the lachrymal tract by diseases of the nasal mucous membrane. We begin with the slenderest sounds. If we cannot pass the contracted spot with one of these, we must not push the sound forcibly forward, but must keep trying again and again on succeeding days to introduce the sound, until at length we succeed in carrying it down into the nose. The sound after its introduction is allowed to remain for about a quarter of an hour. We repeat the sounding every day, or every other day, gradually passing to larger and larger sounds, until at length the nasal duct is readily pervious and the epiphora has ceased. Even then the sounding should not be at once discontinued, as in that case the spots which had been dilated would soon close up again, owing to renewed contraction of the cicatrices. The sounding must therefore be repeated again and again at longer intervals (of a week to a month).

The duration and the success of the treatment with sounds depend upon the nature of the contraction. The most favorable cases are those in which the contraction is caused by simple inflammatory swelling of the mucous membrane; those in which cicatricial strictures are present are less favorable, and the least favorable are those in which the nasal duct is completely obliterated at some spot. Cases of the latter kind do not, for the most part, admit of a permanent cure. Even in the most favorable cases the duration of the treatment amounts to from four to six weeks, and it usually requires several months. If strictures due to cicatrices are present, recurrences may set in, owing to renewed contraction of the cicatricial tissue; and, in fact, this unfortunately occurs so often that permanent cures form the exception.

Those cases which cannot be cured by treatment with sounds require, if they give rise to considerable annoyance, the destruction of the lachrymal sac. This can be accomplished either by extirpation or by obliteration. In either case the operation is begun by opening the lachrymal sac through an incision from in front. This is performed according to Petit's method, for the performance of which Arlt has given the following guides. By drawing the lids to the outer side the internal palpebral ligament is put on the stretch, so that it is seen through the skin of the inner angle of the eye as a prominent projection. The point of a sharp scalpel is introduced exactly beneath, the center of the ligament. The back of the knife looks upward and the knife itself is held so that its handle passes through the middle point of an imaginary line drawn from the apex of the nose to the outer margin of the orbit. The knife held in this direction is thrust vertically in, thus penetrating through the skin and the anterior wall of the lachrymal sac. As soon as we feel the point of the knife striking against the posterior wall of the lachrymal sac (lachrymal bone) we no longer push it forward, but depress its point by raising the handle as high as the forehead. If now the knife is pushed forward, its point
enters the upper part of the nasal duct, the wound in the anterior wall of the lachrymal sac being at the same time enlarged. After withdrawing the knife we enlarge the wound upward and downward, so as to have a view of the mucous membrane of the lachrymal sac throughout its whole extent.

After we have completed the opening of the lachrymal sac we proceed to destroy it. If we intend to perform this by extirpation, the mucous membrane of the sac, which now lies exposed, is dissected out through its entire extent. If we should not succeed in doing this completely on account of the great friability of the mucous membrane, we can scrape out the remainder with a sharp spoon. After this we sew up the external wound, and secure the apposition of the walls of the cavity by means of a pressure bandage. If we wish to perform obliteraion of the lachrymal sac, we either introduce a caustic (the best one being the Vienna paste, which is molded into a little ball with the aid of some flour and water) into the cavity of the lachrymal sac after it has been laid open, or we destroy the mucous membrane with the actual cautery. The external wound in that case should not be closed up, as the escharotic mucous membrane has to be cast off, after which the cavity gradually closes by the formation of granulations.

Both extirpation and obliteration of the lachrymal sac lead to the same result. The former is more difficult of performance, but gives a shorter period of treatment; if healing takes place by first intention, the cure is completed in a few days. After the operation for obliteration of the lachrymal sac it takes several weeks for the wound cavity to become completely closed. In both methods it is absolutely necessary that all the mucous membrane be either removed or destroyed, for, if a residue of the mucous membrane has been left, the secretion continues and a fistulous opening remains.

Destruction of the lachrymal sac is suitable in those cases in which the treatment by sounds is likely to be without result. This is the case where there are very extensive cicatricial contractions or complete obliteration of the nasal duct. It is still more advantageous if there are at the same time demonstrable changes in the bone, shown either by our coming upon bared and roughened bone in the act of sounding, or by there being an externally visible implication of the bone manifested by a sinking in of the nose (in consequence of syphilis). Furthermore, cases of atony and dropsy of the lachrymal sac, and also those cases in which external circumstances render a protracted treatment by sounds impracticable for the patient, are suitable ones in which to perform destruction of the sac.

While the treatment by sounds in favorable cases restores the normal conduction of the tears, the possibility of this restoration is forever prevented by the operation for destruction of the lachrymal sac. Hence a condition of epiphora always remains, which, however, reaches
a troublesome degree only when, in consequence of irritation of the conjunctiva, there is an excessive secretion of tears. As a compensating circumstance the patients are relieved of the presence of a constantly suppurating cavity which continually exposes them to the danger of getting an ulcer serpen of the cornea, and which also usually gives rise from time to time to acute phlegmons (dacryocystitis).

II. Dacryocystitis.

120. Symptoms.—In an individual who suffers from blennorrhoea of the lachrymal sac, a violent inflammation may suddenly develop in the region of the sac. The skin in its vicinity is then reddened and greatly swollen; the swelling also extends to the lids, and even to the conjunctiva, in which there is chemosis. The inflammation is accompanied by fever and violent pain, so that the patient is deprived of sleep for several nights. After some days the skin at the apex of the swelling takes on a yellowish discoloration, and finally becomes perforated, when quite a large quantity of pus is evacuated. Upon this the pain abates and soon ceases altogether, and the swelling also rapidly goes down. Later on there is discharged from the perforation a fluid which at first is purulent, afterward mucous, and at length perfectly clear like water. Ultimately nothing but the tears which are forced into the lachrymal sac run out again through the perforation, which latter is hence called a lachrymal fistula.

As long as the lachrymal fistula remains open the patient is safe from any new attack of inflammation. But if the fistula closes up and the tears again accumulate in the lachrymal sac, a recurrence of the dacryocystitis may ensue.

Dacryocystitis consists in a purulent inflammation of the connective tissue surrounding the lachrymal sac. This inflammation leads to purulent disintegration of the submucous tissue with the formation of an abscess which ruptures externally. Dacryocystitis is accordingly a phlegmon. Blennorrhoea of the lachrymal sac, on the contrary, is a catarrhal inflammation of the mucous membrane itself, in which the purulent secretion of the latter is deposited upon the surface only. The connection between the two diseases consists in the fact that blennorrhoea of the sac precedes the development of the phlegmon and gives rise to it; for the blennorrhoeal sac is filled with decomposed secretion, and it only requires the presence of a small defect in the epithelial covering of the mucous membrane of the sac to enable the microorganisms of the secretion to penetrate into the submucous tissue, where they excite suppuration and cause dacryocystitis.

Treatment.—If we are dealing with a dacryocystitis in its very inception, we may try to prevent the development of an abscess. With this end in view, we sedulously express the fluid from the lachrymal
sac, inject it with antiseptic solutions, and in the intervals apply a pressure bandage, which constricts it.

If the inflammation has passed the initial stage, it is idle to endeavor to prevent the formation of an abscess; besides, the methods of syringing, expression, and compression, given above, could not be employed, on account of the swelling and painfulness of the parts. The only thing to do now is to hasten the formation of the abscess, an object which is best attained by the use of moist and warm compresses. As soon as fluctuation makes itself apparent, we incise the anterior wall of the lachrymal sac, or that portion of the skin beneath which the presence of pus can be made out. A lachrymal fistula is thus artificially produced, through which the contents of the abscess and of the lachrymal sac itself are discharged externally. This is kept open by the introduction of a strip of iodoform gauze every day, until all inflammatory symptoms have disappeared and the secretion that exudes has lost its purulent character. But even then we ought not to allow the fistula to close at once, for we must recollect that a blepharorrhea of the lachrymal sac has preceded the dacryocystitis, and that consequently there is a stricture present in the nasal duct. If the fistula should close without the stricture being relieved, we should have to apprehend another attack of dacryocystitis. Hence, the permeability of the nasal duct must first be restored by treatment with sounds. When we have succeeded in doing this the fistula usually closes of itself. If this should not be the case, we can effect a closure of the fistula by either refreshing and uniting the edges of the wound or by their cauterization. If the conditions are such that a permanent state of perviousness of the lachrymal channels is unattainable, we proceed to the operation of destroying the lachrymal sac.

It is extremely rare for the lachrymal gland to be the seat of disease. Among such diseases belong: 1. Inflammation [dacryo-adenitis]. This may go on to resolution; in other cases, suppuration of the gland with discharge of the pus externally has been observed, a fistula of the lachrymal gland remaining afterward. There have even been described cases of bilateral dacryo-adenitis which ran either an acute or more frequently a chronic course; some of these cases were complicated with simultaneous swelling of the parotid glands. 2. Tuberculosis of the lachrymal gland. 3. New formations, including carcinomata, adenomata, cylindromata, lymphadenomata, chloromata, and sarcomata. 4. Cystoid dilatation of one of the ducts of the gland—a condition which is designated under the name of dacryops. 5. Atrophy of the lachrymal gland in xerophthalmus (Arlt; see page 132).

Exirpation of the superior lachrymal gland is performed by means of an incision made in the outer part of the previously shaved eyebrow. (It is made here in order that the scar shall be invisible afterward.) This operation is done particularly in cases of degeneration of the lachrymal gland.

The inferior lachrymal gland is extirpated through the conjunctival sac. In order to find its acini, we draw down the retrotarsal fold after evertting the upper lid, and incise the retrotarsal fold in its outer half. The removal of the lower gland is done in order to put a stop to a troublesome epiphora when other remedies
have failed; as, for example, when after blebormhrea of the lachrymal sac the permeability of the nasal duct has been restored by sounding and nevertheless the epiphora continues, or when as a result of extirpation of the lachrymal sac drainage of the tears in the regular way has become impossible.

In the puncta there can be frequently made out a change of position of such a character that the lower punctum is turned outward (forward) instead of looking upward (eversion of the punctum). This represents the very first stage of an ectropion—a stage which bears within itself the germ for its own development (see page 541). In simple eversion of the punctum, without ectropion proper, the epiphora can be relieved by slitting the canaliculus. The tube is thus converted into an open groove, which looks backward and hence dips into the lacus lacrimalis and takes up the tears. Bowman has the credit of showing that the conduction of tears is not injuriously affected by the slitting of the canaliculus. If the operation is performed with Weber's knife in the way described above, it affects only the external two thirds of the canaliculus; the inner third of the latter lies beneath (behind) the caruncle, and remains unopened. Slitting of this most internal part would be possible only if the caruncle were divided at the same time; and if this were done, the cut surfaces that were made would be pretty broad, and it would be quite hard to prevent their reunion. Even in the ordinary method of performing the operation of slitting, the divided canaliculus is usually found to have closed up again on the following day, so that we have to introduce the conical sound and thus tear apart the slightly agglutinated edges of the wound. If in this way readhesion is prevented at the outset, the cut surfaces become clothed with epitheliun, so that afterward adhesion is no longer to be apprehended.

In both the puncta and canaliculi contraction and even obliteration are sometimes observed, the consequence of which is also epiphora. The most frequent cause giving rise to these conditions is injury of the mucous membrane of these structures due to sounding. To remove them we must endeavor to enter the canaliculus with a conical sound and thus dilate it, or, if necessary, we must slit it up. Occlusion of the canaliculi may also be produced by foreign bodies or by concretions. The latter are of a gray or grayish-green color and of friable or hard consistence, and prove to be conglomerated masses consisting of a fungus, the Streptothrix Fuerstii (according to some, an Actinomyces). In some cases cystoid dilatation of the canaliculus has been found. This arises from an obliteration of the canaliculus at both extremities and the accumulation of fluid in its cavity, so that the tube is gradually distended till it forms a cyst.

Blebormhrea.—For the two most important diseases of the lachrymal tract—namely, blebormhrea of the lachrymal sac and dacryocystitis—the expression dacryocystitis catarrhalis and dacryocystitis phlegmonosa have been proposed. Although they correspond to the actual state of things better than do the old designations, I do not employ them, not wishing to give rise to confusion.

Blebormhrea of the lachrymal sac affects the female more frequently than the male sex, perhaps on account of the more frequent use which the former makes of the lachrymal apparatus. Persons having the bridge of the nose flattened (flat noses and "saddle-noses," particularly when due to hereditary syphilis) also are predisposed to this affection.

Blebormhrea of the lachrymal sac is sometimes observed in newborn children. As it is generally cured in a few days or weeks, if repeated expression of the sac is made, it is in this case probably not due to a cicatricial stenosis of the nasal duct, but to a closure of it by simple epithelial agglutination, which gives way again afterward. But such cases may also go on to dacryocystitis.

* [The Actinomyces is now identified by mycologists with Streptothrix.—D.]
Trachoma and tuberculosis of the lachrymal sac occur as secondary affections. The latter may originate from tuberculosis of the conjunctiva or from tuberculosis (lupus) of the nasal mucous membrane. The lachrymal sac feels very much thickened, and upon opening it we find its inner surface lined with discolored granulations (cf. page 109).

Injections into the lachrymal sac are not only of service for cleansing it and for the treatment of its mucous membrane, but also for determining whether the lachrymal channels are permeable. When this is the case, the injected fluid enters the nose, and, if the patient bends his head forward during the injection, runs out by the nasal orifice. If the injection is performed incannally, it may happen that the mucous membrane is injured by the point of the cannula, and the fluid is injected into the submucous cellular tissue of the lids. A marked inflammatory oedema is thus set up, which, however, usually abates in a few days without producing any bad results.

The operation of sounding can be performed through either the upper or lower canaliculus. The former is narrower, but, as an offset to this, we have to turn the sound but little after its introduction in order to place it upright. In sounding through the lower canaliculus, the sound must be tilted so as to be turned through more than a right angle, but the canaliculus is wider. Accordingly, the lower canaliculus is usually selected because the mucous membrane of the narrow canal would be lacerated in passing sounds of a higher number. The consequence of this would be contraction or obliteration of the canal, which would set in as soon as the sounding is stopped. The sound can also be introduced and carried into the nose through a canaliculus which has not been slit but, this is unadvisable, because of the likelihood of producing injuries to the mucous membrane such as have just been mentioned. I usually do it only for diagnostic purposes (for demonstrating the presence of a stricture), and then only employ the sounds of the lowest number, which can be readily introduced even through a canaliculus that has not been slit open. Preliminary slit ting of the canaliculus is always indicated when the treatment by sounds is to be kept up for any length of time.

The act of sounding itself requires a deft hand and much experience, for which reason it ought first to be practiced very industriously upon the cadaver. It is often very painful, so that the patients sometimes become faint during its performance. Hence, the indication is to make the mucous membrane of the lachrymal tract insensitive, by the preliminary injection of a few drops of a solution of cocaine into the lachrymal sac. Beginners in sounding frequently make the mistake of tilting the sound before its point has got into the lachrymal sac. We then feel an obstacle opposing the downward progress of the sound, and if we should try to overcome this obstacle by force we would make a false passage. That the sound has been tilted up too soon is recognized from the fact that, when it is set vertical, the skin beneath the canaliculus is drawn along with it and is thrown into wrinkles. We shall not commit this mistake if we avoid tilting the sound until we distinctly feel through its point the firm resistance offered by the inner osseous wall of the lachrymal sac (the lachrymal bone). The obstacles opposing the passage of the sound in the nasal duct may be actual constrictions of the duct, but are often nothing but projecting folds in which the sound catches. We accordingly try to push our way forward by sliding the point of the sound sometimes along one, sometimes the other, wall of the lachrymal sac in order to smooth out the folds. Sometimes we can pass a rather thicker sound (No. 3) more readily than we can the thinnest ones; the latter, moreover, are more apt to injure the mucous membrane, so that we get beneath it and make a false passage. Bleeding from the nose after sounding points to an injury of the mucous membrane, as does also the striking of the apex of the sound upon bare bone. The latter, however, can also happen with-
out the mucous membrane being injured, if, for example, the bone has been
already denuded by ulcerative disintegration of the mucous membrane of the
nasal duct. In cases of this kind a cure can not usually be obtained by treatment
with sounds.

When finally the sound has been passed all the way through, it is felt to rest
upon the floor of the nasal cavity. In most persons the lamina in the middle of
the sound then lies upon the inner end of the eyebrow. To ascertain the position
of the sound more precisely, we may place on the outside a second sound of the
same length in the direction of the lachrymal tract and in such a way that the
lamina of the two sounds are superimposed; the exterior sound then shows at what
height the lower extremity of the sound that we have introduced stands.

Treatment by sounds must be kept up until at least No. 4 of Bowman’s sounds
passes with ease. Then the patient may be instructed how to pass the sound upon
himself with the aid of a looking-glass, so that the sounding may be performed from
time to time subsequently in order to prevent a recurrence of the contraction.

The long duration of the treatment by sounds has excited a desire to ac-
complish the dilatation of the strictures rapidly instead of gradually, and thus
shorten the treatment. This can be done either by Weber’s method of intro-
ducing very thick sounds, or by Stillings’s method of incising the strictures with a knife
designed for the purpose, or by a combination of both methods. By these methods
of treatment, however, solutions of continuity are made in the mucous membrane,
which lead to the formation of fresh cicatrices, and which hence, after a period of
apparent cure, entail recurrences that are all the more rapid in their development.
Most ophthalmologists therefore prefer the gradual dilatation of the strictures.

Dacryoeystitis almost always originates from a blennorrhoea of the lachrymal
sac; consequently the patients state that epiphora has existed for quite a long
time before the acute inflammation which they often call by the name of erysipelas.
It is only in very rare cases that a caries of the lachrymal bone gives rise to dacry-
eoystitis. The diagnosis of dacryoeystitis is easy to make, from the situation of the
abscess, which corresponds to the region of the lachrymal sac. To be sure,
a furuncle developing in the skin over the lachrymal sac might produce similar
symptoms, but furuncles scarcely ever occur in this region. We shall therefore
scarcely be mistaken if we make the diagnosis of dacryoeystitis in the case of an
abscess situated in the region of the lachrymal sac. The spot where the pus
breaks through, however, does not always correspond with the position of the sac.
It usually lies beneath, being often quite a distance below and to the outside of it.
The reason for this is that the pus sinks down beneath the skin, and at the same
time travels outward along the inferior margin of the orbit, because the skin along
this line is attached to the bone by rather stiff connective tissue. The farther the
pus sinks before it makes its way through the skin, the longer will be the fistulous
canal that remains. That an opening in the skin which lies far below and to the
outer side may still be a lachrymal fistula, can be demonstrated by our being able
to push a sound through from the opening into the lachrymal sac. If we should
not succeed in this, we inject a colored liquid from the canaliculus into the sac; we
then see it flow out again by the orifice of the fistula.

Later on in their course, lachrymal fistule contract and sometimes become so
minute that they are permeable by nothing but a fine bristle. The external orifice
of these capillary fistulae, as they are called, is then scarcely visible with the naked
eye. We simply notice a drop of clear lachrymal fluid appearing from time to
time upon the skin beneath the lachrymal sac; it is only upon careful examina-
tion that we notice the capillary opening.
DISEASES OF THE LACHRYMAL ORGANS.

Disturbances in the function of the lachrymal apparatus find expression either under the form of epiphora or of absence of the tears. Epiphora is an exceedingly frequent symptom of the most various conditions, and is either based upon an increase in the secretion or a hindrance to the discharge of the tears. The former occurs physiologically in weeping, and also in the presence of all sorts of irritants affecting the terminal expansion of the trigeminus and its vicinity. Among these are bright light, air rendered foul by smoke, etc., foreign bodies in the conjunctival sac, inflammations of the eye and its adnexa, affections of the nose, and neuralgia of the first and second branches of the trigeminus. Interference with the conduction of tears into the nose may have its cause either in incomplete closure of the lid or in anomalies of the lachrymal passages. Among affections producing the former condition are to be mentioned paralysis of the orbicularis, shortening or ectropion of the lids, notching of the border of the lid, and even simple eversion of the lower punctum; to the latter belong all the affections of the lachrymal channels which have been treated of in this chapter. It not infrequently happens that persons complain of epiphora, especially if they go out in cold weather, without our being able to find any cause for it. In many of these cases there is probably an excessive irritability of the mucous membrane of the nose which excites increased secretion of tears in a reflex way. So, too, pungent odors, such as the vapor of ammonia, horseradish, etc., which irritate the terminal extremities of the trigeminus in the nasal mucous membrane, often bringing the tears to our eyes; and lachrymation is likewise very often present in severe coryza. A like connection also exists in the contrary sense, in that a bright light striking upon the eye excites an impulse to sneeze, as is observed especially in children with photophobia, when the attempt is made to open their eyes for purposes of examination. Hence, in cases of epiphora for which no other cause can be found, it is requisite to examine the nose carefully and treat it according to the indications.

The opposite condition, namely, abolition of the lachrymal secretion, is extremely rare. It is found in xerophthalmus, in consequence of occlusion of the excretory duets of the lachrymal gland; also in paralysis of the trigeminus, and in facial paralysis when the lesion is situated very high up in the nerve. It is hence supposed that the fibers destined for the innervation of the lachrymal gland start from the brain along with the facial, and run with the nervus petrosus superficialis major to the nasal ganglion of the trigeminus, by the second branch of which they reach the lachrymal gland through the nervus subcutaneous male (Goldzieher). A purely nervous disturbance lies at the bottom of those cases in which persons declare that formerly they wept a good deal, but that for a long time past they have not been able to weep, even when very much distressed.
CHAPTER XIV.

DISTURBANCES OF MOTILITY OF THE EYE.

ANATOMY AND PHYSIOLOGY OF THE OCULAR MUSCLES.

121. The ocular muscles are distinguished into extrinsic and intrinsic. The latter, also called the interior muscles of the eye, are the sphincter pupillæ and the ciliary muscle. Of these we shall have something to say later; at present we shall concern ourselves only with the extrinsic muscles. These are six in number, four straight and two oblique.

The four straight muscles are the rectus medialis sive internus, lateralis sive externus, superior, and inferior. All four take their origin from the apex of the orbit along the bony circumference of the foramen opticum (F, Fig. 165), and from this point run forward, diverging as they go. They thus bound a funnel-shaped space, the muscular funnel (t t), the apex of which lies at the foramen opticum, while the eyeball forms its base and the optic nerve (o) runs along its axis. The external and internal recti muscles (i and e) are inserted into the sclera to the outer and inner side of the cornea; the superior rectus (sû) has its insertion above (s₁), the inferior rectus below, the cornea. The attachment is effected by means of short tendons which spread out in the form of a fan and become fused with the sclera, which in this way is thickened in its most anterior portion.

The two oblique ocular muscles are the obliquus superior and inferior. Their course is more complicated than that of the straight muscles. The superior oblique (os, Fig. 165) also arises from the margin of the optic foramen and runs forward upon the upper and inner wall of the orbit as far as the trochlea, before reaching which it passes into its tendon. The trochlea itself (T, Figs. 165 and 166) lies a little behind the upper and inner margin of the orbit. It consists of a firm fibrous loop through which the tendon of the muscle is carried in such a way as to be able to glide up and down in it. After traversing the trochlea, the tendon bends backward at an acute angle, and passes beneath the superior rectus to the eyeball. Here it spreads out in the form of a fan, and is inserted in the upper half of the eyeball about in the vertical meridian and behind the equator (os., Fig. 165).

The inferior oblique arises from the lower margin of the orbit near its inner extremity (oi, Fig. 166). From here it runs upward and out-
ward and arrives at the outer side of the eyeball, into which it is inserted about in the horizontal meridian and also behind the equator (oi, Fig. 165).

The tendons of the ocular muscles before reaching the sclera must pass through the fascia of Tenon (fascia bulbi) which surrounds the eyeball. In the spot where a tendon of the muscle perforates the fascia, the latter does not present a simple aperture, but is reflected backward upon the tendon (ε and ε1, Fig. 82). It ensheaths the tendon and farther back is continuous with the fascia which envelops the muscle itself. By these “lateral invaginations,” therefore, the tendons are connected with Tenon’s capsule—a fact which is of importance with regard to the operation for squint.

The innervation of the ocular muscles is accomplished by three nerves. The oculo-motor nerve supplies the internal, superior, and inferior recti, and also the inferior oblique; and, in addition, the levator palpebræ superioris and the interior muscles of the eye, namely, the sphincter pupillae and the ciliary muscle, are innervated by it. The abducens nerve is reserved for the external rectus, the trochlear nerve for the superior oblique. The nuclei for the three nerves supplying the eye muscles lie upon the floor of the fourth ventricle.

The movements of the eyeball take place freely in all directions as in a ball-and-socket joint (arthrodia). The eyeball may be said to represent the articular head; Tenon’s capsule, the socket. The movements take place in such a way that the eyeball, as a whole, undergoes no change of place; it simply rotates about a center of movement which corresponds approximately to the center of the eye.

We can imagine all movements of the eyeball resolved into components which correspond to three primary axes. These are perpendicular to each other and cross at the center of movement. One of these is vertical; the movements which take place about it are the lateral move-
ments of the eye—that is, the movement to right and left, or to the outside (abduction) and inside (adduction). The frontal axis runs from right to left (f f, Fig. 165), and corresponds to the movements of elevation and depression of the eyeball. The sagittal axis (s s, Fig. 165) runs from before backward, and coincides with the line of vision. The movements which take place about it are known under the name of wheel rotation [torsion] of the eyeball; by virtue of them the upper extremity of the vertical meridian of the eyeball is inclined outward or inward.

The muscles may be grouped into pairs according as they rotate the eye predominantly about one or the other of these axes. The muscles belonging to any one pair are called antagonists, because they tend to move the eye about the same axis, but in a contrary direction. In this sense the six ocular muscles are divided into the following pairs:

First pair: internal and external recti, which turn the eye about the vertical axis.

Second pair: superior and inferior recti, which turn the eyeball about the frontal axis.

Third pair: the superior and inferior obliques, which turn the eyeball about the sagittal axis.

A simple action in the sense of rotating the eyeball about only one of the three primary axes belongs to the first pair alone, the only effect of which is to turn the eye inward and outward. The action of the other four ocular muscles is a complicated one, and if we seek to determine the axes about which they actually rotate the eyeball, we find that these do not coincide with any one of the three primary axes.

The superior rectus runs from the apex of the orbit not only forward, but also a little outward, in order to reach the eyeball. Its direction, therefore, does not coincide exactly with the sagittal axis of the eyeball, but forms with it an angle, the branches of which diverge posteriorly (Figs. 165 and 174 A). Hence, as its insertion falls in front of the center of rotation of the eye, it will not only elevate the latter, but also adduct it at the same time. For the same reason it also rolls the eye in such a way that the upper extremity of its vertical meridian is inclined inward [intorsion].

The inferior rectus likewise deviates somewhat to the outside in its course forward. Hence, besides lowering the eye, it has an adducting action imparted to it. Furthermore, it rotates the eye in such a way that the upper extremity of the vertical meridian is depressed to the outside [extorsion].

To learn the action of the superior oblique we have merely to consider that section of it which lies between the trochlea and the eyeball; the trochlea being, so to speak, the physiological origin of the muscle. Its chief action consists in its rotating the eye, so that the upper extremity of the vertical meridian is inclined inward. Since, further-
more, it is inserted into the posterior half of the eyeball and this insertion lies below the trochea (os, Fig. 166), the posterior half of the eyeball will be raised when it contracts, and consequently the cornea will be depressed. The superior oblique, in addition, produces an abduction of the eyeball, since it is inserted behind the center of rotation of the eye, and in its contraction draws the posterior half of the eyeball inward, so that the cornea goes outward. The action of the super-

![Diagram of the orbit and eyeball](image)

**Fig. 166.—Anterior Orifice of the Orbit with the Eyeball. Natural size.**

The tendons of the four recti muscles are cut off near their insertion upon the eyeball, but the inferior oblique, oi, and the tendon, os, of the superior oblique are left entire. The latter comes out from the loop of the trochea, T. To the temporal side of the trochea lies the supra-orbital notch, i, and somewhat to the outside of this there is a foramen, i1, which is not regularly present, for a branch of the supra-orbital nerve. In this case the infra-orbital foramen, i2, is also abnormally divided into two distinct foramina. z is the orifice of the zygomatico-facial canal, if, the lacrimal fossa. Comparison with Fig. 164 shows that the orbit represented in the former is much lower than the one here depicted, but is broader in the horizontal direction.

The inferior oblique accomplishes, first of all, a rotation of the eye in the opposite direction to that effected by the superior oblique—i. e., a rotation in which the upper extremity of the vertical meridian is inclined outward. Since its origin in the margin of the orbit lies below its insertion upon the posterior half of the eyeball (oi, Fig. 166), it draws this half downward and thus elevates the cornea. Furthermore, since it draws the posterior half of the eyeball inward, it abducts the eye. The action of the inferior oblique is accordingly to roll [intort], elevate, and abduct the eyeball.

The internal and external recti are the only muscles which are perfect antagonists in every respect. The superior and inferior recti are antagonists with respect to the elevation and depression, and also with
respect to rolling [torsion] of the eyeball; but, as adducting muscles, they both act in the same sense. The superior and inferior obliques are likewise antagonists with regard to vertical deviation and torsion, but they have one action, that of abduction, which takes place in the same direction.

Let us make a brief summary, showing which of the muscles act in concert in the movements of the eye about the three primary axes. Adduction is performed by the internal, superior, and inferior recti; abduction by the external rectus and the superior and inferior obliques. The superior rectus and inferior oblique are concerned in elevating the eye, the inferior rectus and superior oblique in depressing it. Rotation of the eyeball, in such a way that the upper extremity of the vertical meridian is inclined inward [intorsion], is effected by the superior oblique and superior rectus, while rotation in the opposite sense [extorsion] is effected by the inferior oblique and inferior rectus.

Hence, in every movement of the eyeball there are always several muscles set into action at once. But, besides this, the muscles of one eye act in conjunction with those of the other in such a way that the two eyes always move in the same sense (association of the ocular movements). These associated movements are regulated by the centers of association, which are centers of a higher order than the nerve nuclei. According to the necessities of the case, they innervate certain muscles or groups of muscles of one eye simultaneously with those of the other. The internal rectus of the right eye, for example, may be set into action at the same time with the internal rectus of the left eye, so that a movement of convergence takes place; but, on the other hand, it may also act in concert with the external rectus of the left eye, so that both eyes are turned to the left.

122. Orientation.—Orientation in space—i.e., the ascription of objects seen to the place where they actually belong—is effected in the following way: The objects of the external world form images upon the retina. To find the situation of the retinal image of any object whatever, we only need draw a line from the object to the retina through the nodal point of the eye (k, Fig. 167), since those rays that pass through the nodal point (directive rays) pass unrefracted to the retina. Thus the image of the object of fixation, o (Fig. 167), lies at f c (the fovea centralis).
DISTURBANCES OF MOTILITY OF THE EYE.

Objects, such as \( o_i \), situated beneath the point of fixation, throw their image above the fovea centralis, at \( b_i \); and, on the other hand, the object \( o_{1i} \) lying above the point of fixation has its image at \( b_{1i} \) beneath the fovea. We ourselves judge of the place in which an object is by following out a reverse process. We refer the object to the extremity of a line which we imagine drawn from the retinal image and through the nodal point to the outside world. This process for determining the place of external objects, which is learned by experience, is called projection (of the retinal images outward). By virtue of it we see the objects in the outer world arranged side by side just as their images are upon our retina, only in reverse order; whatever forms an image to the right of the point of fixation, is seen upon the left of the latter, etc. We are thus informed with certainty in regard to the position of objects relative to each other (objective orientation). But for perfect orientation it is further requisite that we should assign to its correct situation in space the whole mosaic of images that we project from our retina into the outside world, and which is already properly constructed as far as the relations of its own parts to each other is concerned. Not till we do this can we have any conception, corresponding to the real state of things; a conception, that is, of the position of objects not only with reference to each other but also with reference to our own body (subjective orientation). Such subjective orientation depends upon our having a knowledge of the position of our own body in space, and of the position which the eyes occupy in our body. The former is accomplished by virtue of the sense of equilibrium, the latter by the muscular sensations which originate in the ocular muscles, and which inform us how our eyes are directed with relation to our body. By means of subjective and objective orientation together, we are able to recognize correctly the absolute position in space of any object that we see.

As a rule, we see with both eyes at once, these being so placed by means of their associated movements that their visual lines cross in the object looked at—i. e., we "fix" [or "sight"] the object with both. The object \( o \) (Fig. 168) then forms an image in the fovea centralis \( f \) and \( f' \) in both eyes. An object, \( o_i \), situated to the left of the point of fixation, would cast an image at \( b \) and \( b_{1i} \), to the right of the fovea in both eyes, and in both eyes, moreover, equally far to the right of it. These images, as well as all others that are situated on symmetrically
disposed spots of the two retinæ, are, according to the law of projection, located by both eyes at the same point of the outer world (φ, φ1, etc.), and hence are seen single (binocular single vision).

Interference with binocular single vision is manifested by binocular diplopia, which always makes its appearance when the visual axis of one eye deviates from the object of fixation. For example, the right eye, R (Fig. 169), sights the point, φ, while the visual axis, g, of the left eye, L, deviates inward, because the eye has a convergent squint. The point, φ, then forms an image at the fovea, f, in the right eye, but in the left it forms an image at b to the right of the fovea, f1. With the right eye the object is seen in its right place, φ. With the left eye, too, the object would be seen at a point opposite the retinal image, b, that is, in its proper situation, φ, and hence would be seen single with binocular vision, if the person possessing such an eye would proceed simply according to the law of projection. But this he does not do, because he is in error with regard to the way in which the left eye is directed. He knows nothing of the deviation of this eye inward, but has the idea that, like the right, it has its visual axis adjusted for the object. He therefore expects the image of the object to be at the fovea in the left eye as well as in the right. But as this is not the case, and the image, b, lies to the right of the fovea, he thence concludes that the object, φ, has become displaced toward the left—that is, to φ1—since he knows from former experience that all objects situated to the left of the point of fixation throw their images to the right of the fovea. In this case, accordingly, the subjective orientation is not correct; the entire mosaic of retinal images in the left eye is located in space too far to the left, because the person who has such an eye has an erroneous impression in regard to the way in which it is placed in his head (Nagel, Alfred Graefe).

The double images that have been here selected as an example are known as homonymous, because the image, φ, seen upon the right side belongs to the right eye; the one, φ1, seen on the left belongs to the left eye. In practice this fact is determined by temporarily covering first one eye and then the other, and asking the patient which of the two images in each case disappears. We can also place a colored glass before one eye and have the patient tell which of the two images is colored, and which appears of its natural hue. Homonymous double
images depend, as the preceding demonstration shows, upon undue convergence of the eyes.

*Heteronymous* or *crossed* double images are produced when there is a relative divergence of the eyes. In Fig. 170 the left eye, $L$, deviates outward. The image of the point, $o$, therefore falls to the left of the fovea, $f_1$, at $b$, for which reason the object itself is erroneously seen at $o_1$, to the right of the point of fixation, $o$. In this case the left image corresponds to the right eye, the right image to the left eye.

A *difference in the level* of the double images occurs when the eyes themselves stand on different levels. In Fig. 171 the eyes are represented as behind each other instead of side by side. The right, $R$, sights the object correctly, but the left eye, $L$, is deviated upward. Hence, the image, $b$, of the point, $o$, falls above the fovea, $f_1$, in the left eye, and the person who has such an eye imagines, because he believes that the eye is correctly placed, that he sees the point, $o$, at $o_1$, below its true situation, since when the eyes are correctly placed all objects situated below the visual plane cast their images upon the upper half of the retina. The image which stands lower, therefore, always belongs to the eye which stands higher, and vice versa.
Double images may also be inclined in such a way that their upper or lower extremities are approximated. This is the case when one of the two eyes has undergone a rotation about its sagittal axis and the other has not. In Fig. 172 A, R and L represent the posterior halves of the two eyes seen from behind and imagined to be transparent, so that the inverted image of an arrow is seen as it is situated upon the retina. In the right eye the vertical meridian of the retina, \(v_v\), really does stand vertical, but in the left eye (\(v_v\)) it is supposed to be inclined. The image of a vertically directed arrow is also vertical in the two retinæ; hence, in the right eye it coincides with the vertical meridian, but in the left eye it forms an angle with the vertical meridian, because this is inclined. Since, now, the left eye has been previously accustomed to consider as vertical only those objects the images of which coincide with the vertical meridian, it will consider the arrow as having an oblique position. Hence, two images of the arrow are seen (Fig. 172 B, \(w\) and \(s\)), of which that belonging to the left eye stands obliquely.

When there is binocular double vision, the two images do not look alike; one is more distinct than the other, and is hence known as the true image, in contradistinction to the apparent image. The true image is the one that corresponds to the eye that sights the object. It is therefore seen in its right place, and, moreover, is seen clearly, because it is perceived by the fovea. The apparent image belongs to the deviating eye. It is less distinct than the image of the other eye, because it is perceived by a peripheral spot of the retina; moreover, it is seen in the wrong place, so that the patient, if he tries to reach out to it, reaches to one side of it—hence apparent or false image.
A condition to be rigorously differentiated from binocular diplopia is *monocular diplopia*. The former depends upon the fact that though there is but one image of the object cast upon each one of the two retinas, it is not thrown upon symmetrically situated spots; but the latter is due to the formation of two images of the same object upon one retina. Binocular diplopia, therefore, disappears at once when one eye is shut, while monocular diplopia persists, although but one eye—that is, the one which sees double—is open. In this fact lies the most certain differential sign between the two kinds of diplopia. The cause of monocular diplopia is either an anomalous refraction of the rays of light or the presence of a double pupillary opening. The former represents one form of irregular astigmatism (see § 148), and has its seat either in the cornea or in the lens (particularly in the case of subluxation of the lens). In incipient cataract also monocular diplopia may develop as a result of the unequal refracting power of the different sectors of the lens, although in this case monocular polyopia (see page 398) is of much more frequent occurrence. A double pupillary opening produces diplopia when the eye is not adjusted for the distance at which the object of fixation is placed. It is most frequently found as a consequence of iridodialysis.

The *lines of insertion* of the four recti muscles are situated at unequal distances from the margin of the cornea, and usually, too, are not quite concentric with it. Moreover, they are not perfectly symmetrical in their relation to the horizontal and vertical meridians. The mean variations in regard to the position of the lines of insertion are shown as accurately as possible in Fig. 178, which represents the anterior half of the eyeball projected upon a plane. In it are marked the distances of the lines of insertion from the cornea in millimetres, as I have found them from the mean of a great number of measurements.

The muscles are surrounded by *fasciae* which are continuous anteriorly with Tenon's capsule at the spot where the latter is reflected upon the tendons of the muscles. Lateral prolongations of the fasciae unite the muscles together, and also pass from them to the bony wall of the orbit. By means of this system of fasciae pervading the orbit, the contents of the latter are fixed in place. It is owing to them that the eye does not leave its place when performing its movements, but turns about a fixed center. The continuations of the fasciae, passing from the muscles to the walls of the orbit, act as a sort of
restraining apparatus which prevent extreme excursions of the eyeball (Merkel, Motais). They are most strongly developed upon the internal and external recti (f and fe, Fig. 161). The levator palpebrae superioris, too, which is associated in action with the superior rectus, is united to it directly by bands of fascia. Furthermore, bands of fascia pass from the levator to the skin of the upper lid (f, Fig. 160) and also to the upper retrotarsal fold, so that these structures follow the movements of the eyeball and the upper lid when these are elevated. An analogous apparatus comes into play when the eyeball is depressed, bands of fascia running from the inferior rectus into the lower lid and to the lower retrotarsal fold.

In the case of muscles whose method of action is complicated (and, with the exception of the first pair, this is the case with all the muscles), the effect of the individual components of which the total action is made up varies in intensity ac-

**Fig. 174.** Method of Action of the Superior Rectus.

A, in looking straight forward; B, in abduction; C, in adduction. S S', sagittal axis of motion; G G', visual axis.

...cording to the position which the eyeball happens to occupy. As an illustration, we may explain how this is the case of the superior rectus. When the eye is looking straight forward, so that its visual line coincides with the sagittal axis of motion, S S' (Fig. 174 A), the plane of action of the superior rectus forms with both the visual and the sagittal axis an angle of about 23°—this angle having its branches directed backward. Consequently, the muscle, besides causing an elevation of the eye, also adducts and rolls [intorts] it. If now the eye is turned out 23° (Fig. 174 B), the plane of action of the muscle coincides with the visual plane, G G'. Then the action of the muscle will be simply one of elevation, since the other two components disappear. On the other hand, the more the eye is turned inward, the more do the two components of adduction and torsion preponderate. They would reach their maximum if the eyeball could be turned far enough inward for its visual axis, G G', to form a right angle with the plane of the muscle (Fig. 174 C); and, on the other hand, the action of elevation would then have become reduced to nothing. In like fashion, the action of the individual components can be deduced from the position of the eye for every other ocular muscle as soon
as the course that it takes is accurately known. This fact is of importance for the
diagnosis of paralyses of the ocular muscles, the failure of the paralyzed muscle be-
ing particularly marked in the direction of one or the other of the components of
its action, according to the different way in
which the eye is directed.

The measurement of the excursions of the
eyeball is an important matter not only for
physiologists, but also for the ophthalmic prac-
titioner, particularly for the determination of
the degree of a paralysis, the progress of its
improvement, the prognosis of a squint opera-
tion, etc. The simple process of linear mensura-
tion, according to the method of Alfred Graefe,
is applicable only to movements in a horizontal
direction (abduction and adduction). The pa-
tient is first made to look straight forward at
an object which has been placed at
quite a distance from the eye in the middle line of the face. With the eyes in this
middle position, the distance between the outer margin of the cornea and the outer
angle of the eye (em, Fig. 175) is measured with the circle. This distance is also
measured when the eyes are turned as far inward and as far outward as possible
(ei and eo). The difference between these values and the value for the middle posi-
tion gives the magnitude of abduction and adduction of the eyeball. Suppose we
have found em to be 8 mm., ei 18 mm., and eo 1 mm. Then the adduction = ei —
em = 10 mm., and the abduction = em — eo = 7 mm. The adduction and abduc-

**Fig. 175.—Linear Measurement of the Lateral Excursions of the Eye.**

**Fig. 176.—Normal Field of Fixation. (After Landolt.)**

tion together constitute the total range of lateral movement which, in the example
selected, would amount to 17 mm.

This method of measurement is attended with many inaccuracies, but, owing to
its simplicity and the rapidity with which it can be performed, it is a very suitable
one, particularly for cases of squint. An accurate measurement of the excursions can be made by means of the perimeter. The person examined supports his head on the chin rest of the instrument in such a way that the eye to be tested (the other meanwhile must be kept closed) is placed at the center of the perimetric arc. Objects are then moved along the latter (large test types being the best for this purpose) from the periphery toward the center, until the patient in looking at the object recognizes it distinctly (e.g., can name the letters, thus proving that he is really employing central fixation). Of course, in so doing, the movements should be made with the eye alone and not with the head. The limits thus found for the excursions of the eyes are set down upon an ordinary perimetric diagram. The region which is bounded by these limits, and which the eye has under its direct control through its excursions, is called the field of fixation. Fig. 176 shows the field of fixation of a normal eye according to Landolt. Paralyses of the ocular muscles manifest themselves by a corresponding limitation of the field of fixation.

Nerves of the Ocular Muscles.—Paralyses of the ocular muscles are a frequent symptom of cerebral affections. He who knows accurately the origin of the muscular nerves of the eye in the brain, and their course down to the orbit, will often be able to determine, from the kind of the paralyses and the way in which they are combined, the site of the lesion, and hence be able to give a more precise diagnosis of the brain disease with respect to its nature and situation than would be otherwise possible. For this reason the most important points relating to the origin and course of the nerves of the ocular muscles will here be briefly given.

The movements of the ocular muscles are regulated by nervous centers of different rank. The lowest centers are the nuclei on the floor of the rhomboidal fossa (fourth ventricle) from which the trunks of the nerves themselves arise. Presiding over these are centers of higher rank, the association centers, for co-ordinating the actions of the individual ocular muscles. The centers of the highest rank are situated in the cortex of the brain; they are the cortical centers for the voluntary movements of the eye. These probably lie, not sharply separated from each other, in the motor sphere of the cerebral cortex.

The centers that are most accurately known are those of the first rank—i.e., the nuclei of origin of the nerves of the ocular muscles. These lie beneath the aqueduct of Sylvius and upon the floor of the fourth ventricle on both sides of the rhaphes. The most anterior of them is the nucleus of the oculo-motor nerve (III, Fig. 177), which begins as far forward as the most posterior portion of the third ventricle, and extends beneath the aqueduct of Sylvius as far as the posterior pair of tubercles of the corpus quadrigeminum. It consists of several paired and one unpaired group of ganglion cells. And in a physiological sense it must be regarded as composed of a number of partial nuclei. But which of the separate groups of ganglion cells belongs to each individual one of the muscles innervated by the oculo-motor nerve has not yet been precisely determined for man. For monkeys, in which the relations are probably similar, Bernheimer, upon the basis of experimental investigations, has worked out the plan represented in Fig. 178. This confirms, what clinical experience has already shown, that the nuclei of origin of these muscles are in juxtaposition that are synergetic in action—i.e., the nuclei for the

[* A much better test object consists of two fine dots set very close together on a card. When the patient is looking precisely at the dots he sees them as two; but if his gaze deviates from them by even as much as a couple of degrees, the dots are seen in diffusion circles and hence appear run into one.—D.]
pupil, for accommodation and for convergence (internal recti), the nuclei of the superior rectus and inferior oblique (subserving elevation of the eye), and the nuclei (subserving depression of the eye) of the inferior rectus and the trochlearis, which latter does not belong to the domain of the oculo-motor nerve. Since the orbicularis as the muscle that closes the eye is likewise associated with the muscles of the eye itself (closure of the palpebral fissure being combined with sursumduc-

![Diagram of eye muscles](image)

**Fig. 177.—Nuclei of Origin of the Nerves of the Ocular Muscles. Schematic Sagittal Section through the Caudex Cerebri. Natural size.**

The oculo-motor nucleus, **III**, lies beneath the anterior pair of tubercles of the corpus quadrigemínium, **Q**. The fibers coming from this nucleus run, converging downward, and emerge as a united nerve trunk, **O**, at the anterior border of the pons, **Po**. Directly behind the oculo-motor nucleus lies the nucleus, **Hr** of the trochlear nerve, from which the trunk of the nerve passes upward. The two points (drawn of light color in the figure) directly above it, and at the posterior margin of the corpus quadrigemínium, represent the cross sections of the trunks of the trochlear nerves as they decussate in the velum medullare anticum. The nucleus of the abducens, **Pl**, lies upon the floor of the fourth ventricle, **S**, directly beneath the nucleus of the facial nerve, **PII**. The dotted band running from the nucleus of the abducens to the nucleus of the trochlear nerve represents the posterior longitudinal fasciculus connecting the nerve nuclei. The trunk of the abducens, **A**, emerges at the posterior border of the pons. **a** shows the site of a lesion which, through destruction of the oculo-motor nerve, **O**, and the pyramidal tract, **PP**, would result in alternating paralysis of this nerve and of the extremities. In like fashion a lesion at **b** would produce alternating paralysis of the abducens and of the extremities. **Pp, pl**, pyramidal tract of the other side; **Th**, optic thalamus.

tion of the eyeball), it is supposed that the fibers destined for it also originate in the oculo-motor nucleus, although further along they run in the trunk of the facial (Mendel).

The fibers coming from the nucleus of the oculo-motor nerve pass downward through the crus cerebri; part of the fibers remaining on the same side, another part crossing over to the other side. At the base of the brain they unite into a common trunk, and become visible upon the anterior border of the pons (**O**, Fig. 177). From this point the nerve trunk runs through the cavernous sinus and the superior orbital fissure into the orbit.

The nucleus of the **trochlear nerve** (**IV**, Fig. 177) follows almost directly upon the posterior extremity of the oculo-motor nucleus, so that it might almost be regarded as the last partial nucleus of the latter. It lies beneath the posterior tubercles of the corpus quadrigemínium. But the fibers which arise from it do not join with the trunk of the oculo-motor nerve which runs downward, but pass in the opposite directions upward and backward, into the velum medullare anticum. In this they pass over to the other side and thus decussate with the fibers of the opposite
nerve, and then come out upon the base of the brain, winding about the crus cerebri and passing outward.

The nucleus of the abducens (VI, Fig. 177) lies pretty far behind the nuclei of the other two nerves, and in the immediate vicinity of the facial nucleus (VII, Fig. 177), a little in front of the trigeminal nuclei. The nerve fibers arising from the nucleus pass downward between the bundles of the pyramidal tracts and become visible at the posterior border of the pons (A, Fig. 177). Both the trochlear and the abducens nerves, as soon as they have reached the base of the brain, run forward like the oculo-motor nerve and pass along the cavernous sinus and through the superior orbital fissure into the orbit.

**Binocular Vision.**—The fact of a person's seeing single with two eyes may be accomplished in two ways. Either he fixes correctly with both eyes and refers to the same spot the impressions produced in both (binocular single vision) or one of the two eyes fails to see, either because it is blind or because it suppresses the impression that it receives (monocular vision).

How can we know which of these two conditions is present in any given case? We make the patient fix his gaze upon an object—e.g., a lighted candle at the distance of some metres. If, then, we see that one of the two eyes is evidently deviated, binocular single vision cannot exist. If, nevertheless, there is single vision, this can only be explained upon the assumption that the image formed in the deviating eye is either not perceived or is suppressed. If manifest deviation of one eye can not be made out, we test in the following way to see if there is correct binocular fixation: While the person under examination fixes his gaze upon the lighted candle, we cover first one eye, then the other. If the two eyes are rightly placed, each will remain fixed in its position after the other is covered. But let us assume that the right eye deviates a little outward when the left is fixed upon the object. If, now, the former is covered, the left will continue in the act of fixation; but if the left is covered, the right has to be brought into the position of fixation by a movement of adduction. Hence, in covering the eye which is performing fixation, we notice a movement of adjustment in the non-fixing eye, the direction of which movement is precisely opposite to that of the previous deflection. This movement of adjustment is still distinctly visible when the deflection itself is too slight to be recognized with certainty. Another method of testing whether single vision depends upon the fusion of the two images or upon the suppression of one
of them is as follows: A prism with its base down is held before one of the eyes (Fig. 199). If there was binocular vision before, two images would now necessarily be seen standing one above the other (φ and φ1). But if there is still single vision, this can only occur because the image formed in one of the eyes is either not perceived or is neglected.

It is only a person who has binocular single vision that has also real solid or stereoscopic vision. Hence, we may also test binocular vision with stereoscopic pictures, special samples of which have been made for this purpose. A particularly delicate test of stereoscopic vision—i.e., the perception of degrees of depth—is by means of Hering's test with falling bodies. The person under examination looks with both eyes through a long tube at a slender thread stretched in a vertical direction. Little balls (glass beads or peas) are dropped along the thread, sometimes in front of it, sometimes behind. A man having proper binocular vision will tell every time, and without delay and without mistake, whether the balls have fallen in front or behind the thread; but one having only monocular vision can at best guess at what takes place, and hence often makes a mistake.

Binocular single vision is converted into binocular double vision when one of the two eyes leaves the correct position of fixation. This takes place most frequently in consequence of disturbances in the muscular apparatus of the eyes, such as paralysis or contractures of the ocular muscles. But the eye can also be forced mechanically into an incorrect position—e.g., by tumors in the orbit, etc. Binocular double vision can readily be produced experimentally by pushing one eye a little to one side by pressure with the finger. Finally, double vision ensues whenever the excursions of one eye are limited, as compared with those of the other by mechanical obstacles, as for example by symblepharon or by pterygium.

The position of the double images has already been considered above. The distance between the double images measured in degrees of arc corresponds precisely to the deflection of the deviating eye from the correct position, and can therefore serve as a measure for the degree of deviation. The linear distance between the double images, on the contrary, depends not only upon the degree of deviation, but also upon the distance to which the double images are projected. The greater this distance is, the farther apart the double images appear to be. When the double images stand very close to each other they overlap in part, so that only their outlines appear double. In this case the patient is often not aware that he sees double, but only complains of seeing indistinctly or complains that every object has a shadow.

Double images interfere with vision and cause confusion, so that everyone tries to avoid them as far as he can. He does this by attempting to bring the eyes by suitable muscular effort into a proper position, so that the double images coalesce. This attempt at union or fusion of the double images is called the tendency to fusion. Frequently by virtue of it considerable obstacles opposing single vision are overcome. The following experiment shows this: We make the patient gaze at an object, o, and then hold
before one of the eyes, for instance, the right one, a prism, \( P \), whose base is directed toward the temporal side (Fig. 179). The rays coming from \( o \) are deflected toward the base of the prism, and would strike the retina of the eye at a point to the outer side of the fovea; but in that case, as the object forms an image at the fovea, \( f_{1} \), in the left eye, crossed double images would be produced. To prevent this, the right eye is turned inward until the fovea, \( f_{2} \), has moved outward sufficiently far to be impinged upon by the rays which have been deflected by the prism. Hence, to avoid seeing double, an increased effort at convergence is made, so that the visual lines cross at \( A \) instead of at \( o \). By this convergence the prism is “overcome.” By placing constantly stronger and stronger prisms before the eye, we find the strongest prism which can be still overcome by convergence, and which therefore is a measure of the latter. If the prism is placed before the eye with the base inward, the rays passing through it are deviated in, and the image of the object is thrown to the inner side of the fovea. The eye must then be turned outward in order to bring the fovea to the place of the image. In this case, accordingly, to produce single vision the prism is overcome by a divergence of the eyes. The strongest prism which can be overcome in this way gives the measure of the divergence, or, as it is also called, negative convergence. The tendency to fusion also makes itself apparent if a prism is placed before the eyes with its base up or down (Fig. 199). In this case there are formed double images with a difference of level, which have to be united by a deviation of one eye upward or downward. Very strong prisms can be overcome by convergence, weaker ones by divergence; and only very feeble prisms (of 1° or 2°) can be overcome by vertical deviation of the eyes.

The ability to perform convergence, as determined with prisms, is also called adduction, and the ability to perform divergence is called abduction. These terms had better be avoided, as they are already applied to denote the lateral excursions (side to side) of the eyes (see page 578), which follow quite different laws. This is immediately apparent when we remember that when side to side movements are to be made, the eye can be abducted until the external margin of the cornea almost touches the external angle of the eye, while the outward movement of the eye in performing divergence is but a minimum one. Consequently the measurement of the excursions of the eyes, as given on page 587, can be applied only to excursions made in connection with side to side movements and not to movements of convergence. The measure for this is afforded by the two terminal positions that our eyes can take with reference to the angle included between their visual lines. These positions are called the near point and far point of convergence. The near point is the nearest point upon which we can converge. We can determine its situation directly by approximating an object nearer and nearer to the eyes until it begins to look double. (In Landolt’s ophthalmo-dynamometer a narrow vertical slit serves as the object of observation.) The maximum convergence can also be determined in the way described above—i.e., by means of prisms placed, base out, before the eyes. The far point of convergence either lies at infinite distance, in case the visual lines are parallel, when the convergence is completely relaxed, or it lies within (i.e., is +) or beyond (i.e., is −) infinite distance. The latter means that a certain degree of divergence is possible, which indeed is the rule for normal eyes. The situation of the far point of convergence, if negative, can be determined only by means of prisms placed, base in, before the eyes. The difference between the maximum and minimum of convergence (far point and near point of convergence) is the amplitude of convergence, which, in cases where the eyes can be made to diverge beyond parallelism, is composed of a positive and of a negative portion. This way of regarding the convergence is like that which has since Donders’s time obtained with respect to the accommodation (see § 140), and is intended to facilitate
the comparison of these two functions which are so intimately related.* With the
same object in view Nagel has introduced the term metre-angle. Let \( oo \) (Fig. 180)
be the base line, i.e., the line connecting the centers of rotation of the two eyes, and \( MC \)
the median line. The angle of convergence is the angle through which the eye has to be deflected
from the position of parallelism in order to be directed toward a point, \( C \). That is, it is the an-
gle \( \omega \), or, what is the same thing, the angle \( w \). Its magnitude is in inverse proportion to the dis-
tance of the object looked at (precisely as in the case of accommodation). The angle of convergence required in order to sight a point situ-
ated one metre in front of the eyes is called a metre-angle (\( m \omega \) or \( MA \)); and this constitutes the unit for the numerical denotation of the degree of convergence. When the object sighted is at 2 metres distance, the convergence amounts to 0.5
\( MA \); when the point is at 50 cm., the convergence is 2 \( MA \), etc. This method of
denoting the degree of convergence has the advantage that it parallels in all re-
spects the expressions used to indicate the work done in accommodation. Thus,
for a distance of 50 cm., a convergence of 2 \( MA \) and an accommodation of 2
dioptres is required. The magnitude of the metre-angle, measured in degrees,

\[ \text{Fig. 181 A.—Scheiner's Experiment. (The eye is adjusted for the point o.)} \]

varies in different persons, since it depends upon the length of the base line; on an
average (with a base line of 64 mm.) it amounts to \( 1^\circ 50' \).

Monocular diplopia with double pupillary aperture (iridodialysis, perforation
of the iris, division of the pupil into two parts by an opaque strand, etc.) takes
place only when the eye is not properly focused; otherwise, there is single vision,

[* It, however, is open to the objection that in accepting this nomenclature we
are in a measure bound to the hypothesis that divergence is a passive process, a
mere relaxation of convergence. Various pathological data (confirmed by some
striking observations of Uhthoff and others) indicate that divergence is an active
process governed by a distinct association center.—D.]
even with a double pupil. This fact is accounted for by the well-known experiment of Scheiner. Two holes are made in a piece of cardboard (D, Fig. 181 A) with a needle, the distance between them being somewhat less than the diameter of the pupil, so that, when looked through, both lie at the same time in front of the pupil. Through this apparatus we look at an object—e.g., a tightly stretched thread, o, at a distance of 25 cm. If the eye is focused for this distance, all the rays emanating from the object, o, are united upon the retina at the point, o'. If, now, out of the whole cone of rays only those are transmitted which pass through the two holes, these rays still unite to form an image at o'; the only change which this image undergoes by having the diaphragm placed before it is an enfeeblement of its luminosity due to the cutting off of many rays. But if the eye is not focused for the distance of the object (Fig. 181 B), the apex of the cone of rays does not fall upon the retina, but (in this case) behind it at o'. The cone of rays is cut off in front of its apex by the retina, so that the image of the point, o,

![Diagram](image-url)

**Fig. 181 B.—Scheiner's Experiment.** (The eye is not adjusted for the point o.)

is a disk (diffusion circle), o, and the point looks completely blurred. But if now only two bundles of rays out of the entire cone are admitted to the eye through the diaphragm, each one casts its own smaller diffusion circle (b and b'); the point, o, is now seen more distinctly, it is true, but is seen double.

In myopia, especially of high degree, the complaint is sometimes made of monocular diplopia. This makes itself particularly apparent when rectilinear outlines, such as telegraph wires, the outlines of picture frames, etc., become objects of fixation, they then appearing double. Here we are probably dealing with the effect of an irregular astigmatism.

### I. Paralysis of the Ocular Muscles.

#### 123. Symptoms. 1. Limitation of Movement.—In paralysis of an ocular muscle the excursion of the eye toward the side corresponding to the action of the muscle that is paralyzed is diminished or entirely abrogated. If, for example, the external rectus of the right eye were completely paralyzed, the right eye could be brought only to the middle line and not beyond it to the right. When the paralysis is incom-
DISTURBANCES OF MOTILITY OF THE EYE.

plete the deficiency in motility is, of course, less considerable, and
often can only be made out by comparison with the other, or sound
eye. In very slight paralyses the defective motility is not marked
enough to be recognized at all with certainty. In these cases we must
rely for our diagnosis upon the double images produced.

The result of the limitation of mobility is a lagging behind of the
eye when an associated movement is initiated within the sphere of action
of the paralyzed muscle. Thus, if in paralysis of the right externus a
point, o (Fig. 182), situated upon the right, should be the object of
fixation, the left eye will be adjusted for it properly; but the right eye
will not be turned sufficiently far to the right, and consequently its
visual axis, g, will shoot off to the left of the object. The eye
“squints” inward (strabismus paralyticus, or luscitas*). This squint-
ing takes place only when the eye is turned in the direction of the
sphere of action of the paralyzed muscle, and becomes more pro-
nounced the farther the eye is moved toward this side; but in
all directions of the gaze in which the paralyzed muscle does
not have to participate, the eyes stand in their proper position.
By this fact paralytic squint is distinguished from ordinary or
concomitant squint, which is present in all directions in which
the eye is turned, and always to the same amount.

The measure of the deflection
is determined by the angle s
(Fig. 182), that the visual axis,
g, makes with the line of direc-
tion, r, which passes from the
object to the retina through the
nodal point of the eye, and which
gives the place of the retinal
image, b. This deflection of the squinting eye is known as the pri-
mary deviation.

While the patient keeps on looking at the object, o, a screen, s, is
placed before the left eye (Fig. 183). Now the right eye takes up the
task of fixation, it being presupposed that it can be really brought far
enough to the right for this purpose. If now we look at the left eye

* Strabismus, from στρίφω to turn. The term luscitas comes from luscus,
squinting, and is at present used exclusively for paralytic strabismus. From luscus
is derived the French louche.
behind the screen we shall find it turned strongly inward—much more so, in fact, than the right eye had been previously. The deflection of the sound eye when covered, which is measured by the angle \( s \), (Fig. 183), is called the secondary deviation, which therefore exceeds the primary deviation in magnitude. It is accounted for as follows: When with both eyes uncovered the gaze was directed toward the right, the left internus and the right externus received the ordinary impulse for a movement to the right; but the right eye lagged behind the other in proportion as the right externus, owing to its impaired innervation, failed to answer to the impulse. If now the left eye is covered, the patient is compelled to make fixation with the right. He tries now to turn this eye to the right, by sending into the right externus a very strong impulse of innervation, although in so doing he still obtains only a very slight effect. He can not, however, innervate thus strongly the right externus alone, but can simply send out a very energetic impulse for a lateral movement to the right to both eyes—an impulse, therefore, which also affects the left internus. But in the latter the impulse has its full effect, so that the left eye is drawn very strongly to the right (inward). Thus, while in primary deviation it is a mere question of lagging behind of the eye, secondary deviation is produced by a powerful muscular traction; therefore, the secondary deviation is greater than the primary. This point, too, is of importance in distinguishing between paralytic and concomitant squint, since in the latter the primary and secondary deviation are equal. To measure the magnitude of the primary and secondary deviation the best way of proceeding is to mark the position of the external margin of the cornea each time by an ink dot upon the lower lid, as will be set forth more precisely in the section on strabismus (§ 120).

2. False Orientation.—With the paralyzed eye the patient does not see objects in their true place; for suppose that, when the right ex-
ternal rectus is paralyzed, he shuts the left eye and looks with the right alone at an object situated a little to the right hand—i.e., within the sphere of action of the paralyzed muscle—and then is told to point quickly at the object with his extended index finger; as he does so, the finger will always be carried to the right of the object, whence it follows that the latter is seen too far to the right (Von Graefé's reaching test). The same phenomenon comes to light when the patient tries to walk straight toward a given point with the help of his paralyzed eye, the other being closed. He takes a wavering and zigzag course, first bending his steps too far to the right, then recognizing his mistake and correcting it; then deviating anew to the right, and so on.

The explanation of this occurrence is similar to that which has been given for binocular diplopia (page 582). The object is falsely localized, because the patient is in error in regard to the position which his eye occupies. When (Fig. 184) the patient with his paralyzed right eye so sights the object, o, which is placed somewhat to the right of him, that it forms an image upon the fovea centralis, f, he can accomplish this only by the strongest possible innervation of his paralyzed externus. Now, the ideas which we have with respect to the position of our eyes depend upon our sensations with regard to the innervation of the individual muscles. The patient, therefore, is compelled to believe that the right eye is standing in the most extreme position of right lateral rotation, like the eye represented by the dotted line in Fig. 184, because he has sent an impulse for a rotation to this amount into the right externus, and he can not know that the latter, owing to the impairment of the conduction, only partially obeys this impulse. He hence proceeds upon the assumption that the right eye is turned very strongly to the right, and that consequently its fovea is at f₁; he is, therefore, also compelled to believe that the object whose image is formed at the fovea lies opposite f₁—i.e., at o₁—and he hence sees the object too far.
to the right. Accordingly, objects which are sighted by the paralyzed eye are always seen too far toward that side to which the paralyzed muscle moves the eye.

3. Diplopia.—This occurs when vision is performed with both eyes simultaneously and the visual lines do not intersect in the point of fixation; it is the consequence of false orientation of the paralyzed eye. The explanation of the way in which the double images are produced, and of the way in which they behave in the different abnormal positions of the eye, has been given on pages 582 et seq. The double images are the most important means that we can call to our aid in making the exact diagnosis of the paralyses.

The phenomena so far mentioned, such as restriction of motility, strabismus, false orientation, and diplopia, make their appearance only when the eyes are moving in the sphere of action of the paralyzed muscle, and become more and more marked in proportion as the eyes are moved toward this side. Thus, in complete paralysis of the right externus the double images and the strabismus make their appearance at the moment when the eyes pass to the right of the median line. The more the gaze is turned in this direction, the farther apart are the double images and the more conspicuous is the strabismus. If we should have an incomplete paralysis (paresis) of the right externus before us, the double images and the strabismus would not show themselves until the eyes had been turned pretty far to the right, and in extreme cases not until the gaze was directed quite laterally (as when, for example, the patient looks away round to the right). From the direction of the eyes in which strabismus and double images first make their appearance, from the position of these double images with respect to each other, and from the way in which their distance apart increases or diminishes according to the different directions in which the eyes are looking, we diagnosticate which of the ocular muscles is paralyzed, and whether we are dealing with a complete or an incomplete paralysis.

4. Vertigo.—This may be excited by the diplopia, or may also occur when vision is performed with the paralyzed eye alone. The latter sees objects in their proper place so long as it occupies a direction of the gaze in which the paralyzed muscle is not called upon to exert itself. But as soon as the gaze is turned to the side representing the field of action of the paralyzed muscle, objects are located by the eye too far toward the same side, and the more so, the more the gaze is directed that way. Consequently, as the gaze passes from the region of correct to the region of false localization, objects appear to fly with constantly accelerated velocity in the direction in which the eye is moving. It is this apparent movement of the whole outside world that determines the development of vertigo. Vertigo, therefore, sets in whenever the patient feels himself compelled to make movements with his eyes, and hence often even in walking upon a level floor, but still more in
DISTURBANCES OF MOTILITY OF THE EYE.

going up and down steps, in performing complicated manipulations, in doing work, etc. It makes the patients unsteady and timid, and even excites a tendency to vomit. This kind of vertigo is known as visual vertigo, and is distinguished from other kinds by the fact that it disappears at once when the paralyzed eye is covered. Most patients hit upon this fact themselves, and in walking keep the paralyzed eye closed, either by shutting it or by covering it with a bandage. Another way of preserving themselves from visual vertigo lies in the—

5. Maintenance of an Oblique Position of the Head.—A patient in whom, for example, the right externus is paralyzed, keeps the head turned to the right. If he looks forward with his head in this position, both eyes are turned somewhat to the left, in which position the right externus does not come into play, and in which, therefore, paralysis of it does not make itself evident. And so for every variety of paralysis of the ocular muscles there is a definite position of the head, which diminishes the visual vertigo, and which is so characteristic of the paralysis that the skilled observer is able from it alone to suspect the nature of the latter.*

Old Paralyses.—The characteristic symptoms of a paralysis are more unmixed and more pronounced the more recent it is. If the paralysis gets well after the lapse of not too long a time, the symptoms that have been produced by it disappear, and normal binocular vision is restored; if, on the other hand, the cure of the paralysis takes place only after a long time has elapsed, or does not take place at all, the symptomatic picture changes as follows: 1. The mistakes in orientation, particularly as they make their appearance in Von Graebe's reaching test, gradually cease; the patient learns by experience that the impulses of innervation for his paralyzed eye correspond to much slighter actions than those for the sound eye, and by taking account of this fact he once more forms a correct judgment of the situation of objects. 2. The diplopia disappears because the sensory perceptions of the paralyzed eye are suppressed (exclusion). 3. Contracture of the antagonists of the paralyzed muscle gradually sets in. Thus, in paralysis of the right externus, it is the right internus that becomes shortened; and so, while in a recent paralysis of the externus, the eye, when the gaze is directed straight forward, stands in the middle line, it afterward becomes drawn in more and more, and can no longer be brought up to the median position. The result of this is an increase in the paralytic strabismus, this reaching a higher degree and becoming manifested over a more extensive area than before, insomuch that it exists not only upon the side of the paralyzed muscle but also over the entire field of fixation. Owing to this fact, paralytic strabismus acquires a

* [In general, the head is turned so as to look in the direction in which the affected muscle would, if unparalyzed, move the eye.—D.]
constantly greater and greater resemblance to concomitant squint, so that sometimes the distinction between the two becomes very difficult. The contracture of the antagonists may even persist when the paralysis itself is cured, and may thus prevent the restoration of normal binocular vision.

124. Mode of Occurrence.—Paralysis may affect simply one muscle, or it may affect several muscles in different combinations.

1. Paralysis of one single muscle most usually affects either the external rectus or the superior oblique, because each one of these muscles is supplied by an independent nerve (abducens and trochlearis). All the other ocular muscles are innervated by the oculo-motor nerve, for which reason paralysis of any single one of them is of less frequent occurrence.†

2. For the reason just mentioned, simultaneous paralysis of several muscles is found most frequently in those supplied by the oculo-motor nerve, and of these muscles some or all may be affected at once. Complete oculo-motor paralysis presents a characteristic picture. The upper lid hangs loosely down (ptosis), and has to be drawn up with the finger to give a view of the eyeball, which is deflected strongly to the outside and somewhat down, because the two muscles not paralyzed—the external rectus and the superior oblique—draw it in this direction. The pupil is dilated and immobile (paralysis of the sphincter pupillae), and the eye is focused for the far point and can not accommodate for near by (paralysis of the ciliary muscle). A slight degree of exophthalmus exists because three of the recti, which normally draw the eyeball backward into the orbit, have lost their tone.

Other muscles besides those innervated by the oculo-motor nerve may be affected, and the paralyses may affect not simply one but both eyes. In this way many manifold combinations are formed, of which the following are the most frequent: 

(a) All the eye muscles in one or both eyes are paralyzed, so that the lids hang loosely down, the eyes are directed straight forward and are immovable, and there is dilatation of the pupil, with abolition of the accommodation (ophthalmoplegia totalis).

(b) The paralysis affects only the exterior eye muscles, while the interior muscles of the eye (sphincter pupillae and ciliary muscle) are intact (ophthalmoplegia externa sive exterior). This is more frequent than total ophthalmoplegia, and finds its explanation in that the nuclei for the sphincter pupillae and the ciliary muscle are separate from the other nerve nuclei (Fig. 178), and hence frequently remain exempt from processes which destroy the nuclei of the other ocular muscles. For this reason ophthalmoplegia exterior is generally of central (nu-

[* Indeed, many cases of concomitant squint are without doubt paralytic in origin.—D.]

[† Although, in the experience of the translator and of some others, isolated paralysis of the superior rectus occurs with considerable frequency.—D.]
clear) origin. (c) *Ophthalmoplegia interna* (sive interior) forms the converse to ophthalmoplegia externa, as in it only the interior muscles of the eye are paralyzed. It can be produced artificially by means of atropine.

3. There are combined paralysis which do not affect the individual muscles, but affect associated movements. Thus the ability to look to the right or left, or to look up or down, etc., may be lost. These are known as *conjugate paralysis* (Prevost). The most characteristic cases of this sort are those of paralysis of the lateral rotators. There may, for example, be a paralysis of the associated movements to the right. If the patient then fixes his gaze upon an object which is carried in front of him from left to right, the eyes follow it until it has got to the middle line; then both eyes stand still without being able to move farther to the right. One might suppose that he was dealing with a paralysis of the right externus combined with one of the left internus. But this idea can be readily disproved by approximating an object to the patient along the middle line. The patient converges upon the object until it is very close to him, and hence can use his left internus perfectly for purposes of convergence, while the same muscle is paralyzed in its capacity of rotator to the right. The cause of conjugate paralyses are lesions in the association centers of the nerves for the ocular muscles.*

**Etiology.**—Paralyses of the ocular muscles are the result of a lesion which may be situated anywhere in the course of the nerve tract, from its very beginning in the cerebral cortex to its termination in the muscle itself. According to the site of the lesion, paralyses are distinguished into intracranial and orbital.

In *intracranial* paralyses the focus of diseases lies within the cranial cavity. It may affect the centers of highest rank which lie in the cortex of the brain (cortical paralysis), or the association centers, or, lastly, the centers of lowest rank—i.e., the nerve nuclei upon the floor of the fourth ventricle (nuclear paralysis). The bands of fibers, likewise, that connect these centers may be affected, as may also be those fibers that run from the nuclei to the surface of the brain and unite there to form the nerve trunks (fascicular paralysis); and the nerve trunks themselves may be affected in their course along the base of the skull (basal paralysis).

**Orbital** paralyses are those in which the lesion is seated in the nerve trunk and its branches, commencing from the entrance of the nerve into the orbit through the superior orbital fissure, and extending to its termination in the muscle.

[*Paralysis of associated movements, due to such lesion of the association centers, may affect the parallel movements of either eyes to the right (dextroversion), left (levoversion), up (sursumversion), down (deorsumversion; also the movements of convergence and of divergence (convergence and divergence paralyses).—Parinand, Graefe, Uhthoff.—D.]
To diagnosticate the site of the lesion we must take account of the character of the paralysis, and particularly of those accompanying symptoms that point to an intracranial or to an orbital lesion.

As regards its nature, the lesion may develop as a primary affection in the nerves or in their areas of origin, these being attacked by inflammation or by simple degeneration. Much more frequently, however, these structures suffer indirectly as a result of disease in their vicinity, such as exudates (especially in the meninges), thickenings of the periostea, neoplasms,æmorrhages, injuries, etc., by which the nerves or their nuclei are thrown into a condition of inflammation, are compressed, or are in some other way subjected to injury. Among the vascular changes which are to be enumerated as causes producing lesions of the nerves supplying the ocular muscles are atheroma, aneurism, and occlusion of the vessels.

The cause of the lesion is frequently to be sought for in some general disease. Among these syphilis is the most usual cause of paralyses of the ocular muscles. Other diseases that result in these paralyses are tuberculosis, tabes, diabetes, toxic affections, progressive paralysis, disseminated sclerosis, hysteria, in fact, the most various diseases of the brain, including particularly those of focal character and those situated at the base of the skull. Among acute infectious diseases, diphtheria is the most frequent cause of paralyses of the ocular muscles. Injuries may affect the nerves of the ocular muscles in the orbit, or, in the case of fracture of the skull, in their intracranial course. Rheumatic paralyses are very frequent. By this term we understand those paralyses in which, judging from the accompanying symptoms, the lesion is situated peripherally, and for which no cause can be found except possibly the action of cold. It is for this latter reason that they have been called rheumatic paralyses.

Course and Treatment.—The paralyses either set in suddenly or develop in an insidious manner. Sometimes relapses occur. The course of the paralyses is always chronic. Even in the most favorable cases six weeks and more are required for a cure, and many paralyses are absolutely incurable. Whether this is so or not depends mainly upon the cause which lies at the bottom of the paralysis, and which, therefore, must first of all be taken into consideration in making the prognosis. Another means for determining the latter is afforded by the duration of the paralysis, since old paralyses, on account of the secondary changes that set in (atrophy of the paralyzed muscle and contracture of its antagonist), no longer hold out any prospect of a cure.

Treatment has first of all to take account of the causal indication. In this respect syphilitic and rheumatic paralyses afford the best prognosis. In the former an energetic antisyphtillic treatment with iodine and mercury is indicated. In the latter we give sodium salicylate, and employ diaphoresis. The symptomatic treatment consists mainly in the
DISTURBANCES OF MOTILITY OF THE EYE.

local application of electricity, administered principally under the form of the constant current, rarely under that of the induced current. Exercise of the paralyzed muscle with the aid of prisms is also sometimes employed with advantage.

Besides the treatment of the paralysis itself, it seems also requisite, until the cure has been accomplished, to relieve the patient from the annoyance which the diplopia and the vertigo entail. When we are dealing with very slight paralyses we can unite the double images by means of prisms set in a suitable position; in this case the patient is made to wear the prisms under the form of glasses. In more marked paralyses prisms do not suffice to compensate for the incorrect position of the eyes. Then there is no other way of relieving the diplopia than to bandage the paralyzed eye, or, better still, to apply glasses which have an opaque plate for the paralyzed eye.

In old paralyses in which contracture of the antagonists has set in, we can get a result only by operative treatment. This consists in section of the contracted muscle with simultaneous advancement of the muscle that is paralyzed (see § 164). The latter is thus put under more favorable mechanical conditions for working—conditions, to be sure, of which it can avail itself only if it still possesses a certain degree of contractility. Complete paralyses, therefore, are incurable even by operation.

In order to facilitate the diagnosis of paralyses of the ocular muscles for beginners, a schedule is set forth on page 606, showing the position of the double images and their varying relations in different directions of the gaze. The position of the double images is given in the figures annexed to the text, in which the dotted outlines denote the false image and correspond therefore to the paralyzed eye.

It would be a mistake, however, to suppose that in order to make a correct diagnosis it is sufficient to know the signs of the paralysis of each individual muscle or to take them from such a scheme as that presented and then see to which of them any case that may be before us fits. In this way, to be sure, we would quickly make the diagnosis in the typical and uncomplicated cases, but in the numerous cases of combined paralysis we would be helpless. A much more proper way of going to work is to determine exactly all the symptoms in any given case, and from them find out in what directions the motility of the eye is incomplete; then, with the aid of a precise knowledge of the method of action of each ocular muscle, we can make out which one or which two or three of the muscles are paralyzed. This method of examination may be illustrated by the following concrete example:

A patient comes complaining of diplopia. We first determine that we are dealing with binocular (not monocular) diplopia, from the fact that, as soon as one of the eyes is covered, there is single vision. Then we make the patient fix his gaze upon a pencil held in front of him, and while moving this in different directions we notice whether both eyes follow it uniformly. We observe that this is the case in all directions of the gaze except when the eyes are cast down. When the attempt is made to look down, the left eye does not sink as low as the right, and at the same time converges rather too much. We are therefore dealing with a paralysis of one of those muscles which depress the left eye—that is, of the left inferior rectus or the left superior oblique. To distinguish between these two we examine the double images.
We again carry the pencil in different directions in front of the patient's eye, and determine that the pencil is seen double chiefly in the lower half of the field of fixation—a fact which agrees with the lagging behind of one eye when the gaze is directed downward. Of the two images, the right one (R, Fig. 185) is the more distinct, stands upright, and is the more elevated. The left image (L) is indistinct; it is the false image (page 584). It is lower, and is obliquely placed, its upper end being inclined toward the right image. We now cover one eye, then the other, and ask the patient which of the two images disappears in each case. In this way we find out—

1. That the indistinct (false) image corresponds to the left eye. Hence, we conclude that the paralysis affects the left eye.

2. That the image of the left eye stands below.

This proves that the eye itself is relatively too high (see page 583 and Fig. 171), and agrees with our previous observation, that when the gaze is lowered the left eye remains standing too high, and that, therefore, one of its depressors is paralyzed.

3. That the image belonging to the right eye lies to the right, that belonging to the left eye to the left, and hence the double images are homonymous—a fact which points to a pathological convergence (see page 582 and Fig. 169). With the aid of these facts we can determine which of the two depressor muscles is the one paralyzed.

The inferior rectus, besides depressing the eye, also effects its adduction. The reason for this is that, just as in the case of the superior rectus (page 586), the muscular plane of the inferior rectus does not coincide with the sagittal axis of the eye, but forms with it an angle which opens out posteriorly, because the muscle does not run from its insertion at the optic foramen straight forward to the eyeball, but forward and outward. For the same reason the contraction of the inferior rectus also produces a torsion of the eye in such a way that the upper extremity of its vertical meridian is inclined outward. When the inferior rectus is paralyzed, its adducient action is abrogated, and the eye consequently is somewhat abducted (producing crossed double images). But in our case precisely the opposite occurs, the eye squinting somewhat inward (the double images are homonymous).

The superior oblique depresses the eye, and rotates and moves it out. If the latter action is abrogated in consequence of paralysis, the eye is in a condition of pathological convergence, and the double images are homonymous—a state of things which in fact exist in the case before us. We hence diagnosticate a paralysis of the superior oblique of the left eye.

But might not the same symptoms be produced by a combination of two paralyses—that is, of the left inferior rectus, as a result of which the act of depression of the left eye is defective, and of the left external rectus, by which the position of convergence is caused? This question can be answered from the kind of obliquity presented by the apparent image.

We have seen that a rotation of the eye about its sagittal axis, by which the vertical meridian gets to stand obliquely, makes the image that is seen with this eye also appear oblique. Conversely, from the obliquity of the image we can form a conclusion as to the position of the vertical meridian. In our case the lower extremity of the apparent image (Fig. 185, L) is seen too far to the left. This corresponds to the upper extremity of the retinal image (p, Fig.
DISTURBANCES OF MOTILITY OF THE EYE.

172 A), which then must lie to the right of the vertical meridian of the retina, v1, v1, since its projection externally lies to the left of the vertical. The retinal image, however, really lies vertically in the retina, since the object stands vertically in space. Hence, the above statement is better expressed thus: The upper half of the vertical meridian of the retina lies to the left of the upper extremity of the vertically placed retinal image. Hence, it follows that the vertical meridian has its upper half inclined to the left, or outside, and its lower half inclined to the right, or inside.

What paralysis corresponds to this position of the vertical meridian? The superior oblique (s, Fig. 172 A) rotates the eye in such a way that the vertical meridian has its upper extremity inclined inward; the inferior oblique (i, Fig. 172 A) tends to incline the upper extremity of the vertical meridian outward. In a state of health these two muscular actions are in equilibrium in the primary position of the eyes, so that the vertical meridian really does stand vertical. But if the action of the superior oblique is abrogated in consequence of paralysis of the muscle, the inferior oblique gets the upper hand and draws the meridian toward its own side, so that the upper extremity of the meridian is inclined outward. Since this is the position of the meridian which we conclude to exist in our case from the obliquity of the double images, our diagnosis of a paralysis of the superior oblique is thus confirmed.

If the inferior rectus had been paralyzed, the apparent image would have been inclined in the contrary direction. The inferior rectus inclines the upper extremity of the vertical meridian outward, and when, owing to paralysis of the muscle, its action ceases, the vertical meridian assumes the opposite inclination—i.e., with its upper extremity inward. This position would be just the opposite of that present in our case, and hence, too, the obliquity of the false image would be in a direction contrary to that actually observed.

For a complete examination of the case it would also be requisite to test the position of the double images in the different directions in which the eye is turned. The action of the superior oblique is made up of three components, the magnitude of which varies according to the position which the eyeball occupies at the moment when they come into play. Consequently, the horizontal separation, the difference in height, and the obliquity of the double images undergo characteristic changes according as the direction of the gaze is varied.

The obliquity of the false image, however, is often but very slightly marked; and the horizontal separation of the double images is not always conclusive, since it may be influenced by a pre-existing disturbance of the equilibrium between the internal and external recti—a disturbance which is brought to light by the paralysis. If, in the case here assumed to exist of a paralysis of the superior oblique, a latent divergence [exophoria] (see page 613) had been present, the double images would have been crossed instead of homonymous.* Hence, in paralyses of the obliques, just as the paralyses of the superior and inferior recti, we must depend mainly upon the vertical separation of the double images, and determine in what way it changes with the movements of the eyes, and particularly with abduction or adduction of the paralyzed eye. With regard to these relations Mauthner has made the following diagrammatic scheme for the diagnosis of paralysis of the elevators and depressors. It has proved of good service in practice.

[* Another factor, very important in this connection, is the natural tendency shown by the eyes to diverge when looking up, and to converge when looking down. This tendency of itself often produces crossed diplopia in paralysis of an elevator and homonymous diplopia in paralysis of depressor, no matter whether the muscle affected is one of the obliques or one of the recti.—D.]
BEHAVIOR OF THE DOUBLE IMAGES IN PARALYSES OF THE OCULAR MUSCLES.

(The apparent image has a dotted outline.)

**External Rectus.**

Diplopia appears in looking toward the paralyzed side.
The lateral separation of the images increases as the paralyzed eye is abducted.

**Internal Rectus.**

Diplopia on looking toward the sound side.
The lateral separation of the images increases in adduction of the paralyzed eye.

**Superior Rectus.**

Diplopia on looking up.
The vertical distance between the images increases as the paralyzed eye is elevated and abducted.
The obliquity increases in adduction.
The lateral separation of the images diminishes when the eyes are turned laterally in either direction.*

**Inferior Rectus.**

Diplopia on looking down.
The vertical distance between the images increases as the eye is depressed and abducted.
The obliquity increases in adduction.
The lateral separation of the images diminishes when the eyes are turned laterally in either direction.*

**Superior Oblique.**

Diplopia on looking down.
The vertical distance between the images increases as the eye is depressed and adducted.
The obliquity increases with the abduction.
The lateral distance between the images diminishes when the eyes are turned laterally in either direction.†

**Inferior Oblique.**

Diplopia on looking up.
The vertical distance between the images increases as the eye is elevated and adducted.
The obliquity increases with the abduction.
The lateral distance between the images increases as the eye is elevated and abducted.

[* According to most writers and to the translator’s experience, the lateral separation increases progressively as the eyes are adducted or are elevated.—D.]*

[† The lateral separation increases as the paralyzed eye is abducted.—D.]
A. DIPLOPIA DEVELOPING IN THE UPPER PART OF THE FIELD OF FIXATION.*

Vertical distance between the two images greatest:

I. **Above and to the left.**
   1. Image of left eye higher. 
   2. Image of right eye higher.

II. **Above and to the right.**
   1. Image of right eye higher.
   2. Image of left eye higher.

Paralysis of
Left superior rectus.
Right inferior oblique.
Right superior rectus.
Left inferior oblique.

B. DIPLOPIA DEVELOPING IN THE LOWER PART OF THE FIELD OF FIXATION.

Vertical distance between the two images greatest:

I. **Below and to the left.**
   1. Image of left eye lower.
   2. Image of right eye lower.

II. **Below and to the right.**
   1. Image of right eye lower.
   2. Image of left eye lower.

Paralysis of
Left inferior rectus.
Right superior oblique.
Right inferior rectus.
Left superior oblique.

Frequently a patient affected with a paralysis of a depressor muscle (inferior rectus or superior oblique) is not at all aware of there being a difference in level between the double images, stating only that *one image is nearer* than the other. This is the more apt to be the case the more the plane of fixation is depressed, and is

[* The facts essential for the diagnosis of muscular paralyses may be set forth in the following formula devised by the translator in which Eu, Ed, Er, El, Eu and r, etc., denote "both eyes directed up (down, to the right, to the left, up and to the right, etc."). DH, DX, DR, DL denote respectively homonymous diplopia, crossed diplopia, right diplopia (diplopia with the image of the right eye below), left diplopia (diplopia with the image of the left eye below), and >> denotes "increasing progressively."*]

<table>
<thead>
<tr>
<th>Paralysis of</th>
<th>Regularly (but not invariably) associated with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er, DX &gt;&gt; greatly</td>
<td>Left internal rectus.</td>
</tr>
<tr>
<td>Er, DH &gt;&gt;</td>
<td>Right external rectus.</td>
</tr>
<tr>
<td>El, DX &gt;&gt;</td>
<td>Right internal rectus.</td>
</tr>
<tr>
<td>El, DH &gt;&gt;</td>
<td>Left external rectus.</td>
</tr>
<tr>
<td>Eu and r, DR &gt;&gt; greatly</td>
<td>Right superior rectus.</td>
</tr>
<tr>
<td>Eu and r, DR &gt;&gt;</td>
<td>Left inferior oblique.</td>
</tr>
<tr>
<td>Eu and l, DR &gt;&gt;</td>
<td>Right inferior oblique.</td>
</tr>
<tr>
<td>Ed and r, DR &gt;&gt;</td>
<td>Right inferior rectus.</td>
</tr>
<tr>
<td>Ed and l, DR &gt;&gt;</td>
<td>Left superior oblique.</td>
</tr>
<tr>
<td>Ed and l, DL &gt;&gt;</td>
<td>Right superior oblique.</td>
</tr>
<tr>
<td>Ed and l, DL &gt;&gt;</td>
<td>Left inferior rectus.</td>
</tr>
</tbody>
</table>

The following principles, also enunciated by the translator, are of service, as they hold good even in the most complicated cases:

Homonymous diplopia increasing as the eyes are carried to the right always indicates paresis of *some* muscle of the right eye, and increasing as the eyes are carried to the left indicates paresis of *some* muscle of the left eye; and in either case if great, indicates paresis of the external rectus.

Crossed diplopia increasing as the eyes are carried to the right always indicates paresis of *some* muscle of the left eye, and increasing as the eyes are carried to the left indicates paresis of *some* muscle of the right eye; and in either case if great, indicates paresis of the internal rectus. (See also tables in § 125 A.)—D.]
accounted for by Förster as follows: If we gaze at a rather distant point situated in the plane of the floor upon which we are standing, those points of the floor that lie nearer us form their images higher up in the retina than does the point of fixation. Now, when an eye stands too high owing to paralysis of a depressor muscle, the point that the sound eye is looking at forms an image in the paralyzed eye upon a portion of the retina situated above its macula. This is interpreted by the patient as meaning that the point seen with this eye is situated not lower down but nearer to him. Accordingly, the image that looks nearer belongs to the higher eye.

The diagnosis as to which muscle is paralyzed often presents considerable difficulties even to the adept, if the case is complicated. This occurs—

1. When several paralyses are combined, particularly in both eyes, and the paralyses are partly complete, partly incomplete.

2. When a disturbance of muscular equilibrium under the form of latent convergence or divergence [esophoria or exophoria] was previously present. Such a disturbance is converted from a latent into a manifest one when the paralysis sets in, as, owing to the latter, binocular vision becomes impossible in spite of the tendency toward fusion.

3. When the two eyes have an unequal visual power, and the paralysis affects the better eye. The latter then is used to perform fixation with.* and the non-paralyzed eye is in a condition of secondary deviation. In such a case it is easy for the sound eye to be regarded as the paralyzed one.

4. When, in old paralyses, a contracture of the antagonists has taken place.

The difficulties of diagnosis are often increased by lack of intelligence or by insufficient attention on the part of the patient, in consequence of which it is impossible to determine with precision the position of the double images. It is also impossible to do the latter when, as in old paralyses, there is a tendency toward the suppression of the double images. In this case we must try to prevent the suppression of the false image by making it as well marked as possible—e.g., by selecting an object, such as a candle flame, which catches the attention of the eye; or we may make the image in the sound eye less bright in comparison with the false image by placing a dark glass before the sound eye.

Measurement of the Paralysis.—A precise determination of the degree of paralysis is particularly desirable in order to be able, in the course of treatment, to calculate whether the paralysis is really undergoing recession or not. The measurement is made with the help of the double images; the region which these occupy being displaced farther and farther toward the periphery of the field of fixation, and the distance between them becoming smaller and smaller as the paralysis decreases.

1. The simplest way of estimating the position and the degree of separation of the double images consists in placing the patient at a distance of two or three metres from a wall upon which a point lying directly opposite one of his eyes has been marked as a point of departure. Starting from this point we carry an object which the patient is to follow with his eyes in different directions. We mark on the wall the points where the object begins to appear double, and also the degree of separation of the double images projected upon the wall in the different directions in which the eye is turned. By repeating this test in the same way at certain intervals of time we determine the alterations in the diplopia. Inasmuch as we know the distance of the patient from the wall and the linear distance from each other of the double images projected upon the wall, we can readily calculate the angle by which the paralyzed eye lags off from the line of fixation—that is, the angle of primary strabismic deviation (Landolt).

[*This may even occur when the paralyzed eye does not see as well as the other.—D.]
2. If we have a perimeter at our disposal, we make the patient sit in front of it as in the process of determining the field of vision; then, by carrying the mark used as an object of vision along the perimetric arc, we ascertain the point where it begins to appear double. We can then determine the position of the double images upon the arc of the perimeter and thus find the angle of the strabismus directly, and not have to get at it by calculation.

3. We can also by means of the perimeter determine the field of fixation, and, from the way in which it is limited, judge of the degree of the paralysis.

4. We try to find the prism which in any given direction of the eyes corrects the strabismic deviation, so that the double images are fused into one. The angle of strabismus then amounts to one half of the refracting angle of the prism, since for weak prisms the law holds good that they deflect the rays through one half the angle which the refracting edge incloses. So, if double images are united by a prism of 20°, the strabismic deviation amounts to 10°.*

An indispensable condition for the precision of all these methods of mensuration is that, while they are being performed, the patient should move his eyes alone, and not his head.

Site of the Lesion.—Paralyses of the ocular muscles constitute for the clinician engaged in the study of internal diseases one of the most important means of determining the site of a cerebral affection. Hence we shall now enter more particularly into the consideration of the diagnostic points from which we can determine in what part of the nervous tracts the lesion occurs.

1. Lesions of the centers of higher rank, situated above the nerve nuclei (that is, the cerebral cortex, the association centers, and the fibers connecting these parts with one another and with the nuclei—regions which are all comprised under the name of intracerebral tracts), never cause paralyses of individual ocular muscles. If, therefore, isolated paralyses are present, lesions of as high a situation as this can be excluded. The only exception is ptosis, as this sometimes is met with as an isolated phenomenon in cortical affections. Otherwise lesions of the higher centers always cause conjugate paralyses. The eyes are unable to turn in some special direction, or they can not be made to converge.+ In the given case the eyes are found not infrequently to be drawn toward the opposite side by a spasmodic contraction of the antagonists. Thus, for example, in paralysis of the lateral rotators to the right, not only is it impossible to turn the eyes to the right, but it may be that both eyes are turned continuously and strongly to the left (conjugate deviation). Conjugate paralyses, with or without deviation of the eyes to the opposite side, occur in disease of the crura cerebelli ad pontem, of the pons, of the corpora quadrigemina, of the great ganglia of the brain, particularly of the thalamus opticus, and of the parietal cortex.

[* Really, 11°. For prisms above 20° refracting angle this rule no longer holds good. Thus a prism of 35° produces a deviation of 20° or more (depending upon the way in which the prism is held).—D.]

[† Paralysis of convergence, marked by inability to adduct either eye in performing convergence, although the ability to adduct one eye while the other is abducted is unimpaired. Paralysis of divergence has also been observed. In this the ability of the visual axes to diverge is abolished, while the power of either eye to move outward in performing parallel movements with the other eye is retained. Such cases are characterized by marked homonymous diplopia when the patient looks at a distant object, which diplopia diminishes and ultimately disappears as the test object is carried nearer to the eyes, and also diminishes, or, at all events, fails to increase, when the gaze is carried either to the right or left. Cf. what is said about convergence and divergence insufficiency (§ 125 A).—D.]
2. Lesions of the nuclei on the floor of the fourth ventricle (nuclear paralysis) produce for the most part paralyses of several ocular muscles. In this way there is developed what is known as central ophthalmoplegia, which is usually chronic, rarely acute, in its onset, the paralysis first attacking one muscle and then gradually extending to the rest. It may be unilateral or bilateral. The ptosis, in comparison with the complete paralysis of the other muscles, is often conspicuously slight. In most cases the interior muscles of the eye (those of the pupil and accommodation) remain exempt from the paralysis. But a lesion that affected the trunk of the nerve could not from all the fibers of the nerve single out and leave intact simply those that supply the interior muscles of the eye; and hence in these cases of ophthalmoplegia exterior the diagnosis of nuclear paralysis can be made with probability. But if there is an ophthalmoplegia totalis—that is, one in which all the muscles are paralyzed without exception—the site of the lesion may vary. We may be dealing with a nuclear paralysis; but cases of ophthalmoplegia totalis may also originate in a lesion of the trunk of the nerve at the base of the brain, or even within the superior orbital fissure. In this case, therefore, the diagnosis of the site can be made only from the accompanying symptoms.

A primary affection of the gray substance of the nuclei of the nerves of the ocular muscles lies at the bottom of most cases of ophthalmoplegia (Wernicke's polioencephalitis superior). In its nature this affection is analogous to that which in bulbar paralysis attacks the motor nuclei situated farther down (the facial, glosso-pharyngeal, hypoglossal, and spinal accessory nuclei); and as a matter of fact several cases have been observed in which, by an extension of the process downward, an ophthalmoplegia has had associated with it the symptoms of bulbar paralysis. The most frequent cause of the disease of the nerve nuclei is syphilis; but cases of central ophthalmoplegia due to diphtheria, influenza, tabes, disseminated sclerosis, progressive paralysis, Basedow's disease, traumatism, and poisoning (by alcohol, lead, carbon-monoxide gas, and nicotine), and also cases of congenital ophthalmoplegia, are known.

Paralyses of individual muscles also may arise as a result of lesion of the nerve nuclei. In this category belong, above all, the paralyses that appear in the beginning of tabes dorsalis, and, although somewhat less frequently, in disseminated sclerosis, and which in most cases are of nuclear origin. Tabetic paralyses often disappear in a surprisingly short time, in spite of the progress of the causal disease. But still they are apt to recur, and in many cases they remain permanently. By a nuclear lesion the abducens can be paralyzed at the same time as the facial, since the nuclei of these two nerves lie close together.

3. Fascicular paralysis due to lesion of the fibers between their point of departure from the nerve nuclei and their emergence at the base of the brain, may be diagnosed if there is paralysis of the oculo-motor nerve of one side with simultaneous paralysis of the extremities of the opposite side (alternate paralysis). In this case, then, a focus of disease must be assumed to exist in the lower part of the pedunculus cerebri (α, Fig. 177). Such a focus of disease causes injury both to the fibers of the oculo-motor nerve as they pass through the peduncle, so that the oculo-motor nerve of the same side is paralyzed, and to the pyramidal tract; but at the latter decussates below this point, the extremities are paralyzed on the side opposite to the lesion. Such a paralysis, however, might also be produced by a focus of disease at the base of the brain, if the disease were situated so near the peduncle as to cause injury to it. An intrapeduncular site of the lesion in alternate paralysis of the oculo-motor nerve and the extremities can not with certainty be assumed to exist, except when the fibers destined for the interior muscles of the eye have escaped paralysis, inasmuch as within the peduncle the fibers of the nerve still lie so far apart that the most anterior of them may remain unaffected by the lesion.
DISTURBANCES OF MOTILITY OF THE EYE.

In analogous fashion an alternate paralysis of the extremities and of the abducens (and also of the facial) argues the existence of a focus of disease in the posterior part of the pons, or in the portions of the base of the brain adjoining it (b, Fig. 177).

4. Lesions at the base of the brain may likewise affect one nerve or several, and not infrequently affect both sides at once. The facts which with more or less probability lead us to infer the existence of a basal paralysis are: (a) When a whole series of cerebral nerves upon one side, such as those supplying the ocular muscles, the facial, the trigeminal, the optic, and the olfactory nerves are paralyzed one after another. (b) When the affection of the trigeminal begins under the guise of a neuralgia; the latter not being observed in central paralyses. (c) When one eye is perfectly blind while the other still sees, and the ophthalmoscope does not afford evidence of any changes sufficient to account for this difference. From such a condition, in fact, the conclusion may be drawn that the lesion involves the intracranial segment of one optic nerve. Interruptions of the optic conducting paths higher up can not affect one eye alone; on the contrary, they always lead to visual disturbance of both eyes under the form of hemiopia. Hemiopia, to be sure, can also be caused by a basal lesion—which, however, must in every case be situated behind the chiasm, so as to implicate one of the two optic tracts; but hemiopia may also, and quite as readily, originate in a lesion situated higher up, even as far as the cerebral cortex. Hemiopia, therefore, argues for a basal lesion only when the hemiopia itself can be proved to be due to an affection of the optic tract. Such a hemiopia would be assumed to exist if there was a hemiopic pupillary reaction (page 481); that is, this is the case in homonymous hemiopia; temporal hemiopia is, of course, a certain sign of a lesion at the base, affecting the chiasm at the anterior or posterior angle, or in the middle line (see page 477). (d) Paralysis of the olfactory nerve argues the existence of a basal affection in the anterior fossa of the skull.

Basal paralyses of the ocular muscles are a frequent consequence of fracture of the base of the skull. The abducens is particularly often paralyzed, as it runs close by the apex of the pyramid of the petrous bone and is readily injured by it (Panas).

Of probably basal origin are the cases of frequently recurring oculo-motor paralysis, which ordinarily are ushered in by violent headache. These are usually observed after injuries, although some cases are of hysterical origin. Leber has described a bilateral paralysis of the abducens which was caused by the pressure of the carotid upon the nerves, which directly adjoin it.

5. The diagnosis of an orbital paralysis must be made from the accompanying symptoms, when these are indicative of an affection within the orbit. Among such symptoms are pain in the orbit, either spontaneous or excited by pressure upon the eyeball or upon the margin of the orbit, a deeply situated tumor discoverable by palpation, protrusion of the eyeball, unilateral optic neuritis due to pressure on the optic nerve, and finally the history of an antecedent trauma which has affected the orbit.

Paralyses of the ocular muscles may be of congenital occurrence. Mention has already been made of congenital ophthalmoplegia. The most frequent congenital paralyses are those of the abducens. It is a remarkable fact that in these, contrary to what takes place in the acquired paralyses, contracture of the antagonists does not set in; both eyes have a perfectly proper position as long as the gaze is not directed toward the side of the paralyzed muscle. An inability to turn the eye upward has been observed occurring coincidentally with congenital ptosis. Autopsies have shown that in this case the superior rectus was absent. Perhaps in this case, as in many other instances of congenital paralysis, the primary disease is to be looked for in the nerve nuclei (Moebius).
II. LATENT DISTURBANCES OF EQUILIBRIUM (HETEROPHORIA).*

125. In the normal state the eyes are in perfect muscular equilibrium in every natural—i. e., not forced—position. What the expression muscular equilibrium signifies is rendered clear by the following experiment: We cause the patient to fix an object at a distance of thirty centimetres with both eyes. Then we push a sheet of paper before one eye and watch behind the paper the eye thus covered. We shall find that the eye remains correctly adjusted for the object, although it no longer sees it. It remains steadily in the position of fixation because this is the position of equilibrium for the eye. This position is the resultant of the varying amounts of innervation which are supplied to the individual muscles and which are distributed among them in proper proportions.†

Disturbances of muscular equilibrium are recognized by the same experiment. For, suppose that both eyes are properly adjusted for the object held before them. A screen is now held before one eye. This deviates behind the screen in some way—say outward. When then the screen is withdrawn, the visual axis of this eye is no longer directed at the object, but the eye has an outward squint. It hence has to be brought back to the position of fixation by a movement inward (movement of adduction). Hence, on withdrawing the screen we observe a movement of the eye in a direction precisely opposite to that of its deviation behind the screen (movement of readjustment or redress). This latter movement is generally easier to make out than the deviation of the eye behind the screen, and hence is currently employed as a means of recognizing the latter. If, on the withdrawal of the screen, the eye makes a movement of redress inward, it has been deviating out behind the screen, and vice versa. The phenomena that present themselves in this experiment are accounted for as follows: In the example selected, in which the eye deviates out behind the screen, the two eyes during the act of fixation were not in muscular equilibrium, but tended to diverge. Yet, so long as vision was performed with both eyes, there was correct fixation, because otherwise there would have been double vision. Now, there is a great antipathy toward double images and a correspondingly strong effort to secure single vision (tendency to fusion; see page 591). Hence, an amount of innervation in excess of the normal is conveyed for the performance of convergence, in order to oppose the tendency to divergence. But as soon as one eye is covered, diplopia can no longer take place; there is now no object in maintaining an excessive effort to perform convergence, and the eye consequently rolls outward. The position of equilibrium for this eye is therefore a

[* See appendix to this section, § 125 A.—D.]
[† This condition of perfect equilibrium is called orthophoria.—D.]
pathological one—namely, a position of divergence to a certain amount. As soon as the screen is withdrawn again, double images make their appearance, which, however, are speedily united by the return of the deviating eye to its normal position once more.

Strabismus and paralysis of the ocular muscles are also disturbances of equilibrium. From these the condition here in question is distinguished by the fact that under ordinary circumstances it is not apparent, since it is compensated for by a corresponding output of innervation. It is hence called latent disturbance of equilibrium.

The disturbance of equilibrium may occur in either one of two senses—i.e., as an excess, or as an enfeeblement of convergence—in other words, as a latent convergence (esophoria), or as a latent divergence (exophoria).* The latter is by far the more frequent.

The causes of these disturbances of equilibrium are twofold:

(a) Organic causes, consisting of feebleness of one of the pairs of muscles. This may depend upon anatomical conditions, such as the size of the muscle, the way in which it is inserted, the size of the eyeball, and their distance from each other. Very myopic eyes are particularly large, and hence more difficult to move. Enfeeblement of the eye muscles may also occur as a result of exhausting diseases or of paralyses of the muscles. But by far the most frequent causes of latent disturbances of equilibrium are

(b) Functional causes, produced by abnormal innervation of the ocular muscles, and arising from the relations existing between accommodation and convergence. These two functions in an emmetropic eye go hand in hand, so that with each definite degree of accommodation there is associated the quantum of convergence that belongs to it, and vice versa (see § 140). When such eyes accommodate for an object situated at a distance of thirty centimetres, for example, they also converge for the same distance, and hence are still in a state of muscular equilibrium. If an eye has an abnormal condition of the refraction, either myopia or hypermetropia, the quantum of accommodation required for any given distance changes accordingly. The myope requires less, the hypermetrope more accommodation than the emmetropic person. The convergence may adapt itself to these altered conditions, so that the harmony between the accommodation and the convergence is preserved.

* Latent convergence is also called latent or dynamic convergent squint (Von Graefe) and latent divergence, latent or dynamic divergent squint; or the terms preponderance and insufficiency of the interni are used. These latter expressions, however, should be rejected, since the internal recti are in no way too strong or too weak. If we direct the patient to look to one side, we find that the eye is turned inward in a normal way to the inner angle of the eye. Hence, when subserving lateral movement, the internal recti act normally, and their function is disturbed only when they subserv converge, and then only as a result of faulty innervation. At the most, then, we can speak of a preponderance or an insufficiency of convergence. [Cf. § 125 A.]
But very often this is not the case. A myope, for example, whose far point lies at thirty centimetres needs no accommodation at all to see an object at this distance distinctly. Hence, the necessary impulse for the requisite degree of convergence is wanting, because with the accommodation at rest the eyes tend to arrange themselves parallel to each other, and in this case a latent divergence will exist.

The reverse is the case with hypermetropes, as in order to see distinctly they are obliged at all distances to accommodate more than emmetropes do. Hence, they are also led to innervate the muscles of convergence excessively, so that a latent convergence is set up.

Slight degrees of latent disturbance of equilibrium give no trouble whatever, but the higher degrees entail disagreeable consequences—namely, tiring of the eyes (asthenopia) and squint. Asthenopia develops in cases of latent divergence, inasmuch as this prevents the continued maintenance of the proper degree of convergence required for all kinds of close work, like reading, writing, and all the more delicate varieties of handicraft. Hence, the eyes get tired when the work is carried on too long; the object looked at grows indistinct and often appears double; and subsequently headache, and even nausea set in. This condition is known as asthenopia muscularis (to distinguish it from accommodative and nervous asthenopia). A characteristic mark of it is that the asthenopic difficulties disappear at once if the patient closes one eye and uses but one for fixation, since then no convergence is required.

High degrees of disturbance of equilibrium often pass into strabismus, and, in fact, into divergent or convergent strabismus according to the nature of the disturbance. The impulse for the transformation of latent into manifest strabismus is often supplied by a reduction in the visual power of one of the eyes, so that binocular vision becomes of less utility or is actually abolished. Then the condition of affairs becomes the same as that which the experiment for testing insufficiency produces artificially, when one eye is covered and thus excluded from the act of vision. For this reason blind eyes are very frequently found to deviate out or in.

**Treatment.**—Latent divergence [exophoria] requires assistance only when it causes asthenopia or threatens to pass into strabismus. In slight cases the defective convergence may be assisted by prisms. These are placed before both eyes and in such a way that their bases are directed inward (P and P₂, Fig. 198). The rays coming from the point of fixation, o₁, are deflected by each prism toward its base. The eyes, therefore, need only converge, as though they were gazing at the more remotely situated point, o₂. Both on account of the weight of the stronger prisms and of the chromatic dispersion that they cause, only those of 4°, or at most of 6°, for each eye can be used. They may be combined with spherical glasses. For higher degrees of latent di-
vergence an operation is indicated. This consists in a tenotomy of the externus, or in an advancement of the internus, or in a combination of both operations.

*Latent convergence* (esophoria) demands assistance only when it begins to pass over into squint. The treatment then consists in the prescription of the convex glasses that connect the hypermetropia, so that the accommodation may be reduced to its proper amount and thus the increased impulse to convergence may be done away with.

For the numerical determination of the degree of insufficiency Von Graefe has proposed his *equilibrium test*. This starts from the fact that a disturbance of equilibrium becomes manifest as soon as we render binocular single vision impossible. To accomplish this, we place before one eye a prism with its base down or up and of such strength that it can not be overcome by an effort of the eyes acting to place them on different levels (see page 592). For example, we place the prism, $P$ (Fig. 199 A), whose refracting angle amounts to $10^\circ$, with its base down before the left eye, and tell the person under examination to fix his gaze upon an object, $o$ (e.g., a black dot upon white paper, or, when the object is to be at a greater distance, at a candle flame). The left eye now sees the object, $o$, not at its proper place, but at $o_1$; and hence with both eyes together there are seen double images on different levels. If there is muscular equilibrium, so that the eyes converge properly at $o$, the two images stand vertically over one another ($L$ and $R$, Fig. 199 B). But if there is a disturbance of equilibrium, and consequently an excessive or a deficient convergence, a lateral separation of the images is superadded to the difference of level. In fact, the effort to compensate for the disturbance of equilibrium by appropriate innervation now disappears, since the double images could not be seen as one in any case on account of the difference of level. Suppose, for instance, that there is a latent divergence (exophoria). Then the left eye deviates out behind the prism. The point $o$ consequently casts an image to the outer side (left) of the fovea, and is therefore seen too far to the right (crossed double images, Fig. 170). Hence, the upper point which belongs to the left eye no longer stands vertically above the lower, but to the right of it (Fig. 199 C). If now a second prism, the base of which
locks inward, is placed before the prism which has its base down, the rays coming from the point are deflected by this second prism inward toward the vertical meridian of the retina, and the upper image moves to a point more nearly above the other. By trying stronger and stronger prisms we can at length find one which brings the two images exactly over each other in a vertical line. This corrects the lateral deviation of the eyes, and hence gives the numerical expression for the heterophoria. We usually determine the insufficiency in this way for two distances—namely, for infinite distance (i.e., six metres), and for the ordinary reading distance.

Disturbances of equilibrium also occur in which there is a tendency of one eye to deviate up or down (hyperphoria). Here it is not a case of abnormal innervation as occurs in the disorders of convergence, but of an anomaly in the relative position of the eyes, which is compensated for by an appropriate unequal innervation of the two eyes, so as to avoid diplopia. These cases are rare, and the degree of vertical deviation in any case is generally small. In severe cases the treatment consists in the prescription of prisms or in an operation.

\[Heterophoria.\]

[125 A.—Heterophoria is a condition in which there is a more or less constant tendency to deflection of one of the eyes from the point of fixation, which deflection under ordinary circumstances is overcome by extra innervation (superable deviation). It is classed as esophoria, exophoria, and hyperphoria (right or left), according as the deflection

[*The presentation of the subject of heterophoria by Prof. Fuchs, while admirable in point of matter and lucidity, will appear too brief to many readers in this country, in which so much attention is given to muscular anomalies. The following pages have therefore been added, giving a succinct account of the subject. For this the translator, it need scarcely be added, is wholly responsible.—D.*]
is inward (convergent), outward (divergent), or vertical (with the right or the left visual line the higher).

Tests for Heterophoria.—The best test object is either a small flame on a black background or a black spot upon a white surface. The tests are generally made with the test object both at twenty feet and at fifteen inches.

The conditions found by the tests in normal subjects is strict orthophoria for distance, and orthophoria or regularly slight exophoria (= 3⁰ to 4⁰ prism or 1⁰ to 2⁰ actual divergence) for near.

The tests used are:

1. Screen.—The patient’s gaze being directed upon the test object, a card is placed over one eye and then passed alternately from this to the other and back again. If on uncovering the left eye and covering the right, the left eye moves in, it was deviated out when covered (see page 612)—i.e., there is a state of exophoria. So if the eye on being uncovered moves out, there is esophoria; if it moves down, there is left hyperphoria; if up, there is right hyperphoria. The screen test detects deviations of 2⁰ (equivalent to a prism of 4⁰ refracting angle) or over. The amount of movement is proportional to the degree of deviation.

2. Parallax.—In performing the screen test we ask the patient if the test object moves. (In this case the test-object must be in the same plane as its background, so as to avoid projection—e.g., it is a light emanating from a hole in a large black screen, or it is a black spot on a large white card.) If on uncovering the left eye and covering the right, the test-object appears to move to the left, there is esophoria (heteronymous parallax); if to the right, there is exophoria (crossed parallax); if up, there is right hyperphoria (right parallax); if down, there is left hyperphoria (left parallax). The amount of the movement is measured by the prism, which, placed before the eye, serves to nullify it.

3. Diplopia Tests.—The eyes are directed at a light. A Maddox rod (a glass cylinder or set of cylinders superimposed) is placed vertically before one eye, say the right. The rod converts the image of the flame into a long horizontal bar of variegated light, which should run directly through the flame, seen in its natural aspect by the other eye. If the bar of light (image of the right eye) is above the flame (image of the left eye) there is left diplopia, indicating left hyperphoria. If the bar of light is below the flame, there is right diplopia, indicating right hyperphoria. The amount of the hyperphoria can be measured by the apparent linear distance between the bar and the flame, or by the prism, placed base up or down, that serves to unite the two.

The Maddox rod is then placed horizontally before the right eye. A vertical bar of light representing the image of this eye will then be seen. If this stands to the right of the flame (seen in its natural aspect with the left eye), there is homonymous diplopia, indicating esophoria; if to the left of the flame, there is crossed diplopia, indicating exophoria.
When the deviation is considerable, a red glass placed before one eye will serve to elicit diplopia, which according to the relative positions of the red and of the uncolored images of the flame will be classed as homonymous, crossed, right, or left, indicating respectively esophoria, exophoria, right hyperphoria, and left hyperphoria (see page 582, and note, page 607). The amount of deviation is determined (approximately) by the prism that serves to overcome the diplopia.

4. Equilibrium Test.—This is best made with the phorometer, which consists essentially of a revolving prism or pair of prisms. The test is performed upon the principle given on page 615. The prisms are first placed before the eye horizontally, with the bases in. This produces homonymous double images (since a prism deflects the apparent position of an object in the direction of the apex of the prism). If now the right image (corresponding to the right eye) is higher, the eye itself is lower—i.e., there is left hyperphoria (page 583); and, contrariwise, if the left image is higher, there is right hyperphoria. By suitable rotation of the prisms the images can be brought on a level, and the degree of rotation of the prisms, read off upon an arc attached to the instrument, indicates the degree of hyperphoria. Then the prisms are placed vertically, so as to produce vertical double images. If these do not stand straight over each other there is esophoria or exophoria; and the degree of rotation of the prisms that suffices to make the images stand in a vertical line indicates the degree of esophoria or exophoria.

5. The determination of the prism divergence. This is determined by ascertaining the strongest prism, placed before the eyes with the base in, that the eyes can overcome—i.e., can still see single with. The eyes do this by an act of divergence of the visual axes (page 592). The prism divergence in normal eyes is expressed by a prism of 6° or 8° (= an actual divergence of 3° or 4°).

6. The determination of the prism convergence. This is effected in a similar way by placing prisms before the eyes, with their bases out (see page 592). These prisms the eyes overcome by an effort of convergence. With test objects at a distance of twenty feet, normal eyes can regularly overcome prisms of 60° to 80° refracting angle (equivalent to an actual convergence of 40° to 60°).

7. The determination of the power of vertical divergence. This is effected by finding the strongest prism, placed base up or base down before the eyes, that can be overcome. The ability to do this constitutes the sursumduction or sursumvergence, which regularly amounts to 1° to 3° (represented by a prism of 2° to 3° refracting angle). Sursumvergence is called right when the right visual line is higher (i.e., when the prism overcome is placed base down before the right eye or base up before the left), and left in the contrary case.

8. The determination of the convergence near point (see page 592).
This is usually from one and a half to two inches from the root of the nose.

9. Determination of the field of single vision. This is ascertained by passing a candle in all directions in front of the patient, who follows it with his eyes, but not his head. The moment when the candle flame appears double indicates the limit of the field of single vision in that special direction. The test should be conducted at a distance of four or five feet, and, to differentiate the images, a red glass should be placed before one eye. This serves to ascertain the character of the diplopia (whether homonymous, crossed, etc.), and to show whether suppression of one image takes place. For if there is suppression, the patient will see a single flame which is all red or all yellow; if there is true binocular single vision, he will see a single flame which will appear reddish (or yellow with a red rim); while if there is diplopia, there will be two images—one red, the other yellow.

The limits of the field of binocular single vision extend normally not less than 40° (usually 45° to 50°) in every direction from the point of fixation.

10. Determination of the field of fixation of each eye separately (see page 588).

Etiology and Varieties.—The terms esophoria, exophoria, and hyperphoria are to be regarded as expressive of symptoms or appearances, rather than of the essential conditions present in cases of heterophoria. These essential conditions are as follows:

Conditions associated predominantly with Esophoria.

1. Convergence Excess.—This may be either accommodative, when due to excessive accommodation in hypermetropes (see page 614), or non-accommodative. In the former case it disappears under continuous correction of the refraction, supplemented in certain cases by the repeated use of atropine.*

Signs: For distance, orthophoria or slight esophoria by all tests; prism divergence normal or subnormal (seldom less than 4° prism); prism convergence normal, readily acquired, and readily maintained; associated lateral movements and range of excursions of eyes, normal in extent in all directions; homonymous diplopia, either spontaneous

* It is to be noted that a temporary convergence excess (amounting in some cases to an actual squint) may be produced by the instillation of atropine. This is caused by the excessive effort to accommodate when accommodation no longer is possible. The patient not being conscious of his inability to accommodate, makes an excessive, although nugatory, effort to do so; and with this effort is associated an excessive impulse to convergence. The condition, in fact, is analogous to the secondary deviation occurring in a sound eye when the attempt is made to employ a paralyzed eye for fixation, the sound eye being covered (see page 596).
It is to be noted that a non-comitant esophoria may not only be caused by insufficiency of an abductor, but will also be produced whenever a comitant esophoria of rather large amount is combined with a condition (e.g., insufficiency of an adductor) that by itself would give rise to a slight non-comitant exophoria. Thus, a slight paresis of the superior rectus, which by itself would produce a varying exophoria, will if combined with a marked convergence excess simply cause the esophoria produced by the latter to show moderate variations when the gaze is directed either up and to the right or up and to the left.

The diagnosis of the specific muscle affected is made on the same principle as in the diagnosis of paralysis (see pages 606 and 607) from the following table:

**Non-comitant Esophoria.**

<table>
<thead>
<tr>
<th>Insufficiency of</th>
<th>Or overaction of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right external rectus.</td>
<td>Left internal rectus.</td>
</tr>
<tr>
<td>Right superior rectus or inferior oblique.</td>
<td>Left inferior oblique or superior rectus.</td>
</tr>
<tr>
<td>Right superior oblique or inferior rectus.</td>
<td>Left inferior rectus or superior oblique.</td>
</tr>
</tbody>
</table>

B. Esophoria and its evidences increasing as eyes are carried to **left**,

<table>
<thead>
<tr>
<th>Insufficiency of</th>
<th>Or overaction of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left external rectus.</td>
<td>Right internal rectus.</td>
</tr>
<tr>
<td>Left superior rectus or inferior oblique.</td>
<td>Right inferior oblique or superior rectus.</td>
</tr>
<tr>
<td>Left superior oblique or inferior rectus.</td>
<td>Right inferior rectus or superior oblique.</td>
</tr>
</tbody>
</table>

**Conditions associated predominantly with Exophoria.**

1. **Convergence Insufficiency.**—This may be either accommodative (in myopes who do not have to use their accommodation, and hence do not use their convergence either) or non-accommodative. The former disappears upon the use of the proper concave glasses.

Signs: For distance, exophoria usually moderate or even nil; prism divergence but slightly excessive (not more than 10°), or normal, or even subnormal (6° to 8°); prism convergence subnormal, and hard to acquire and maintain even on repeated trials; associated lateral movements and range of excursion of the eyes normal. For near, exophoria
very marked (over 8°) by all tests (especially screen); crossed diplopia in near vision, common; convergence near point abnormally remote (three inches or over from root of nose); ability of eyes to move inward in convergence less than their ability to move inward in performing an associated parallel movement with the other eye—i.e., conditions for distance not varying very greatly from normal; conditions for near points quite abnormal.

2. **Divergence Excess.**—Signs: For distance, exophoria marked (over 4°, often 8° or 10°); prism divergence excessive (12° to 20°); prism convergence normal or nearly so; associated lateral movements and range of excursion of eyes normal in all directions. For near, exophoria moderate (often less than for distance); convergence point normal or nearly so. Crossed diplopia common, particularly for distance, when it is not infrequently produced at will—i.e., conditions with eyes directed at distance quite abnormal; when eyes are directed at near points not far from normal.

3. **Combined Divergence Excess and Convergence Insufficiency.** (Cases passing over into divergent squint.)—Signs: Exophoria marked for distance and near; prism divergence excessive; prism convergence subnormal, performed with progressively great difficulty and finally nil; convergence near point abnormally remote; crossed diplopia frequent for both distance and near; associated lateral movements and range of excursion of the eyes normal—i.e., conditions are abnormal both for distance and near vision.

In the three varieties of exophoria just described the deviation is comitant—i.e., it and its evidences (diplopia, deflection behind the screen, parallax, and exophoria by the phorometer) are sensibly the same in all directions of the gaze, and the field of fixation and the excursions of the eyes extend normally far in all directions. The case is otherwise with—

4. **Insufficiency of an Adductor or Overaction of an Abductor.**—Overaction of the externi or of the obliques or underaction of the interni or vertical recti, due to anomalies either in the muscles themselves, their insertions, or their innervation, may cause exophoria. This exophoria is distinguished by the fact that the deviation and its evidences (crossed diplopia, deflection behind the screen, parallax, and deviation as shown by phorometer) are essentially greater in some directions of the gaze than in others, and that the excursions of one eye or both and the field of fixation are abnormally limited or abnormally increased in some one direction (non-comitant deviation). Again, the convergence near point, while more remote than usual, is apt to be more remote when the object looked at is approximated from one side than it is when the object is approximated from the other.

A non-comitant exophoria may also be caused by insufficiency of an abductor, provided there is associated with this condition a comitant
DISTURBANCES OF MOTILITY OF THE EYE.

exophoria sufficiently great to overcome the varying esophoria due to this insufficiency.

The diagnosis of the specific muscle affected is made according to the principles laid down for the diagnosis of paralysis (see pages 606 and 607) by means of the following table:

Non-comitant Exophoria.

<table>
<thead>
<tr>
<th>Insufficiency of</th>
<th>Or overaction of</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Exophoria and its evidences (crossed diplopia, crossed parallax, deviation out behind screen, exophoria by phorometer and Maddox rod) increasing as eyes are carried to right.</td>
<td></td>
</tr>
<tr>
<td>I. Increase rapid, and occurring equally in both upper and lower fields.</td>
<td>Left internal rectus.</td>
</tr>
<tr>
<td>II. Increase moderate, and occurring mainly in upper field.</td>
<td>Left superior rectus or inferior oblique.</td>
</tr>
<tr>
<td>III. Increase moderate, and occurring mainly in lower field.</td>
<td>Left inferior rectus or superior oblique.</td>
</tr>
<tr>
<td>B. Exophoria and its evidences increasing as eyes are carried to left.</td>
<td></td>
</tr>
<tr>
<td>I. Increase rapid, and occurring equally in both upper and lower fields.</td>
<td>Right internal rectus.</td>
</tr>
<tr>
<td>II. Increase moderate, and occurring mainly in upper field.</td>
<td>Right superior rectus or inferior oblique.</td>
</tr>
<tr>
<td>III. Increase moderate, and occurring mainly in lower field.</td>
<td>Right inferior rectus or superior oblique.</td>
</tr>
</tbody>
</table>

CONDITIONS ASSOCIATED PREDOMINANTLY WITH HYPERPHORIA.

Hyperphoria may be either comitant or non-comitant. Non-comitant hyperphoria, or the kind in which the deviation and its evidences (vertical diplopia, parallax, deflection behind the screen, etc.) increase markedly in some one direction of the gaze, is due to overaction or underaction of one or more of the vertically acting muscles. The diagnosis of the specific muscle affected may be made according to the principles laid down on pages 606 and 607 from the table on the next page.

Comitant hyperphoria is due either to a underaction of one muscle, balanced by a gradually developing overaction (contracture) of another (cf. the similar conversion of a paralytic into a comitant squint, see page 600), or by a simultaneous vertical divergence of the visual lines (sunsumvergence spasm).

Hyperphoria in many cases is temporary, and then seems often due to accommodative spasm or to spasmodic effort to correct lateral deviations.
DISEASES OF THE EYE.

Non-comitant Hyperphoria.

| A. Right hyperphoria and its evidences (right diplopia, right parallax, deviation of right eye up or left eye down behind screen, vertical deviation by phorometer and Maddox rod) increasing as eyes are carried up. |
|---|---|
| Insufficiency of | Or overaction of |
| Left inferior oblique. | Right superior rectus. |
| Left superior rectus. | Right inferior oblique. |
| B. Left hyperphoria and its evidences (left diplopia, left parallax, deviation of left eye up or of right eye down behind screen, vertical deviation by phorometer or Maddox rod) increasing as eyes are carried up. |
| I. Increasing up and to right. |
| II. Increasing up and to left. |
| Right superior rectus. | Left inferior oblique. |
| Right inferior oblique. | Left superior rectus. |
| C. Right hyperphoria and its evidences increasing as eyes are carried down. |
| I. Increasing down and to right. |
| II. Increasing down and to left. |
| Right inferior rectus. | Left superior oblique. |
| Right superior oblique. | Left inferior oblique. |
| D. Left hyperphoria and its evidences increasing as eyes are carried down. |
| I. Increasing down and to right. |
| II. Increasing down and to left. |
| Left superior oblique. | Right inferior rectus. |
| Left inferior rectus. | Right superior oblique. |

Course.—The tendency of all non-comitant deviations (whether exophoria, esophoria, or hyperphoria) is to become comitant by the development of contractures in the opponents of the underacting muscle.

The same sort of tendency is observed in the anomalies of divergence and convergence. Thus, a convergence insufficiency, which is distinguished predominantly by an exophoria for near points, becomes associated after it has lasted some time with a gradually developing divergence excess, so that the exophoria becomes marked for distance also. Conversely, a primary divergence excess is accompanied after a time by a slowly developing convergence insufficiency. So also a convergence excess which has lasted for a long time is regularly followed by a divergence insufficiency, and vice versa. In this way the combined forms (see pages 620 and 622) are produced and the exophoria or esophoria increases.

It is mainly the anomalies of convergence (convergence excess and convergence insufficiency) that show this increase to a great extent and develop into actual squint (see page 614).
DISTURBANCES OF MOTILITY OF THE EYE.

Symptoms.—The symptoms of heterophoria are:

1. Diplopia, ranging from a wide separation to a mere overlapping of the double images. The latter symptom produces a disagreeable blurring of sight which is relieved by shutting one eye.

Diplopia in near vision occurs particularly with convergence insufficiency, and for distant vision with divergence insufficiency and with hyperphoria of high degree. The diplopia occurring with divergence excess is usually readily superable by voluntary effort.

2. Asthenopia and headache. These occur particularly in convergence insufficiency, divergence insufficiency, and hyperphoria; the condition first named being especially associated with the form of asthenopia and headache produced by reading and other near work, while in divergence insufficiency asthenopia, confusion of sight, and headache are often excited by looking at distant, and particularly at bright or moving objects (panorama asthenopia *). These symptoms are often marked in the moderate degrees of heterophoria, where the diplopia is either not present at all or is transient only.

3. Other symptoms, including reflex pains of varying description and location, vertigo, a sense of confusion and dullness, causing aprosexia and mental inerterness, nausea and digestive disturbance, producing impairment of nutrition, are met with particularly in hyperphoria, and next oftener in divergence insufficiency.

Treatment.—The treatment of heterophoria of the following measures, to be pursued in the order named:

1. Thorough correction of the refraction after a precise determination under a mydriatic. This is particularly important in esophoria (convergence excess), where a full correction of the hypermetropia is demanded. If this is not done, all measures will prove nugatory, as the esophoria will persistently return. So also myopia should be carefully corrected and the correction used both for distance and near, in cases of convergence insufficiency.

2. Tonics and exercise in neurasthenics and the debilitated.

3. Exercise of the convergence with prisms held base out before the eyes in convergence insufficiency. This is performed in the same way as in testing the prism convergence (see page 592), the strength of prisms used being run up to 50° or more, and the exercise being repeated several times daily.

4. The permanent use of weak prisms. These are applicable mainly to cases of comitant heterophoria of low degree, and particularly to comitant hyperphoria of not more than 2° or 3°, where prisms, base up or down, do good service. Prisms, base in in esophoria, and base out in esophoria, do temporary good, but usually cause progressive increase of the deviation, so that their use should not be kept up too long.

* Bennett.
5. Operation.—This should only be done as a last resort, after thorough and prolonged trial of other measures, especially correction of the refraction. The varieties of operation applicable to the special cases are:

(a) In convergence excess, tenotomy of one or both interni, re-enforced, if necessary, by advancement of the externi.

(b) In divergence insufficiency, advancement of the externi.

(c) In convergence insufficiency, advancement of the interni.

(d) In divergence excess, tenotomy of the externi, which will often require to be supplemented by advancement of the interni.

(e) In comitant hyperphoria, tenotomy or advancement of the superior rectus is generally preferable to operations upon the inferior rectus.

(f) In non-comitant hyperphoria, advancement of the under-acting muscle, re-enforced if necessary by tenotomy of the contractured and overacting opponent, or by tenotomy of the associated antagonist of the other eye, as laid down in § 164.

[It must be stated that there is no sharp dividing line between heterophoria and squint upon the one hand, and between heterophoria and paretic deviations upon the other. Many cases of heterophoria originate in slight degrees of paresis (or spasm), and exhibit the characteristic diplopia of the latter, even if only in slight degree, and other cases of heterophoria represent the incipient stages of squint. Indeed, it is difficult to say in many cases whether we are dealing with a low degree of squint or with a high degree of heterophoria, since a deviation which some patients habitually overcome with ease so that it is latent all the time (superable deviation, heterophoria), others can overcome only with difficulty, so that it is sometimes latent, sometimes manifest (intermittent squint); while others still can not overcome it at all (constant squint or insuperable deviation). Moreover, the etiology, symptoms, and treatment of squint and heterophoria are essentially the same. Hence, it is better to group the two together, and to divide deviations in general into comitant and non-comitant; the latter comprising the paralyses and the non-comitant heterophoria, the former comprising ordinary squint and the varieties of heterophoria classed under the head of divergence and convergence anomalies. Even this classification is subject to exception, since there are transition forms between the comitant and non-comitant deviations, and many of the cases of comitant deflections are non-comitant in their origin.—D.]
III. Squint.

126. Symptoms.—Squint consists in a deviation of the visual axis of one of the eyes from the correct position of fixation upon an object, the deviation occurring in every direction in which the eyes are turned, and always through the same angle. Squint is thus distinguished from paralysis, in which on the one hand the deflection is present only in the sphere of action of the paralyzed muscle, and, on the other hand, when once within the limits of this sphere, it becomes greater and greater the farther the eye is carried into the latter, because then the paralyzed eye lags more and more behind the sound one. A squinting eye, on the contrary, does not lag behind the other in any direction in which the eyes may look, but accompanies it in all its movements, and always deviates to the same degree from the correct position, for which reason squinting is known as strabismus concomitans.

The simplest way of going to work to measure the strabismic deviation is as follows: We cause the patient to fix his gaze upon an object which we have placed in the median line between the two eyes, and at a distance from them of some metres. Suppose that the left eye (L, Fig. 200 A) fixes correctly, while the right eye, R, squints inward. We then mark by an ink dot upon the border of the lower lid the position of the external margin of the cornea in both eyes (m, and s). We next cover the left eye, which is doing the fixation, with a screen, S (Fig. 200 B), at the same time telling the patient to try to find the object again. He does so by now using the right eye for fixation, and for this purpose brings it into the correct position (R, Fig. 200 B) by a distinctly visible movement of redress. We now once more mark the position of the outer margin of the cornea of this eye by a dot, m, upon the lower
lid; the distance, \( m \), then gives the linear measure for the deviation of the squinting eye—that is, gives the primary strabismic deviation.

As the right eye is being brought into the position of fixation, the left eye moves inward behind the screen (L, Fig. 200 B); it is now in a position of secondary deviation. We may note the position of the outer margin of the cornea behind the screen by means of the point \( s \), and thus find the magnitude of the secondary deviation, \( s - m \). It is equal to the primary deviation—a fact which constitutes a further point of difference between concomitant and paralytic squint, since in the latter the secondary deviation is always larger than the primary (page 596).

As a result of one of the eyes being in an incorrect position, a man with squint should see double. But this is really the case only at the commencement of strabismus. The diplopia soon disappears, and afterward can be evoked only by the use of all sorts of artifices, or can not be evoked at all. This, too, is a feature distinguishing strabismus from paralysis, in which the diplopia is such an annoying symptom. A man with strabismus fails to see double, because he learns to withdraw his attention from the impression conveyed by the squinting eye; he “excludes” the image with this eye. The act of exclusion is a psychical act; the squinting eye really does see, but the visual perceptions set up by it do not excite attention—just as many men are able, in looking through a microscope or telescope with one eye, to leave the other open, and yet not see with it. As a result of this act of exclusion, a man with squint has mere monocular vision; he does not, therefore, have stereoscopic sight in the proper sense of the word.

The visual acuity of the squinting eye is diminished as compared with the other or sound eye. Without doubt a certain degree of enfeeblement of sight exists even before the inception of the strabismus and, in fact, constitutes one of the reasons for the development of the latter. The enfeeblement of sight, however, becomes greater and greater the longer the strabismus lasts, since an amblyopia ex anopsia develops on account of the exclusion of the eye from the act of vision (see page 496). This amblyopia finally reaches such a pitch that reading becomes impossible, and the sight may even be reduced to the ability to count fingers at a short distance. Such an eye has unlearned its ability to perform fixation; when the sound eye is covered the squinting eye remains rigidly fixed in its false position.

We distinguish between inward and outward squint (\textit{strabismus convergens} and \textit{divergens}). Either the same eye squints all the time (\textit{strabismus monolateralis}), or the two eyes squint alternately (\textit{strabismus alternans}). In the latter event it is usually the case that one eye fixes for looking at the distance and the other for looking at near points. One eye or the other, however, always fixes; it never happens that both eyes squint at once, as the laity often believe. Squinting
may occur only at intervals, or may be present all the time (periodic and constant strabismus).

**Etiology.**—A manifest squint develops from one that is latent (page 614). If, when there is disturbance of the muscular equilibrium, the eyes are no longer retained in their proper position by a special effort, strabismus is produced. This is effected by any circumstances that reduce the usefulness of binocular vision—that is, by such as render diplopia less unpleasant. This is accomplished, in the experiment which is made for demonstrating the presence of a latent disturbance of equilibrium, by covering one eye (see page 612); but in the natural development of strabismus it is accomplished by a reduction of the visual acuity of one eye. Owing to this reduction the retinal image of this eye becomes less distinct, and hence diplopia becomes less troublesome. Thus, we see a man who has hitherto had simply a latent disturbance of equilibrium become the subject of a manifest strabismus when corneal opacities are left as the result of a keratitis in one eye. The most frequent causes leading to strabismus through reduction of the visual acuity are: 1. Errors of refraction which are present in one eye alone, or to a higher degree in it than in the other. In conjunction with such an error of refraction there frequently exists a congenital amblyopia. 2. Opacities in the refracting media, particularly in the cornea and in the lens. 3. Intra-ocular diseases.

Perfectly blind eyes are very apt to become subject to strabismus.

Strabismus is therefore the result of the combined action of two factors—diminution of the visual power of one of the eyes, and a pre-existing disturbance of the muscular equilibrium. According as the latter factor consists in a latent convergence or divergence, a convergent or a divergent squint is produced.*

127. (a) *Strabismus Convergens.*—This occurs especially in hypermetropes, hypermetropia being found in about three fourths of all cases of convergent squint. Donders was the first to determine this fact, and he explains it in the following way: Hypermetropes have to make an unusually strong effort of accommodation to see distinctly; but as this effort, on account of the connection between accommodation and convergence, is possible only when combined with a strong impulse toward convergence, the latter function acquires a preponderance. But this is not the only cause of strabismus, for if it were, all hypermetropes would be obliged to squint. Other factors must conspire in producing this effect. The most important of these factors are those that act to reduce the visual power of one eye; as, for example, when one of the eyes is weaker from birth (as may, for instance, occur from its having a higher degree of hypermetropia or of hypermetropic astig-

---

* [Cf. page 614.—D.]
matism than the other), or when it suffers an impairment of its sight because of disease developing after birth. Among the affections which particularly tend to produce the latter effect is conjunctivitis eczematosa, which leads to strabismus through the opacities of the cornea that it leaves behind it. Again, it sometimes happens that when we are compelled to keep the eye of a hypermetropic child bandaged for a long time, the eye beneath the bandage gets into a state of convergent squint, which may actually remain permanent.

It is easy to understand how the reduction in the visual acuity of one eye brings about the transformation of latent into manifest squint. The hypermetrope, in fact, is placed in the following dilemma: If he wishes to see distinctly, he has to make too strong an effort of accommodation; but he can do this only with the aid of an excessive convergence, so that he sees double. But if he converges only as much as is necessary, he can not bring the proper amount of accommodation into play, and hence sees indistinctly. He is, therefore, given the choice of either seeing distinctly and double, or of seeing single and indistinctly. He prefers the former alternative whenever, from the fact that the image in one of the eyes has grown indistinct, diplopia is made less disagreeable to him.

Convergent strabismus develops, as a rule, at the time of life when the attempt at accurate and long-maintained fixation begins to demand a greater effort of accommodation than formerly; it develops, that is, between the age of two and six. Usually the strabismus is first noticed only when near objects are looked at (periodic squint). This may remain the case during the whole life, but generally a constant strabismus develops from the periodic one, a squint soon making its appearance when the gaze is fixed on distant objects as well. Moreover, the squint at first is usually greater in the act of fixation of near objects, in accordance with the greater accommodative effort required for this purpose; but later on the strabismic deviation becomes constant.

In exceptional cases it happens that children with strabismus gradually cease squinting as they grow up, and lose their strabismus about the age of puberty. They "outgrow" their squint. But the eye that was previously deviated is left with its sight permanently weakened, and accurate binocular vision is never restored.

(b) Strabismus Divergens.—In this, myopia plays the same part that hypermetropia does in convergent strabismus. About two thirds of all persons with divergent squint are myopic. The cause is as follows: The myope, to see objects near by, needs to use, according to the degree of his myopia, either little or no accommodation; consequently the impulse for convergence is too weak. To this functional weakness are

[* Superadding of a divergence insufficiency or actual insufficiency of the externi to a convergence excess. Cf. pages 620 and 624.—D.]
added organic causes which diminish the functional capacity of the interni, such as the increased dimensions of the myopic eye, which offer a mechanical impediment to convergence. For these reasons myopes are particularly liable to divergent strabismus, especially if one of the eyes has less visual power than the other. Since small children are not myopic, divergent strabismus, unlike convergent strabismus, does not develop during childhood, but later on, during youth, when myopia itself originates. As the myopia increases, the strain upon the accommodation and consequently the impulse for convergence steadily decrease, while the demands made upon the convergence increase in proportion, owing to the approximation of the near point. This state of things must ultimately lead to a point where the convergence is no longer able to answer the demands made upon it. The convergence first becomes incompetent in the act of fixation of near objects, for which a stronger effort is required, and thus one of the eyes deviates out. Many myopes remain for their whole life in this condition of periodic strabismus; in others a constant strabismus develops from this condition, since later on one eye gets to deviate out in looking at distant points as well.*

A spontaneous cure, such as is sometimes observed in inward squint, never occurs in divergent strabismus; on the contrary, it tends to increase with age.

In the highest degrees of myopia the development of a periodic strabismus divergens is inevitable. In these cases the far point is approximated to a distance of ten centimetres or less; and reading, writing, etc., must be carried on at this short range. Now, even the strongest interni are unable to maintain continuously such a convergence as this; hence, in accurate inspection of objects near by, one eye always deviates out, even though the eyes have a correct position for great or medium distances.

Treatment.—Non-operative treatment accomplishes good results only in convergent strabismus,† and then only in particularly favorable cases. Such treatment depends upon the fact that with the removal of the excessive effort of accommodation, which is the main cause of the inward squint, the latter itself disappears, provided that it is not already too deeply implanted for eradication. We begin accordingly by paralyzing the accommodation completely by the repeated instillation of atropine, and then determine the precise degree of hypermetropia (the total hypermetropia, § 145). Upon the basis of this determination we order convex glasses which shall completely correct the hypermetropia, and which the patient is to wear continuously from that time on. The in-

[* Superadding of a divergence excess or actual overaction of the externi to a convergence insufficiency. Cf. pages 623 and 624.—D.]

[† The translator, however, has seen an almost complete cure effected by the use of the proper concave glasses in a constant unilateral divergent squint in which the deviation was fully five millimetres.—D.]
stillation of atropine is still kept up for several weeks after the wearing of glasses has been begun with, and then is quite gradually discontinued. This treatment is re-enforced by the use of a bandage several times a day, for from a quarter to half an hour at a time, over the eye which has previously been employed for fixation. In this way we compel the other or squinting eye to do the fixing. Non-operative treatment is only applicable in those children who are old enough to wear glasses without hurting themselves with them. It holds out a prospect of success only when we have cases to deal with that are not too far advanced. The most suitable cases for its application are those in which the strabismus is still periodic, and diplopia recurs spontaneously—i.e., without the employment of any artificial means for its production—thus proving that the squinting eye has not yet been finally excluded from participation in the act of binocular vision. If this treatment is to lead to any result, it must be pursued energetically, and for a long time (for months or years), and even after the strabismus has been relieved the convex glasses must be used either continuously or at least for near work in order that the patient may not again become a victim of squint.

Strabismus convergens and strabismus divergens are distinguished not only by the direction of the deviation, but also, and mainly, by the muscular alteration that causes them. In both cases this alteration affects the internal rectus. Strabismus convergens consists in an excessive contraction of this muscle, due to excessive innervation of it. Hence, in cases that are not too advanced, the squint disappears in sleep and in narcosis (Stellwag). But later on the continuously contracted muscle undergoes permanent shortening, and the contracture thus set up remains even after death. In strabismus divergens, on the contrary, it is not a case of excessive contraction of a muscle (a contraction which in this instance would have to affect the external rectus), but of a constantly increasing relaxation of the internus.*

In most cases of strabismus, and particularly in all cases of external strabismus, a cure can be expected only from operative treatment. This consists in a tenotomy which in convergent strabismus is to be performed upon the internal rectus, in divergent strabismus upon the external rectus. In the higher degrees of strabismus the tenotomy must be made upon both eyes or must be combined with advancement of the antagonist. The technique of these operations, and the way in which

[* According to the views enunciated on pages 622-626 this statement is too restricted. Strabismus, like insufficiency, is due not only to anomalies of convergence, but also, although not very often, to disorders of divergence (divergence insufficiency, divergence excess), and may also be caused by insufficiency of one muscle which is so balanced by overaction or contracture of another as to cause a comitant deviation. And in the more advanced cases of strabismus it seems to be common to find convergence excess combined with a divergence insufficiency or with an insufficiency of the externi, and a convergence insufficiency combined with a divergence excess or with a contracture of the externi.—D.]
they act, will be described in the section upon Operations; at present, simply the indications for their performance will be briefly given.

In *convergent strabismus* tenotomy is indicated in all cases in which non-operative treatment has remained unsuccessful, or in which it is apparent beforehand that such treatment offers no prospect of success. In this latter category belong all cases in which the strabismus has lasted a long time, or in which it has attained a high degree. Since the strabismus in some cases, although rarely, disappears of itself as the children become older, it is advisable to delay the performance of the operation until the child has passed the age of ten; for, if we should perform early tenotomy in a case which has a tendency to become well spontaneously, a divergent strabismus would subsequently set in. Meanwhile, in order not to let the time pass unemployed until the children are old enough for the operation, we may keep the deflected eye in constant practice by frequently bandaging the other, and may thus prevent a failure of visual power due to disuse. In addition, we forbid their playing with small toys, so as to avoid any unnecessary exertion of the accommodation; and, when possible, we order them to wear the proper convex glasses.

*Divergent strabismus* can be cured in no other way than by an operation. Recent cases in which the strabismus is still periodic hold out the best chance of success; in such cases a simple tenotomy usually suffices. When there is a constant external squint, an advancement of the internal rectus is generally required in addition; but in old cases, and in those of extreme degree, even this gives only imperfect results.

The result obtained by the operation is, as a rule, simply cosmetic. The visual power of the squinting eye is not influenced by the operation, and even the restoration of binocular vision is accomplished in only a few instances. Nevertheless, the results that we secure by the operation are not to be undervalued. A man with squint scarcely ever complains of the bad sight in his squinting eye, or of the absence of binocular vision; he is ordinarily unaware of the existence of either. He only desires relief from his disfigurement, and is very grateful if this is accorded him.

The laity are accustomed to attribute strabismus to an improper placing of the cradle with relation to the light, or to the fact that objects placed upon one side of the child excite his attention and cause him to look to that side; or, very frequently, the child is charged with imitating another that squints. But none of these things have anything to do with the origin of strabismus. The strabismus which is so frequently observed in quite small children (those below the age of two) is founded upon the fact that such children have not yet learned perfectly the complicated associated movements required for correct binocular vision. This variety of strabismus disappears of itself with advancing years. Permanent strabismus convergens develops somewhat later, after the age of two, and its true cause is that discovered by Donders. It depends, as has been set forth more in detail above, upon the connection between accommodation and convergence. In what way this leads to stra-
bismus is very beautifully demonstrated by the following experiment likewise
pro¬
bounced by Donders; We cause a man who has perfect muscular equilibrium in
his eyes to fix his gaze upon an object near by. If, now, we cover one of the eye,
it remains fixed in the correct position behind the screen. But if we now place a
concave glass before the uncovered eye, so that the person under examination
is compelled to accommodate quite strongly in order to see the object distinctly the
covered eye at once turns inward—that is, an artificial convergent strabismus is
thus produced, owing to the increased effort of accommodation.

In strabismus alternans both eyes often have good visual acuity, but unequal
refraction. If, for instance, one eye is far-sighted and the other near-sighted, the
former sees clearly at a distance, the other near by, but both eyes can never see
distinctly at the same time. In this case the far-sighted eye would perform fixation
in looking at a distance, the near-sighted eye when looking near by, and in
either event the eye not used would squint; the image in this eye not being distinct,
its suppression is readily accomplished. Alternating strabismus is usually
divergent.*

With many persons it happens that during fixation the eyes are properly
placed, but, when they are looking about without thinking of anything in particular,
one of the eyes squints a little outward. In such a case we are generally dealing
with myopes with latent divergence [exophoria]. In most this condition remains
the same all through life, while in some few a constant divergent squint develops
from it.

Contrary to the rule that short-sighted persons squint outward, strabismus
convergens is sometimes found conjoined with myopia of a high degree. This is
distinguished from ordinary strabismus convergens by the fact that it does not de¬
velop in childhood, but in the later years of life, and is often associated with an
unpleasant diplopia. At the same time it is quite possible that the but slightly
mobile eye should be unable to converge for a far point so near as such eyes pos¬
sess, and in this case there is also a relative divergent squint that is present when
reading is performed without glasses.

Intermittent should not be confounded with periodic strabismus. While the
latter takes place only upon the supervision of certain definite causes, such as the
act of fixation for near objects, the former makes its appearance without known
cause. It develops quite suddenly, and after some time disappears as suddenly
again and returns at regular intervals (e. g., every other day). Intermittent strabismus
is ordinarily directed inward and is almost exclusively observed in children;
it is probably referable to purely nervous disturbances.

Deviation of the eyes upward or downward, although rare, also occurs. Such
cases are for the most part those of strabismus convergens in which along with the
horizontal deviation there is also one in the vertical direction. The vertical devi¬
ation usually disappears when the strabismus is relieved by tenotomy of the internus.
We must hence conclude that this vertical deviation is not to be referred to the
superior or inferior rectus, but to an abnormal insertion of the internal recti, such
that in contraction of the latter a deflection in the vertical direction is produced at
the same time. Pure vertical deviations, not referable to paralysis of the superior
or inferior rectus—i. e., a genuine strabismus sursumvergens or deorsumvergens—are extremely rare.

The diagnosis of strabismus can ordinarily be made at a glance. In cases
where the deflection is doubtful, the test given on page 612 serves to make the diag¬
osis. Strabismus is present according to this test if, upon covering one eye, the

[* Although a good many cases of convergent squint are alternating, particu¬
larly at their outset, especially so if the vision in both eyes is still good.—D.]
other makes a perceptible movement of redress in order to fix the object held before it.

Just as a slight strabismus may remain unnoticed, so also it can happen that we may believe that we are dealing with a strabismus when none exists. An apparent strabismus of this sort is most frequently simulated in the following way: The visual axis which joins the object of fixation to the fovea centralis does not in most eyes pass through the apex of the cornea, but the latter lies somewhat to the outside or inside of the axis.* If, then, the visual axes are parallel for distant vision, the corneal apices in the first case are divergent, in the second case convergent. If this deviation attains a pretty high degree, it becomes noticeable and simulates strabismus. Here, again, the test above mentioned leads to the correct diagnosis; for when each eye is covered alternately it is apparent that the eye which is not covered remains steadfast in its position, and hence performs fixation properly.

Vision of Patients with Strabismus.—There is no doubt but that in the beginning of strabismus there is diplopia quite as much as there is in paralysis of an ocular muscle. But since in convergent strabismus the development of squint takes place in childhood, we hear nothing about diplopia, and by the time that the children have become old enough to give a trustworthy account, they have already learned to perform exusion. Then diplopia can for the most part be produced only by artificial means—a e., by putting colored glasses before the eye or by the use of prisms through which the image in the squinting eye is brought nearer to the fovea centralis. But when the squint does not develop until later in life, as is only exceptionally the case in convergent strabismus, but regularly the case in divergent strabismus, diplopia is then one of the regular symptoms. Sometimes it is so disagreeable as to furnish the main reason for the patient's visit to the physician.

While ordinarily no diplopia exists in old cases of strabismus, it is just in these cases that it is very apt to make its appearance after tenotomy. This is accounted for as follows: The process of exusion affects not only the squinting eye, but also in part the one that does not squint. In the squinting eye, as long as the eye was squinting inward, the image of the object that the other eye is gazing at falls upon the portions of the retina situated to the inner side of the fovea (Fig. 169). This region of the retina had accordingly accustomed itself to abstract its attention from the impressions received. But this is not the case with the fovea of this eye, which does perceive the images falling upon it; while, on the other hand, these latter images are excluded by the corresponding portion of the retina (lying to the inner side of the fovea) in the sound eye. This condition of things we call regional exusion. If, now, after tenotomy the eyes stand nearly or quite in the proper position, the image of the object of fixation falls in both eyes upon the fovea or its vicinity—that is, upon portions of the retina which have not been exercised in the act of exusion. Hence, the patient complains of diplopia. In this case the diplopia frequently does not correspond to the relative position of the eyes. There may, for instance, still be a slight degree of pathological convergence, and yet the double images may be crossed, as if the visual lines of the two eyes were divergent (paradozial double images). The explanation for this phenomenon is that the squinting eye has gradually learned to project its images exteriorly in accordance with its own faulty position. Just as in the sound eye the starting point for orientation is the fovea, in the squinting eye it is that part of the retina, lying to the

[* The angle determining the amount of this divergence—i.e., the angle between the visual axis and the optical axis, or the antero-posterior line passing through the apex of the cornea—is called the angle a. This is usually positive (i.e., the visual axis passes to the inside of the optical axis) in hypermetropes; and is negative (i.e., the visual axis passes to the outside of the optical axis) in myopes.—D.]
nasal side of the fovea, upon which fall the images of the objects that the sound eye gazes at directly. If, then, the squinting eye is suddenly brought back to the correct position, this nasal portion of its retina, that serves as a new fovea, is carried still inward, as in other cases the actual fovea is carried in divergence of the eyes, and now the eye projects erroneously, just as it does in a case of paralysis (page 596). The diplopia following a squint operation as a general thing soon disappears; but in rare cases it obstinately persists and becomes extremely unpleasant to the patient.

If a man with squint does see with both eyes, he is still like a man with one eye in this respect, that like him he has no perception of depth and no stereoscopic vision. Those who squint do not notice this defect themselves, because they have learned by practice to form from attendant circumstances conclusions with regard to dimensions of depth, even though they do not directly see them. One of the first of living ophthalmologists is not prevented by his strabismus from being an excellent operator upon the eye—a proof that even with monocular vision a man can see very well for every purpose. To demonstrate that the perception of depth in those who squint is inferior to that of people with binocular vision requires pretty accurate tests, such as examination with the stereoscope or by means of Hering's test with falling bodies (see page 591). Moreover, the vision of those who squint is distinguished from that of one-eyed people by the greater extent of the field of vision. The field of vision of one-eyed persons as compared with the normal field of binocular vision is limited toward the nasal side. In default of the right eye, for example, the field of vision represented in Fig. 155 would be minus the shaded portion, $R$, upon the right side. But this would not be the case with one who squints with his right eye. The exclusion of the right eye from the visual act is done only for the sake of avoiding diplopia, and hence is limited to those objects which throw their image in both eyes at once—that is, to those which are found in the portion of the visual field common to both eyes (the portion left white in Fig. 155). The case is otherwise when the object passes into the temporal portion of the visual field of the squinting eye (into the right shaded portion in Fig. 155), where it can no longer be seen by the other eye because it is hidden from it by the nose. Then the image of the object is not suppressed by the squinting eye. Hence, the field of binocular vision of a man with squint is about as large as that of a normal man.*

The temporally situated portion of the visual field, for which there is no suppression of the images, corresponds to the innermost portions of the retina of the squinting eye. This, therefore, remains in constant practice and retains a relatively good visual power, while the visual power in the other portions of the retina keeps falling off more and more all the time. Hence, in old cases of squint, we find that on covering the healthy eye the squinting eye no longer performs fixation, but, on the contrary, becomes turned even more strongly inward, so as to direct toward the object the innermost section of the retina with which the best vision, relatively speaking, is obtained.

Measurement of the strabismic deviation in the way given on page 627 is possible only in case the squinting eye still makes the proper adjustment for fixation when the other eye is covered. If this is not the case, we must proceed by determining the distance, $c_m$, in the healthy eye ($L$, Fig. 200 A) and the distance, $c_s$ in the squinting eye ($R$) when the gaze is directed straight forward. The difference between the two gives the linear measurement of the strabismic deviation. This

* As a matter of fact it is somewhat smaller in strabismus convergens, because owing to the convergent position of the eyes, the visual fields overlap more than usual; and for an analogous reason in strabismus divergens it is larger than normal.
DISTURBANCES OF MOTILITY OF THE EYE.

deviation is, properly speaking, an angular quantity, namely, the angle $\alpha$ (Fig. 169) included between the visual axis, $g$, and the line of direction, $a b$, drawn from the object to the retina through the nodal point of the eye. It is possible to measure this angle directly; but for practical purposes the linear measurement is sufficient. From the latter we can determine the size of the strabismic angle, since—the size of the eyeball being assumed to be about normal—one millimetre of linear deviation corresponds approximately to an angle of $5^\circ$.

By means of a linear measurement we can also, following the method proposed by Alfred Graefe (see page 587), measure the lateral excursions of the squinting eye. The following is the result thus obtained in convergent strabismus: The abduction of the eyeball is increased; the cornea can be carried so far inward that its margin is in contact with the caruncle—in fact, it is not infrequently is completely concealed behind the caruncle. On the other hand, abduction is diminished, but, in case the squint has not already lasted too long, not more than the increase in adduction amounts to.

The total capacity for lateral excursion has therefore remained the same, but the latter has suffered a general displacement inward. In old and extreme cases of inward squint this relation changes, the abduction being reduced still lower without being compensated for by a corresponding increase in the adduction, so that the total excursion range is diminished. The increase in the power of making inward movement always exists in both eyes, although it attains a higher degree in the eye that squints. This fact is explained as follows: Owing to the increased demands made upon the accommodation, an excessive impulse is set free for the production of convergence. As convergence is an associated movement of both interni, this impulse affects both at once, so that, owing to their excessive contraction, the visual axes would cross in front of the object; but as the patient then would fail to have direct vision of the object with either eye, he turns his head a little to one side, as is shown in Fig. 201, where the base line, $b b$, drawn through the two nodal points is represented as being oblique to the median line. He thus gets the object into the line of vision, $g$, of one (and that the better) eye ($L$), while the line of vision, $g$, of the other eye shoots off so much the farther from the object. Thus the patient secures fixation with one eye at all events, although both interni are still strongly contracted. It is owing to the last-named fact that the increase in the power of adduction develops in the course of time in both eyes. By this fact, too, is explained the oblique position of the head in those affected with convergent strabismus—such persons carrying the head turned toward the side of the healthy eye (Arnl).

In divergent strabismus the region of lateral excursion movements of the eye is displaced outward. The power of moving outward has increased, that of moving inward has diminished. Since the latter diminution is much greater than the
former increase, the total capacity of the eye for making excursion movements is always considerably decreased.

A knowledge of the power possessed by the squinting eye for making lateral excursion movements is indispensable as a guide in selecting the method of operation and in predicting the result that may be expected. In convergent strabismus section of the internus has the greater effect, in proportion to the power with which the externus can draw the eye over to its own side after the operation. But the measure for the working capacity of the externus is the degree to which the eye can be abducted. If the abduction is greatly diminished, simple tenotomy of the internus will afford very little result, and we shall be obliged to proceed to advancement of the externus. In divergent strabismus advancement of the internus is almost always required, owing to the very great diminution in the power of adduction.

IV. Nystagmus.

128. By nystagmus * or tremulousness of the eyes are meant short, jerking movements of the eye which are very rapidly repeated and always occur in the same direction. The movements of the eye, as a whole, are not affected by it. Different kinds of nystagmus are distinguished according to the direction in which the movements occur. Nystagmus oscillatorius is present when the eyes are in a state of vibratory movement which may take place in either a horizontal or a vertical direction (nystagmus oscillatorius horizontalis et verticalis). In nystagmus rotatorius rolling movements of the eye about the sagittal axis take place. Frequently the vibratory are found combined with the rotatory movements (nystagmus mixtus).†

Nystagmus is usually more pronounced in some directions of the gaze, less pronounced in others; often it is not constantly present and does not appear at all, except in certain directions of the gaze. The nystagmus ordinarily grows more marked if the patient knows that he is observed, or if he is told to keep his eyes still.

Nystagmus usually affects both eyes. It sometimes happens, though, that it is less pronounced in one eye than in the other, and it may actually be limited to one eye. Not infrequently nystagmus is associated with squint.

The most frequent causes of nystagmus are—

(a) Amblyopia, when this has existed since birth or very early youth. Blennorrhoea neonatorum is extremely apt to give rise to it, if this disease leaves corneal opacities or anterior polar cataract behind it. In other cases there are very great errors of refraction, congenital opacities,

* From réver, to nod.

† In nystagmus the movements, whether lateral, vertical, or rotary, are almost invariably simultaneous and parallel in the two eyes—i.e., both eyes move to the right, or both to the left, or both rotate to the right or left simultaneously. The movements are very frequent (thirty or more a minute) and are always to and fro—e.g., both eyes move sharply to the right, then both move more slowly to the left to and beyond the primary position.—D.]
or other congenital anomalies (especially albinism), retinitis pigmentosa, etc. If, therefore, we have a patient with nystagmus to examine for refraction and vision, we must be prepared beforehand for a failure to secure perfect vision by a glass of any kind.

In what way does amblyopia produce nystagmus? Fixation is not a faculty inborn in man, but has to be learned by practice. Very small children do not perform fixation, but move their eyes about aimlessly. Now, if the retina does not receive well-defined images, the child does not learn to place the eye accurately in the direction required and keep it still. Hence, nystagmus fails to develop if the amblyopia does not set in till later in life, at a time when the eyes have already learned how to perform fixation.

Nystagmus is associated with no special harm for the patient, for the defective vision of such cases is not to be attributed to the nystagmus, but, on the contrary, is the cause of it. Nystagmus often improves with advancing age, but is not susceptible of perfect cure.

(b) Nystagmus is a symptom of many cerebral affections, particularly of disseminated sclerosis.

(c) Nystagmus develops in laborers in coal mines, owing to the way in which they work in the drifts. This form causes the patient very considerable annoyance, owing to the fact that it makes all objects appear in motion, which is not [usually] the case in the other kinds of nystagmus. Moreover, this form of nystagmus is curable, although, to be sure, only on condition that work in the coal mines is given up entirely. When this is done, the nystagmus after some time disappears of itself.

Persons suffering from nystagmus are not aware of it themselves; they learn of the tremor of their eyes only through information given by others. Many patients make the same vibratory movements with their heads as with their eyes, only in an opposite direction. There are also men who can produce nystagmus voluntarily.

A certain degree of visual power must be present for nystagmus to exist; persons who are born blind, or who become totally blind very early, do not acquire nystagmus. In such persons the eyes move slowly and aimlessly about, making large excursions and often going quite contrary to the laws of association.

Miners' nystagmus occurs exclusively in those who work in the coal drifts. It affects hardly any except the class of workers known as pick men. After these men have worked several years in the drifts, they notice that, when they leave the drift in the evening, everything dances before their eyes. This phenomenon disappears again in a short time, but if the work is kept up reappears, occurring earlier each time and lasting longer, until the patient is compelled to give up his work. In the examination of such patients at the commencement of their disease, it can be made out that nystagmus takes place only when the gaze is directed straight up, or up and to one side. This fact furnishes the explanation for the occurrence of nystagmus. The pick men in many coal mines work in a recumbent position with their eyes turned a good deal upward and in an oblique direction. This way of looking, which causes a good deal of strain, leads, when long maintained, to exhaustion and clonic spasms of the eye muscles. The apparent movement of objects that results
from the nystagmus is readily accounted for. As the eyes vibrate to and fro, the images of all objects upon the retina move, too, but in an opposite direction. But as the patient is not aware of the movement of his eyes, he necessarily attributes the displacement of the retinal images to movements of the objects themselves. But why, then, do not those who have acquired nystagmus because of amblyopia, see objects affected with a like dancing motion? Because they have suffered from nystagmus from childhood, and hence, at the same time that they have learned to see, have also learned in projecting their retinal images to take the nystagmic movements of the eye into account.

Transient nystagmus is sometimes observed when the ear is syringed or in inflammations of the internal ear; and in these cases is referred to irritation of the semicircular canals.

Tonic spasms of the ocular muscles are extremely rare. Many cases of intermittent strabismus (page 634) belong under this head. They are furthermore observed in cerebral affections, particularly under the form of conjugate deviation (Prévost). This arises from a deflection of both eyes toward the same side, which is due to spasm of the appropriate muscles, resulting from disease of one of the centers for the association of ocular movements. These cases, therefore, are comparable with those of conjugate paralysis (pages 601 and 609), except that the condition is one of spasm instead of paralysis. Tonic spasms of the ocular muscles may also occur as a result of hysteria. I have observed two perfectly analogous cases in women and one in a young man. At every attempt to perform fixation of an object, either far or near, both eyes at once assumed a position of extreme convergence, the pupils at the same time being very greatly contracted and the accommodation thrown into a state of spasm. Here, therefore, the three associated muscles—i.e., the interni, the sphincter pupillae, and the ciliary muscle—were simultaneously thrown into a condition of spasmic contraction. By a rather protracted treatment with the constant current, one case was entirely cured, the other two were essentially improved.
CHAPTER XV.

DISEASES OF THE ORBIT.

ANATOMY.

129. The bony orbit forms a quadrilateral pyramid, whose base corresponds to the anterior aperture of the orbit, and whose apex to the optic foramen. The nasal walls of the two orbits are about parallel to each other; but the temporal walls diverge from each other a good deal from behind forward. The nasal wall is the thinnest, as it is formed by the lachrymal bone which is as thin as paper, and by the delicate lamina papyracea of the ethmoid (Fig. 161, T and L). At its interior extremity it bears the fossa lacrimalis for the reception of the lachrymal sac (Fig. 166, fj). In the posterior portions of the orbit are found three apertures which connect the orbit with the parts adjacent. These are: 1. The optic foramen which passes between the two roots of the lesser wing of the sphenoid into the middle fossa of the skull. Through it the optic nerve and beneath the latter the ophthalmic artery pass into the orbit (Fig. 165, P). 2. The superior orbital fissure which lies at the junction of the upper and outer wall, and is bounded by the lesser and greater wing of the sphenoid. It also opens into the middle fossa of the skull, and transmits the nerves for the ocular muscles and the first branch of the trigeminus. 3. The inferior orbital fissure which is longer than the superior orbital fissure, and lies at the junction of the outer and the lower wall of the orbit, between the great wing of the sphenoid and the superior maxilla. It connects the orbit with the temporal fossa (fossa spheno-maxillaris). Through it the twigs of the second branch of the trigeminus, the largest of which is the infra-orbital nerve, pass into the orbit.

The walls of the orbit at their anterior margin become thickened into a strong bony ring, the margin of the orbit. This constitutes the most important defense of the eye against external force, especially above and below where it juts farthest out. On the inner side there is no sharply defined margin to the orbit, but here the eye is protected by the bridge of the nose. On the outer side the orbital margin recedes the farthest (Fig. 165, A), so that here the eye is most exposed to injuries. At the upper margin of the orbit is found the supra-orbital notch designed for the artery and nerve of the same name (Fig. 166, r). At the lower margin of the orbit there is a canal (the infra-orbital
canal) for the infra-orbital artery and nerve, and this opens upon the cheek—by means of the infra-orbital foramen (f, Fig. 166)—about four millimetres beneath the orbital margin. This point and the supra-orbital notch are of practical importance, as constituting the points of exit of the aforesaid nerves. Sensitiveness to pressure at these spots is a frequent symptom in neuralgia of the trigeminal and also in essential blepharospasm.

The orbit is surrounded by several other cavities in disease of which it can itself be implicated. These cavities are the nasal fossae and the cavities accessory to them—namely, the ethmoidal and sphenoidal sinuses, the frontal sinus, and the antrum of Highmore.

The contents of the orbit consist of the eyeball with the optic nerve and the muscles, the lacrimal gland, the vessels, and the nerves. The interstices between these structures are filled with orbital fat, and the whole is maintained in a state of firm connection by a system of fascia. The latter display a greater strength and a more intimate union with one another in three places, viz.: 1. Along the walls of the orbit. They cover the latter under the form of a peristeum (here called peri-orbita), and likewise may be regarded as making an anterior wall for the orbit. This anterior wall is formed by the fascia (fascia tarso-orbitalis) that starts from the margin of the orbit and is attached to both tarsi and also to the ligamentum canthi internum and externum. These structures combined represent the septum orbitale, which, when the lids are closed, shuts off the orbit anteriorly and keeps its contents in (Fig. 164). 2. The ocular muscles are surrounded by fasciae which send out processes connecting the muscles with each other, with the lids, and with the margins of the orbit (see page 583). 3. Surrounding the eyeball the fasciae are condensed into a fibrous capsule, the fascia bulbi (also called Tenon's or Bonnet's capsule). This extends forward as far as the conjunctiva of the eyeball and backward nearly to the optic nerve. It is thus open in front and behind, and may be said to represent a broad ring placed about the eyeball. It forms the articular socket for the eyeball, which can move in it freely in all directions. The contiguous surfaces of Tenon's capsule and of the eyeball are smooth, and are provided with an endothelial covering (Schwalbe). The intervening space, Tenon's space (t, Fig. 82), must be regarded as a lymph space which is continuous posteriorly with the lymph space (supra-vaginal space; s, Fig. 82) surrounding the external sheath of the optic nerve. At the points where the tendons of the ocular muscles pierce Tenon's capsule, the latter is reflected upon the muscles and becomes continuous with the fasciae covering them (lateral invaginations of the muscles, e and e1, Fig. 82).

The blood-vessels of the orbit arise from the ophthalmic artery which springs from the internal carotid and enters the orbit through the optic foramen. The venous blood leaves the orbit through the superior and
DISEASES OF THE ORBIT.

inferior opthalmic veins, both of which make their way through the superior orbital fissure to the cavernous sinus into which they empty. The above-mentioned veins form numerous anastomoses with the veins of the forehead.

Lymph vessels and lymphatic glands are wanting in the orbit.

The nerves of the orbit are either motor—these being the nerves destined for the ocular muscles—or sensory; the latter belonging to the first and second branch of the trigeminus. To the outer side of the trunk of the optic nerve lies the ciliary ganglion. This contains motor fibers derived from the oculo-motor nerve (short root), sensory fibers from the trigeminus (long root), and sympathetic fibers from the plexus which envelops the carotid. The short ciliary nerves pass from the ciliary ganglion to the eye, through the posterior division of which they enter the interior of the organ. The long ciliary nerves, which likewise enter the eyeball, do not arise from the ciliary ganglion, but come directly from the trigeminus (from the branch of it called the nasociliary nerve).

Position of the Eyeball in the Orbit.—This on an average is such that a straight-edge applied in a vertical direction to the upper and the lower margin of the orbit and pressed against them just comes into contact through the closed lids with the apex of the cornea, but does not sensibly compress the eye. Variations from this mean position very frequently occur: partly in consequence of individual differences in the formation of the face; partly, too, on account of changes in the quantity of orbital fat. When corpulence is on the increase, the eyes project farther from the orbit (goggle eyes); but when there is emaciation, they sink back into their sockets.

Pathological changes from the normal position occur chiefly in the way of a protrusion of the eyeball from the orbit—exophthalmus. On account of the great individual variations in the position of the eyeball, small degrees of exophthalmus can be diagnosticated with certainty only when they are limited to one eye, so that, by making the comparison with the other eye, a guide to the diagnosis is secured. Higher degrees of exophthalmus attract our notice at once. The protrusion of the eyeball may advance so far that the lids are no longer able to keep the eye back in the orbit, and thus it prolapses in front of the lids—luxatio bulbi. The protrusion of the eyeball is either directed straight forward, or there is at the same time with this forward projection a lateral displacement of the globe of the eye.

Exophthalmus is caused either by an increase in the volume of the orbital tissue or by a diminution in the capacity of the orbit. The former is much the more frequent. But exophthalmus can also be produced by a diminution of the tone of the recti muscles, which draw the eye backward. This is the case in paralysis or in division (tenotomy) of them.
The consequences of exophthalmus when it is of high degree are extremely disastrous to the eye: 1. The farther the eye comes forward, the more it pushes the lids apart. The palpebral fissure is therefore more widely open and more of the eyeball is visible in it than usual. In slight cases of exophthalmus the dilatation of the palpebral fissure is often more conspicuous than the actual protrusion of the eyeball. The fact of the eyeball being more exposed results in symptoms of irritation upon the part of the conjunctiva, such as redness of the ocular conjunctiva and epiphora. As the protrusion of the eyeball grows greater, the closure of the lids becomes imperfect (lagophthalmus) and then the cornea begins to suffer, because keratitis lagophthalma develops. This is the most dreaded sequel of exophthalmus, and one to which regard has primarily to be paid in the treatment (see page 542).

2. The pressure which the eyeball exerts upon the lids from behind leads to their eversion; ectropion of the lower lid develops. 3. The mobility of the eyeball diminishes in proportion as the protrusion increases, owing to the marked tightening of the recti muscles and of the optic nerve. 4. Vision is affected in various ways. In the cases in which, together with the protrusion of the eye, a lateral displacement of the organ exists, diplopia makes its appearance. Later on the vision of the protruding eye may be abolished altogether by keratitis or by disease of the optic nerve. The latter, as long as the protrusion of the eye is but slight, is subject to no undue tension, its normal S-shaped curve (see page 471) being simply straightened out; it is not until the eye is caused to protrude pretty far that the optic nerve is put on the stretch. If this stretching takes place gradually, the nerve fibers often accommodate themselves to it in a wonderful fashion, so that they preserve their conductivity, and vision is maintained intact; but if the exophthalmus increases rapidly, the optic nerve reacts to the traction by undergoing inflammation with subsequent atrophy.

In the growth of the body the orbit expands in proportion as the eyeball enlarges. If the eyeball is backward in its growth, and more especially if it is entirely destroyed in childhood, the dimensions of the orbit also remain smaller. If, therefore, in such cases it is desired later on in life to wear an artificial eye, the orbit is usually found to be too small for this purpose.

The inferior orbital fissure is closed by a fascia with which numerous smooth muscular fibers are interwoven (musculas orbitalis of Müller). These are innervated by the sympathetic.

The situation of the eyeball in the orbit not only varies in different men, but may also be unlike on the two sides in the same individual. This is combined with an asymmetrical formation of the face, which is frequently associated with a difference in the refraction of the eyes. In this case the difference in position may be only apparent, since the myopic eye is longer, and hence is more prominent, so that an exophthalmus is simulated.

For measuring the degree of exophthalmus, instruments have been constructed, which are called exophthalmometers or statometers (Cohn, Hasner, Zehender, Snellen).
The opposite condition to exophthalmus, namely, the recession of the eyeball into the orbit—*enophthalmus*—occurs: 1. In decrease of the orbital fat consequent upon extreme emaciation. In Asiatic cholera this condition develops within a few hours, owing to the enormous loss of water from the tissue (Von Graefe). 2. In diminution of the orbital contents due to operations in which a part of them are removed (e.g., in extirpation of an orbital tumor). 3. In paralysis of the sympathetic. 4. After injuries (*enophthalmus traumaticus*). In most cases of this kind the traumatism does not affect the eyeball itself, but the upper margin of the orbit. Gessner looks upon the enophthalmus that follows in these cases as due to the cicatricial contraction of the orbital tissue caused by the injury; Beer regards it as due to a lesion of the nerve tracts, especially the sympathetic. Lang, on the contrary, believes that the case is one of indirect fracture of the lower wall of the orbit which is thus driven in to the antrum of Highmore. As a result of this the space occupied by the orbit would be enlarged, so that the eyeball is pushed back by the pressure of the external air. In one case the eyeball was actually luxated into the antrum of Highmore by a blow from a cow's horn. 5. In cases of intermittent exophthalmus (see page 658). 6. After the spontaneous subsidence of a pulsating exophthalmus (Bronner). 7. In neurotic atrophy of the face.

**I. INFLAMMATIONS.**

(a) *Inflammations of the Bony Wall and of the Periosteum of the Orbit.*

130. *Periostitis* of the bones of the orbit is not rare, particularly at the orbital margin. Here, too, it is easiest to diagnosticate. A hard swelling is felt immovably attached to the bone and causing the margin of the orbit to appear thicker and misshapen—a fact which is particularly striking when comparison is made with the sharp margin of the orbit on the other side. In view of the great tendency toward oedematous swelling possessed by the lids and the conjunctiva, it is quite conceivable that such a swelling may exist to a greater extent upon one side than upon the other; still, it is usually easy to feel the tumefaction of the periosteum through the soft swelling of the lids. Moreover, the affected spot is distinguished by its greater sensitiveness to pressure.

If the periostitis is situated, not at the margin, but in the depth of the orbit, the diagnosis is much more difficult. We have at first simply the signs of a painful inflammation in the deeper parts of the orbit. That this inflammation starts from the periosteum is frequently not apparent until the periostitis leads to the formation of an abscess, and this breaks through to the outside, in which case we then come down upon the diseased bone with the sound.

The *course* of periostitis leads in favorable cases to complete resorption of the periosteal exudate or to the formation of a permanent deposit of bone (especially in syphilitic periostitis); it is more unfavorable when the periostitis goes on to suppuration which is followed by caries and necrosis of the bone.

When a periosteal abscess develops at the margin of the orbit, the skin over the affected spot first becomes reddened, then becomes thinned
by the pus, and finally is perforated. A fistula is thus produced through
which the sound passes down to bare and roughened bone. Afterward
there develops at the site of the fistula the funnel-shaped indrawn de-
pression that is characteristic of bone disease. The discharge of pus
from the fistula keeps up until all the diseased bone that has died has
been eliminated, a process for which not infrequently several years are
required. Then the fistula heals and leaves an indrawn, funnel-shaped
cicatrix attached to the margin of the orbit. Through this can be felt
the defect in the margin of the orbit left by the necrosis. Other con-
sequences which frequently remain are ectropion of the affected lid and
even lagophthalmus. These two conditions result partly because the
lid becomes attached to the margin of the orbit and is drawn up strongly
toward it, partly because a portion of the skin of the lid has been
destroyed in consequence of the prolonged suppurat

When the periostitis which has gone on to the formation of an ab-
scess is situated in the depth of the orbit, the disease runs its course with
the symptoms of retrobulbar phlegmon, which will be described later
on. The process is then much more severe and of longer duration since
it takes a good while for the pus to make its way from the depth of the
orbit to the surface. These deep suppurations, moreover, may be dan-
gerous to life, if they are transmitted to the cranial cavity and give rise
to meningitis or abscess of the brain. In this respect the periostitides
of the roof of the orbit are particularly to be dreaded, because at this
spot the cranial cavity is separated from the focus of pus in the orbit
only by a very thin lamella of bone.

The causes of periostitis are: 1. Injuries. This traumatic periost-
titis is found most frequently at the margin of the orbit, because this is
the part most exposed to injuries. 2. Dyscrasie, particularly serofula
(tuberculous) and syphilis. These periostitides are likewise localized
more frequently at the margin than in the depth of the orbit, because
in this case, too, injuries play a part as exciting causes. Injuries of a
comparatively trilling nature, such as bumps or falls upon the orbital
margin, which in healthy persons would remain without further ill
result, may in people affected with dyscrasie start up protracted specific
inflammation. Serofulous (tuberculous) periostitis occurs chiefly in chil-

Children and principally affects the superior external and inferior external
margins of the orbit, which are the parts most exposed to knocks; it
leads, as a rule, to caries. Syphilitic periostitis, on the contrary, is
ordinarily met with in adults and only exceptionally in children (those
with hereditary syphilis). It belongs to the third (gummatous) stage
of syphilis, and for the most part appears as a chronic affection under
the form of periosteal thickening, more rarely as an acute affection with
suppuration following it.

Treatment must, above all, have regard to the etiological factor. In
this respect the best results are obtained in syphilitic periostitis, which
usually subsides rapidly under a promptly initiated treatment with mercury and iodide of potassium. As local treatment moist warm compresses are applied, which in the beginning favor resolution, but in the later stages accelerate the softening of the abscess that is in process of development. As soon as there are signs that suppuration has taken place, there should be no delay about making the incision, so that the pus which has accumulated beneath the periosteum may not detach the latter still more extensively from the bone. Particularly in the case of deep-seated periosteal abscesses is early incision indicated, even though no fluctuation is yet perceptible, in order to prevent the transfer of the suppuration to the brain. After the abscess has been opened, a drainage tube or a strip of iodoform gauze is placed in the wound, so as to keep it open for the exit of the pus. If caries or necrosis succeeds periostitis, they are to be treated according to the general rules of surgery. Ectropion and lagophthalmus, which may develop subsequently, likewise call for relief by operation. This relief must be given without delay when the cornea is in danger from being insufficiently covered; otherwise it is better to put off operative interference until the process in the bone has entirely healed, as otherwise the success of the operation upon the lids might be again jeopardized by the renewed formation of abscesses and fistulae.

(b) Inflammation of the Cellular Tissue of the Orbit.

131. Inflammation of the cellular tissue of the orbit, terminating in suppuration, is called phlegmon of the orbit or retrobulbar phlegmon (or abscess).* It makes itself apparent by marked oedema of the lids and the conjunctiva (chemosis). The eyeball is protruded, and hence suffers impairment of its mobility; vision is reduced or even quite abolished. At the same time there are violent pain, fever, and not infrequently cerebral symptoms such as headache, vomiting, mental hebetude, retardation of the pulse, etc. When the symptoms have reached their acme, the skin of the lids at a certain spot grows red, then shows a yellow discoloration, and finally is perforated by a discharge of pus. After the evacuation of the pus, which is present in large quantity, the inflammatory symptoms in most cases rapidly abate and the opening soon heals again. The sight may suffer permanent diminution or be altogether annihiliated, if the optic nerve is implicated; for inflammation of the optic nerve or thrombosis of its vessels may develop, succeeded by atrophy of the nerve. Detachment of the retina and even suppuration of the eyeball (panophthalmitis) also occasionally occur in retrobulbar phlegmon. If the suppuration is carried over from the orbit to the cranial cavity, it leads to a fatal issue through purulent meningitis or abscess of the brain.

[* Or orbital cellulitis.—D.]
Retrobulbar phlegmon may originate from the following causes:

1. Injuries, when the body causing the traumatism enters the orbit and carries infectious germs into its tissues. Those injuries in which a foreign body is left in the orbit are particularly dangerous. Operations, too, such as enucleation, may give rise to suppuration in the orbit if not performed aseptically.

2. Transfer of inflammation from the wall of the orbit or parts in the vicinity of the latter to the cellular tissue.

3. Erysipelas; the inflammation being transmitted from the skin to the deeper parts.

4. Metastases in pyæmia, typhus, scarlet fever, smallpox, purulent meningitis, influenza, etc.

A retrobulbar abscess requires to be opened as early as possible in order to prevent the suppuration from spreading to the brain. We introduce a sharp-pointed scalpel at the spot where we suppose the abscess to be, and do not hesitate to plunge it deep in. The situation of the abscess is inferred from the way in which the eyeball is displaced. If, for instance, the latter is pushed forward and downward, the abscess is to be sought for in the upper part of the orbit. Even when we do not succeed in getting out any pus by our incision, because no abscess cavity of any size has yet formed, yet the relief of tension in the tissues produced by the incision and the profuse bleeding exert a favorable effect.

Chronic periostitis, particularly when of syphilitic origin, may set up a gradually increasing thickening of the bones of the orbit, by which the cavity of the latter is rendered progressively smaller. The consequence of this is exophthalmus and also compression of the nerves which enter the orbit, so that neuralgic and paralyses are produced. This complex of symptoms is similar to that which is observed in hemitasis ossea. This consists in a gradually increasing thickening of the bones of the whole face, a process in which the bones of the orbit participate, so that in this case, too, the symptoms of contraction of the orbit with simultaneous thickening of its walls are produced.

It is not always easy to determine the starting point of an orbital phlegmon. It often develops so suddenly and so without apparent cause, that it is no wonder that the older physicians took refuge in the explanation which attributed it to the effect of cold. Recent discoveries have made us better acquainted with the sources of orbital phlegmon, which often are very obscure. Most frequent and also easiest to diagnose are the cases in which the suppuration starts from the bony walls of the orbit, and thus forms the path that conveys the periosteal pus from the deeper parts to the outside. More difficult to recognize is the condition in which the diseased bone is situated far from the orbital cavity, as, for instance, in caries of the petrous bone or in supplicative periostitis of the alveolar process of the superior maxilla. The latter is the case in dental periostitis or after the extraction of diseased teeth. The path that the inflammation takes in these cases is either along the anterior surface of the upper jaw or through the maxillary antrum, in which the diseased tooth has already set up an empyema. Empyemas of the cavities adjoining the orbit may give rise to transfer of suppuration to the orbital cavity, and in this regard the ethmoid cells are of more account than are the maxillary and frontal sinuses, since the former are separated from the orbit by a partition of bone no thicker than paper.

Orbital phlegmons may develop in pharyngitis and in suppurative parotitis, by transmission of inflammation from behind forward, and by transmission from be-
DISEASES OF THE ORBIT.

foreward in panophthalmitis, in abscess of the lids, and in dacryocystitis, when, as exceptionally happens, perforation of the wall of the lacrimal sac takes place backward instead of forward.

Orbital phlegmons may lead to thrombosis of the cavernous sinus; although the converse process may also happen—i.e., the thrombosis starting from a thrombosed cavernous sinus may progress so that there is superadded to it the formation of an abscess in the orbit.

Symptoms similar to those which present themselves in the beginning of a retrobulbar phlegmon accompany thrombosis of the cavernous sinus. The lids and the conjunctiva swell up with edema, and the eyeball is protruded and becomes difficult to move. The veins of the retina are seen, upon ophthalmoscopic examination, to be distended enormously with blood. At the same time there is a doughy edema in the mastoid region. These symptoms are referable to the fact that the veins of the orbit discharge the greater part of their blood through the ophthalmic veins into the cavernous sinus; if the latter is occluded, an extreme degree of venous stasis in the orbit necessarily takes place and leads to protrusion of the eyeball and also to venous hyperemia of the retina. The edema of the mastoid region depends upon the fact that in this region an emissary vein of Santorini (the emissarium mastoideum) empties into the transverse sinus and thus indirectly into the cavernous sinus, so that when there is occlusion of the latter this region also shares in the venous stasis. When this edema is present (which, to be sure, is not always the case), it forms an important diagnostic sign between thrombosis of the sinus and retrobulbar phlegmon, in which latter it is absent. A further point of difference lies in the fact that thrombosis of the sinus frequently passes over to the other side, so that the same complex of symptoms develops there also, while on the contrary, a bilateral orbital phlegmon would be one of the greatest rarities. Finally, thrombosis of the sinus is associated with very severe cerebral symptoms, interrupted at last by the onset of the fatal issue.

In occlusion of the sinus what we are dealing with is either a simple thrombosis produced by marasmus or a thrombosis due to infection. The latter usually originates from a focus of pus situated in the vicinity—a, e., from a phlegmon of the orbit, which gives rise to a thrombotic process in the superior or inferior ophthalmic vein which is then carried over into the cavernous sinus. Thrombosis of the sinus most frequently originates in a caries of the petrous bone, the thrombosis extending from the sinus of the latter [the petrosal sinus] to the cavernous sinus. Suppurative processes starting from the buccal cavity (teeth or tonsils) also may lead to thrombosis of the sinus. Finally, thrombosis of the sinus may be set up by erysipelas and may also occur metastatically in pyaemia and infectious diseases.

Tenonitis.—Tenon’s capsule may be implicated in inflammation of the eyeball, so that an inflammatory edema develops in the capsule itself and in the adjoining cellular tissue of the orbit, and the eyeball is thus pushed forward. Hence a slight degree of exophthalmus is sometimes found in severe cases of irido-cyclitis (particularly after injuries). This is quite regularly the case and to a much higher degree in panophthalmitis, in which exophthalmus is one of the most constant and striking symptoms. After the subsidence of the inflammation extensive adhesions are formed between Tenon’s capsule and the eyeball—a fact of which we can convince ourselves if an enucleation is subsequently performed in this later stage. Exudation into Tenon’s space also occurs after it has been laid open by injuries, and particularly after squint operations, when infection of the wound has taken place from dirty instruments.
There is also a primary serous tenonitis. The symptoms of this rare disease can be best gathered from the description of the following case which I myself observed years ago: It concerned a woman of fifty-eight years of age, otherwise healthy, in whom the disease had begun, without known cause, six days before she came under my observation. I found, the skin in the vicinity of the lids, and still more the lids themselves, very swollen and oedematous, so that the eyes could be opened to only a very small extent indeed by spontaneous effort. When I drew the lids apart I found the eyes prominent and almost immovable. The conjunctiva of the lids was but moderately, that of the eyeball, on the other hand, quite markedly, injected, and the latter was so greatly swollen as to form a thick protuberance projecting from all sides over the cornea. The secretion was not increased. The cornea and also the deep portion of the eye were healthy, and vision was normal, except that there was diplopia due to the impaired mobility of the eyes. The disease was associated with moderate pain, and particularly with a sense of pressure and tension of the eyes. The treatment consisted in the administration of an infusion of jaborandi, in order to produce rapid absorption of the exudate by means of profuse diaphoresis. Under this treatment the oedema and the protrusion of the eye gradually went down, so that when the patient four weeks later was discharged from the clinic, the condition of the eyes had become once more perfectly normal.

The causes of tenonitis are obscure: gout, rheumatism, and refrigeration are the etiological factors that have been held accountable for it. Some cases (among them one case of primary purulent tenonitis) were observed in the last epidemic of influenza. The disease tends to relapse, but leaves no permanent bad results behind.

II. Injuries.

132. Injuries of the orbit affect either the soft parts alone or the bones as well. Injuries of the soft parts originate, as a rule, from the penetration of a foreign body into the orbit, the lids and the eyeball being, of course, very frequently implicated at the same time. The direct consequence of the injury is an extravasation of blood into the tissue of the orbit. If this is considerable it causes exophthalmus, and also, since the blood oozes slowly forward, it comes into view beneath the conjunctiva and the lids under the form of an ecchymosis. Paralysis of the ocular muscles, too, may be produced by the injury, and so also may lesions of the optic nerve, the latter entailing as their direct result partial or complete blindness. It also happens sometimes that the eyeball is driven out of the orbit by the foreign body which has penetrated into the latter, and is thus found lying in front of the lids (luxatio bulbi traumatica). This is most apt to happen when the body that causes the injury enters from the outer side, since here the wall of the orbit recedes the farthest—about as far back, in fact, as the plane of the equator of the eyeball. There are parts of the world where such injuries are purposely inflicted in brawls, the eye being pried out of its socket by the thumb, which is thrust into the orbit from the outer side. Insane patients have sometimes enucleated one or both of their own eyes in this way. Ordinarily the luxated eyeball is lost, but cases are known in which after reposition the eye healed again in its place and retained its visual power.
Injuries of the bone are most frequently produced by the action of a contusing force (e.g., by a blow or a fall) upon the margin of the orbit. They are easy to diagnosticate when they affect the margin of the orbit itself. The site of a fracture in this locality is recognized by the unevenness, the sensitiveness to pressure, and in extreme cases by the crepitation. When in consequence of the fracture the orbit is made to communicate with the neighboring cavities, emphysema may develop both in the lids (see page 554) and in the orbit itself. Emphysema of the latter kind, like extravasations of blood into the orbit, manifests its presence by exophthalmus. But there is this point of distinction from extravasation, that in emphysema the protruded eye can be pushed back into the orbit again with the finger, since the air is displaced by the pressure. On the other hand, the exophthalmus is increased by straining during the acts of coughing, blowing the nose, etc., owing to the fact that fresh supplies of air are forced into the orbit.

The injury may, if no important organs have been destroyed, heal after the resorption of the extravasated blood and leave the parts as well as before. In other cases disturbances of motility of the eyeball remain, owing to its adhesion to the neighboring structures, or as a result of paralysis of the ocular muscles. Moreover, if the optic nerve has been injured, permanent blindness of the eye may ensue. Still worse are the cases in which the injury results in the phlegmon of the orbit, in which case it may even end fatally.

Treatment in the case of a recent injury consists, in the first place, in careful cleansing and disinfection of the wound. If we suspect the existence of a foreign body in the orbit we endeavor to extract it; but foreign bodies, such as small shot, etc., which are known to have the power of becoming incorporated in the tissues, may be left in the orbit. After taking care that any secretions that form in the wound shall have free exit (by the introduction of a drainage tube or of a strip of iodoform gauze), we apply an antiseptic dressing. If there is an excessive degree of exophthalmus, a pressure bandage contributes to the rapid absorption of the blood or (in the case of emphysema) of the air. As soon as the symptoms of deep suppuration have set in, we must proceed as in the case of a retrobulbar phlegmon.

Deep fractures of the orbit without fracture in the margin may be produced by deeply penetrating foreign bodies, but may also be caused apart from these and indirectly (by contrecoup). This is the case, for example, after a fall upon the head, the dropping of a heavy weight upon it, etc. Such fractures when deeply situated can only be suspected from the fact that they are accompanied by orbital hemorrhage, which manifests itself by a suddenly developing exophthalmus and the appearance later on of ecchymosis of the conjunctiva and the lids. A further diagnostic point would be supplied if directly after the injury partial or total blindness were determined to exist along with a normal appearance of the eyeball. This condition would necessarily be referred to an injury of the optic nerve in the
canalis opticus, into the wall of which the fracture extends (Hölder and Berlin; see page 483). Similar symptoms also at times accompany fractures of the base of the skull, except that in this case the exophthalmus is wanting and the ecchymosis of the conjunctiva and lids sets in still later, since the blood takes a longer time to push its way so far forward.

Spontaneous hemorrhages into the orbit are of extremely rare occurrence, taking place as a consequence of whooping-cough or in persons who in general are prone to have hemorrhages.

Contusion of the Eye.—It may be of service to the general practitioner to give a brief, comprehensive presentation of all the consequences which contusion of the eye or of the adjoining parts may entail. The physician before whom a case of this kind comes will derive from this summary the changes that may possibly be present. He will then look for these changes, and thus perhaps will arrive at the discovery of lesions of this sort which otherwise might have escaped him because they are not very conspicuous. The changes produced by contusion are:

In the lids, ecchymoses, edema, ecchymose, solutions of continuity.

In the margin of the orbit, fractures with or without displacement of the fragments.

Changes in the location of the eyeball including exophthalmus which may be caused by the effusion of blood or air (emphysema) into the retrobulbar tissue or by the formation of an arterio-venous aneurism due to rupture of the carotid into the cavernous sinus (page 658).

The tension of the eyeball is greatly reduced when a perforation of the tunics of the eye has taken place. But the tension may be found to be temporarily diminished even apart from any gross material lesion, this alteration being then due to a decrease in the fluids of the eye and particularly of the vitreous (Leplat), which again must be regarded as a consequence of a disturbance of nutrition dependent upon nervous influence.

In the conjunctiva, ecchymoses, lacerations (with or without coincident scleral rupture).

In the cornea, epithelial desquamation, and, later on, deep nonsuppurative inflammations; rarely purulent processes or rupture of the cornea.

In the aqueous chamber and the vitreous, effusion of blood (hemorrhage, hemophthalmus).

In the iris, iridodialysis partial or complete (aniridia traumatica), radial lacerations, recession of the iris, likewise paralysis of the iris (mydriasis) with or without paralysis of accommodation.

In the lens, astigmatism, subluxation, and luxation due to partial or complete laceration of the zonula, likewise the formation of cataract.

In the sclera, rupture in the anterior division, attended in well-marked cases with prolapse of the uvea, the lens, or the vitreous.

In the choroid and retina, extravasations of blood, detachment, rupture; in the retina alone, cloudiness (commotio retinae).

In the optic nerve, compression by effusion of blood, and contusion or rupture by fracture taking place in the optic canal.

III. Basedow’s Disease.

133. Basedow’s disease belongs to the domain of internal medicine, and hence can only be considered here in so far as exophthalmus be-
DISEASES OF THE ORBIT.

longs among its most important symptoms. This exophthalmus is bilateral; the eyes are pushed straight forward, sometimes but little, sometimes to such a great extent that they can not any longer be perfectly covered by the lids. Even when the exophthalmus is great, there is little or no limitation of mobility of the eye. It is obvious that when the exophthalmus is considerable, it becomes noticeable at the first glance; but even when the protrusion is slight the peculiar appearance of the eyes strikes one at once. This appearance is caused by the fact that the upper lids are raised unusually high. The eyes look as if forced wide open, and give the patient an expression of astonishment or fear. When the eyes are depressed the upper lids do not descend in proportion with the eyeball, but remain elevated, so that a broad portion of the sclera is visible above the cornea (Von Graefe's symptom). Winking takes place less frequently (Stellwag's symptom), and hence desiccation of the deficiently covered cornea is favored. The eyeball itself, as long as the cornea has not yet suffered harm, is normal and the visual power is good.

The two other main symptoms of Basedow's disease are the swelling of the thyroid gland and the acceleration of the heart's action (tachycardia). The former is distinguished from ordinary goitre by the fact that when the hand is placed upon the thyroid gland it feels the strong movement of pulsation in the arterial vessels, which is communicated to the entire gland. So also the carotids are found to be dilated and strongly pulsating. The intensity of the heart beat is increased, the frequency of the pulse is regularly over a hundred. The slightest bodily exertion or mental excitement at once increases the frequency of the pulse very considerably. The physical examination of the heart, apart from the enlargement of the left heart, gives a normal result. The general state of the patients is disordered to this extent that they are for the most part very excitable, and suffer from the symptoms of anaemia or chlorosis. Not infrequently rapid emaciation is present, even when the appetite remains good.

The disease principally attacks women, beginning at the time of puberty, and extending up to the appearance of the menopause. Men rarely suffer from it. The most frequent cause of the disease is (in women) seated in affections of the genital organs. In addition, mental excitement, great fright, anxiety, etc., at times give rise to an outbreak of the disease.

Basedow's disease generally develops quite gradually. Palpitation usually sets in first, and with this is afterward associated the thyroid dilatation, and, last of all, the exophthalmus. As a general thing it takes months or even years before all the symptoms of the disease are distinctly marked. Then it usually remains at the same point for years, after which it subsides again very gradually and not without leaving a tendency to subsequent recurrences. In many cases, however,
the disease does not get well, but remains until the patient’s death, may,
more, it may even—by the exhaustion or the complications which it
produces—be itself the cause of death. As a general thing the disease
runs a severer course in men and in elderly people than in women and
in younger persons. Basedow’s disease is a source of danger to the
eyes from the fact that when the exophthalmus is of a pretty high de-
gree closure of the lids is imperfectly performed and keratitis e lagoph-
thalmico develops. In this way blindness of one or even of both eyes
may be produced.

Treatment, unfortunately, has little power over Basedow’s disease.
The anaemia is counteracted by means of strengthening diet and also
by means of iron, quinine, or arsenic. We attack the tachycardia with
digitalis, while for the general nervous symptoms potassium bromide
and the cold water treatment have been pressed into service. What
usually does the most good is the long-continued employment of the con-
stant current applied to the cervical sympathetic. Recently division of
this nerve and extirpation of the thyroid gland have been tried. The
exophthalmus per se requires treatment only when it leads to imper-
fet closure of the lids and thus endangers the cornea. In this case we
must, by bandaging the eyes at night, provide for their being cov-
ered during sleep. If the bandage turns out to be insufficient, we must
undertake tarsorrhaphy, by which the palpebral fissure is permanently
closed in its outer portion.

Basedow’s disease was first described as a special form of disease by English
physicians, and particularly by Parry and afterward by Graves, and hence it is
even now called Graves’s disease by the English. These authors, however, had
not recognized the exophthalmus as being one of the essential symptoms of the
disease; this was first done by Basedow, who in 1840 did the pioneer work in
demonstrating the whole triad of symptoms of the disease.

In marked cases no disease is easier to diagnosticate than this; even from a
distance we can tell what the patient’s trouble is. But, on the other hand, there
are numerous cases in which some of the symptoms are less pronounced or are
ever wanting altogether, so that the diagnosis becomes difficult. Taking only the
exophthalmus into account, we find that it may be slight, absent altogether, or
confined to one eye. When exophthalmus is absent, Von Graef’s symptom is still
sometimes present, so that this is not to be regarded simply as the consequence of
the exophthalmus; but this symptom is not constant either, and in the same case
may be sometimes present, sometimes wanting.

Precisely as the separate symptoms of Basedow’s disease may show great varia-
tions with regard to the degree of their development, so also may the character
which the course of the disease assumes vary exceedingly. Although as a general
thing the course is very chronic, yet cases are known in which the disease has
been very acute in its onset. Troussel gives an account of a woman in whom
the symptoms of the disease had developed in the course of a single night, which
she had spent in tears, lamenting the death of her father. The subsequent progress
of the disease, too, may be so speedy that within a few weeks it leads to recovery or
to death.

The essential nature of Basedow’s disease is at present obscure, since most au-
DISEASES OF THE ORBIT.

Topsies give negative results. In consideration of this absence of demonstrable anatomical lesions, it must be assumed that a disturbance of innervation lies at the root of the disease. As far as the eye is concerned, the sympathetic is the part whose function appears to be disturbed. In consequence of this we find a dilatation of the vessels in the district supplied by the carotids—a dilatation which is manifest even to external observation in the pulsation of the carotids. It is owing to this distention of the arterial vessels in the thyroid gland and the orbit that the goitre and the exophthalmus develop, and both conditions therefore disappear at death. Von Graefe's symptom, too, must be referred to a disturbance of innervation on the part of the sympathetic, which supplies the organic levator of the lid (musculus tarsalis superior); and, as a matter of fact, changes have been found in the cervical portion of the sympathetic in some autopsies, but in other autopsies they have not been found. In the latter class of cases the focus of disease was conjectured to be in the central nervous system itself—that is, in the medulla oblongata or in the cervical part of the cord. In recent times many, taking into account what we know of the function of the thyroid gland, see in the latter the starting point of the disease (intoxication by the products of this gland).

IV. TUMORS OF THE ORBIT.

134. Tumors of the orbit—in the widest sense of the word—have in common one very important symptom, namely, exophthalmus. To determine the site of the tumor, attention must be paid to the nature of the protrusion: whether the latter is directed straight forward, or whether there is at the same time a lateral displacement of the eyeball. With the same object in view we test the mobility of the eye in all directions. Then we try to palpate the tumor itself, so as to be able to give an account of its size, form, consistency, mobility, etc. If the tumor lies deep in the orbit, we endeavor to penetrate with the little finger as deeply as possible between the margin of the orbit and the eyeball (under narcosis, if necessary), so as to get at the tumor. Finally the examination should be completed by the determination of the visual acuity and of the result afforded by ophthalmoscopic examination, by which we ascertain whether and in what way the optic nerve has suffered injury from the tumor.

(a) Cysts.—The most frequent of these are the dermoid cysts, which are congenital, but which often develop to a more considerable size after birth. They lie in the anterior part of the orbit, and there usually in its upper outer or its upper and inner angle. On account of their superficial situation, they do not displace the eyeball, but push forward the skin of the lids, through which they can readily be felt as round movable tumors of the size of a bean or walnut. Upon extirpating them one can convince himself that they are, as a general thing, unicellular cysts with pultaceous or sebaceous contents; sometimes processes from them extend pretty deep into the orbit, and thus render their complete removal difficult. The only harm that the dermoid cysts produce is the disfigurement caused by them, and this, moreover, is the only reason why we should more generally extirpate them. In doing
this, we must go to work very carefully to dissect out the cysts, as far
as may be, unopened. If the wall of the cyst, which often is thin,
breaks prematurely, a part of it may easily be left behind and give rise
to recurrences.

(b) Vascular Tumors.—Belonging to vascular tumors, in the widest
sense of the word, are vascular dilatations (aneurisms) and new growths
consisting of vessels (angioma). Both the one and the other occur,
although rarely, in the orbit. Among the angioma we here meet with
are the two forms that also occur in the lids (the telangeiectasis and the
cavernous tumor). The former is congenital, and is originally seated
in the lids, from which it may gradually extend into the orbit. The diag-
nosis therefore is easy, since upon the lids the tumor is exposed to view.
Its treatment when in the orbit is the same as when upon the lids.
Cavernous tumors, in contradistinction to those just named, usually de-
velop first within the orbit and grow slowly, pushing the eyeball farther
and farther before them. As long as they are situated wholly within
the depth of the orbit, their correct diagnosis can be made only from
the variable volume which these tumors possess. We can diminish
their size by pressing the eyeball back into the orbit, and, on the other
hand, they become more swollen in the acts of crying, straining, etc.
When the vascular tumors become larger and extend farther forward
they gleam with a bluish luster through the skin of the lids, and dilated
blood-vessels are seen to make their appearance in the latter; in this
case the diagnosis is, of course, easy. When we see that these tumors
are putting the eye in danger through the progressive protrusion to
which they give rise, we must remove them. Extirpation with the
knife is principally adapted to those cases in which the tumor is sharply
limited and is inclosed in a fibrous capsule; for the case of a more dif-
fuse vascular tumor electrolytic treatment is indicated (page 557).

(c) Malignant Tumor.—Both sarcoma and carcinomata occur in
the orbit. The former are far more frequent, and may take their start-
ing point from bone, from periosteum, from the muscles or connective
tissue of the orbit, from the lachrymal gland, and even from the optic
nerve and its sheaths. Not to be confounded with them are the sarco-
ma that develop primarily in the eyeball, and, after breaking through
the posterior wall of the latter, grow out into the orbit, at the same
time pushing the eyeball forward. Orbital sarcoma are usually
rounded, pretty soft, and sharply defined, because they are inclosed in
an envelope of connective tissue.

Primary carcinomata of the orbit are very rare; they start from the
lachrymal gland. On the other hand, it frequently happens that car-
cinomata the original seat of which is in the lids or the conjunctiva,
grow inward into the orbit.

If malignant tumors are not removed early, they push the eye more
and more out of the orbit, afterward destroy it, and finally fill the en-
DISEASES OF THE ORBIT.

...tire orbit, from whose anterior opening they project as large, ulcerated, readily bleeding masses. Still later they pass over to structures adjacent to the orbit, and especially to the brain; the neighboring lymphatic glands swell up, and metastases form in the internal organs. The patient succumbs from exhaustion or from a transmission of the growth to vital organs. To this course a stop can be put only by as early and as radical a removal of the growth as possible. Small encapsulated sarcomata can be cleanly enucleated with preservation of the rest of the contents of the orbit. Large tumors, particularly if they are not sharply circumscribed, demand the removal of the entire contents of the orbit (exenteratio orbitae, see § 160), in doing which the eye, even when it still retains its ability to see, must be sacrificed.

Histological examination of dermoid cysts shows that their wall possesses essentially the structure of the external skin—that is, it consists of a substratum of connective tissue, the papillary body, which supports an epithelial lining like that of the external skin, and which not infrequently contains hair follicles and glands (sebaceous and sweat glands). The contents of the cyst is mostly like porridge or sebum, and is formed of the exfoliated epithelial cells, and the secretion of the glands contained in its walls; in many cases hair, and even teeth, have been found in it. Sometimes the contents of the cyst are converted into an oily or honey-like liquid (oil cysts and honey cysts or meliecris); or they may even become like serum. The anatomical structure of these cysts ranges them in the series of dermoid cysts—i.e., of those which are imagined to have developed through an invagination of the external germinal layer, which then develops afterward into a cyst (Remak). Many of the cysts with serous contents may perhaps have originated from an analogous invagination of the nasal mucous membrane (Panas). In structure and mode of development dermoid cysts are allied to the dermoids of the corneal margin, which likewise are to be regarded as aberrant islands of skin (see page 134). The two varieties of tumors are distinguished clinically by the fact that the first are deeply placed cavities; the second, superficially situated, flat, expanded, wartlike structures.

Another form of tumor with which the dermoid cysts might occasionally be confounded are the hernia cerebri. These consist of a hernialike extrusion of the dura mater into the orbit. A sac is formed by this which is either filled with cerebro-spinal fluid (meningocele) or which also contains brain substance (encephalocele). Hernia cerebri develop at those regions of the skull where the bones come into apposition by sutures. In the orbit they are most frequently situated above and to the inner side, where they utilize for their avenue of escape from the cranial cavity the suture between the ethmoid and frontal bones. Meningocele of the orbit, therefore, is ordinarily represented by a tumor which is situated in the upper and inner angle of the orbit, is covered by normal skin, is distinctly fluctuant, and has existed since birth. Since dermoid cysts also are congenital and frequently occupy the same spot, an error in diagnosis might be readily made. Such an error might possibly lead to the worst consequences, if extirpation of the meningocele, which may be followed by meningitis, should be thereupon performed. It is hence important to know how such a mistake can be avoided. The signs which principally distinguish a meningocele from the dermoid cysts are as follows: 1. A meningocele is immovably attached to the bone. Not infrequently we are able to feel with our finger the opening in the bone through which the meningocele communicates with the cranial cavity (hernial orifice). 2. A meningocele shows the pulsatory and respiratory oscillations which are communicated to it from the brain. 3.
A meningocele can be diminished in size by pressure with the fingers, since their fluid contents are in part pushed back into the cranial cavity. At the same time symptoms of increased cerebral pressure, like vertigo, nausea, deviation of the eyes, convulsions, etc., may make their appearance. 4. In order to be perfectly certain, we make an exploratory puncture of the cyst. In doing this we must proceed under rigid antiseptic precautions, so as not to excite inflammation of the cyst and consequent meningitis. The diagnosis becomes more difficult, or is even impossible, when the communication between the meningocele and the cranial cavity (the subdural space) is obliterated; but then in this case removal of the tumor is not associated with danger of any sort.

Besides those already given, the only cysts of the orbit requiring mention are those formed by entozoa (cysticercus and echinococcus), and also the congenital cysts of the lower lid in microphthalmus (page 380).

Pulsating Exophthalmus.—Under this term is denoted the following complex of symptoms: The eye is protruded; the blood-vessels of the conjunctiva and the lids, and often of the surrounding parts, too, are dilated. If the hand is placed upon the tumor, distinct pulsation of the eyeball itself and of the surrounding parts is felt; and if the ear is applied to it, blowing murmurs and a continuous whirring and rumbling sound are heard. The patient also hears the same sounds; he has a constant rumbling in his head, as if he were standing near a waterfall, and he is often more disturbed by this than by anything else. The eye can be pushed back into the orbit with the hand. A special feature distinguishing the disease is the fact that compression of the carotid of the same side as the exophthalmus diminishes both the pulsation and the sounds or causes them to disappear altogether. The visual power of the eye is in many cases abolished, and that, as the ophthalmoscope shows, by neuritis of the optic nerve; a conspicuous feature that is brought to light at the same time being the enormous dilatation of the retinal vessels. At times there are violent pain in the orbit and impairment of the hearing.

It has been proved by a number of autopsies that the most frequent cause of this complex of symptoms is an arterio-venous aneurism resulting from rupture of the carotid into the cavernous sinus. Through the spot where this rupture has taken place the blood of the carotid is discharged under a high pressure into the cavernous sinus and the veins of the orbit, which empty into it, so that these veins are very greatly dilated and are set pulsating. The rupture of the carotid is most frequently caused by traumaism, and particularly by severe injuries of the skull with fracture of the base; rarely a spontaneous rupture occurs as a result of degeneration of the vessel wall.

In rare cases the aneurism subsides spontaneously; otherwise it persists, and may produce death with cerebral symptoms or by hemorrhage from the dilated vessels. The treatment is self-evident, from the fact that the symptoms disappear as soon as the carotid is compressed upon the affected side. Hence we try first the employment of compression by digital or instrumental pressure upon the carotid every day for as long a time as can be borne. If this procedure, after being continued for some time, is unsuccessful, there is nothing left but to tie the carotid—an operation by which most cases are cured.

There are cases of intermittent exophthalmus, which appear only at intervals, and in fact mainly when the head is depressed, while in the erect position some exophthalmus may be present. As in such cases the exophthalmus increases when pressure is made upon the jugular vein, and as sometimes dilated veins are visible even upon external examination, it is assumed that the exophthalmus is caused by varicose veins in the orbit, which, however, in contradistinction to what occurs in pulsating exophthalmus, are not in communication with an artery.
DISEASES OF THE ORBIT.

Besides the tumors enumerated above there have also been observed in the orbit, as rare occurrences, the following: Angioma lipomatodes, lymphangioma, neuroma simplex, neuroma plexiforme, leucemic tumors, lymphomata and lymphosarcomata (simultaneously in both orbits), choromata, cylindromata, endothelionata, psammomata, and osteomata. The osteomata start from the bony wall of the orbit, and most frequently from the frontal bone. They may, however, also develop in one of the cavities adjoining the orbit, particularly in the frontal sinus, and penetrate into the orbit itself afterward through ulceration of the orbital wall. They are usually sessile, being attached to the bone by a broad base. In rare instances they are pedunculated, in which case it occasionally happens that they undergo necrosis spontaneously and are then eliminated. Most osteomata are as hard as ivory, so that chisel and saw can make scarcely any impression upon them (exostosis eburnea); but there are also osteomata having a spongy or partly cartilaginous structure. They grow very slowly, and after a time displace the eyeball from the orbit and destroy the sight by compression of the optic nerve. For this reason they call for removal by operation, which on account of the great hardness of the growth is often very difficult, and, moreover, is not devoid of danger, since in its performance the cranial cavity may be opened. Hence we often abstain from taking the growth out radically, and satisfy ourselves with removing only so much of it as projects into the orbit. When the eye has been pushed out of the orbit by a large osteoma and has been already rendered blind, it is sometimes better to relieve the patient of his troubles by enucleating the eye which has become useless, rather than to expose him to the dangers of an extirpation of the growth.

DILATATION OF THE CAVITIES ADJOINING THE ORBIT.—This disease commonly affects the frontal sinus or the maxillary antrum. Diseases of the other accessory cavities of the nose, namely, the ethmoidal and the sphenoidal sinuses, are rarer, and, besides, are difficult to diagnose in the living. The inflammation of these cavities originates in most cases from a simple, acute, or chronic inflammation which affects the nasal mucous membrane, and which is transmitted to the mucous membrane of the accessory cavities. Furthermore, acute infectious diseases, and also syphilis and tuberculosis, may give rise to it. Disease of the maxillary antrum originates most frequently from diseased teeth.

The inflammation of the mucous membrane of one of these cavities produces as its immediate result increased secretion and hence accumulation of liquid in the latter (empyema). This condition is diagnosed from the continuous dull pain that the patient complains of, from the tenderness upon percussion of the anterior wall of the affected cavity, or from the slight swelling of the soft parts over it. Of particular importance is the result of rhinoscopic examination, which reveals first an oozing of pus from the ostium of the cavity, either occurring spontaneously or produced by introducing a sound into the cavity and syringing it out; second, swelling of the mucous membrane or the presence of polypi in the vicinity of the ostium. We may also, to aid us in making the diagnosis, employ transillumination of the cavity, effected by means of a small incandescent light. The orifice that connects the cavity with the nasal fossa may be covered over either by the swelling of the mucous membrane or by polypi or other tumors. Then dilatation of the cavity sets in, due to the accumulation of secretion, which in the beginning is purulent, but later often becomes mucous or watery (dropsy). The dilatation of the cavities is made manifest, even upon external inspection, by the bulging out of their walls, which is visible on the forehead in enlargement of the frontal sinus, and upon the cheek in enlargement of the maxillary antrum. Moreover, the wall of these cavities that is directed toward the orbit is bulged outward, so that exophthalmus takes place with a coincident lateral displacement of the eyeball toward
the side opposite to that of the ectasia. In distention of the ethmoid cells we get a protrusion of the inner orbital wall, where we can feel through the soft parts the thin lamina papryacea crepitating beneath the finger. Distention of the sphenoidal cells may give early warning of its presence by an affection (inflammation or atrophy) of the optic nerve, since the optic foramen is separated from the sphenoidal sinus by only a thin lamella of bone.

When the distention of the diseased cavity has reached a pretty high point, its bony wall may be eroded in places, and thus perforation and discharge externally may occur. If this takes place into the orbit, an orbital phlegmon may be set up.

The treatment, so long as the communication between the cavities and the nose is open, is performed through the nose (the maxillary antrum is also often entered and treated by way of a dental alveolus). When the cavity becomes distended as a result of closure of its orifice, it must be opened and precaution taken for the permanent discharge of the secretion, or the cavity must be extirpated.

Distention of the accessory cavities may also be caused by new growths, such as polypi, osteomata, or malignant neoplasms.
PART III.
ANOMALIES OF REFRACTION AND ACCOMMODATION.

The eye is constructed upon the principle of a camera obscura. This consists of a box blackened on the inside, the anterior wall of which is formed by a strong convex lens, which throws upon the posterior wall an inverted image of the objects that may chance to be in front of the camera. In the human eye we find instead of the convex lens quite a number of refracting surfaces constituted by the surfaces bounding the refracting media of the eye, namely, the cornea, aqueous humor, lens, and vitreous; and in place of the posterior wall is found the retina, which not only receives the image, but also at the same time perceives it. Hence a diminution of visual power may be produced by two different causes: either the dioptric apparatus of the eye is defective, so that a sharp image is not thrown upon the retina, or it is the retina that is at fault in that it is not sensitive enough.

In order to throw a sharp image upon the retina the dioptric apparatus of the eye must fulfill two conditions. In the first place, the refracting media must be perfectly transparent. Hence opacities of the cornea, lens, etc., make distinct vision impossible. The second condition is, that the refractive power of the media should be such that they project an image of external objects which is both perfectly distinct and also lies precisely upon the retina. The variations from this rule we designate as errors of optical adjustment or as errors of refraction and accommodation. The theory of these errors, as we see it presented to us to-day, forming a harmonious, well-compacted whole, is chiefly Donders's work. It is the exactest portion of ophthalmology, and, in fact, of all medicine, for it is based directly upon the application of physical and mathematical laws to the eye. These laws, therefore, as far as they will require consideration here, must be supposed to be known in advance.
135. The refractive power of a lens is determined by the position of its principal focus. Under the latter name is denoted that point at which rays are united which come from an infinite distance, and hence are parallel when they strike the lens.

In convex lenses which render parallel rays convergent, the principal focus \( F \), Fig. 302) lies on the opposite side to that upon which the rays fall. Here all the parallel rays are collected (hence “collecting” lens). If the luminous object is a point, the rays also are united into a single point, but if the object that emits the rays has an extension in space, they are united into a diminished, inverted image of the object. This image is real—i.e., formed by an actual union of the rays at this spot. Just as rays falling upon the lens in a parallel direction ultimately reach the principal focus, \( F \); so also rays which go in the opposite direction, from \( F \), and impinge upon the lens, will emerge from the latter in a parallel direction.

Concave lenses so refract the rays which impinge upon them in a parallel direction that the latter become divergent when they emerge; hence the name “dispersing” lenses (Fig. 303). These rays never come together, but, on the contrary, diverge farther and farther from each other. Hence an actual (real) focus—i.e., point of union of the rays—does not exist in this case. But if an observer is stationed behind the lens—e.g., at \( a \)—and receives the diverging rays upon his eye, he gets the same impression as if these rays came from a point situated upon the other side of the lens, a point located at \( F \), where the rays would meet if prolonged backward. The observer accordingly believes that he does see at this point the image of the object, which emits parallel rays, although there is no image in reality present.

**Fig. 302.—Union of Parallel Rays, effected by a Convex Lens.**
at this spot, and, in fact, there is no image formed at any spot whatever. This apparent image is called virtual (formed at the virtual

![Figure 303](image)

**FIG. 303.—Dispersion of Parallel Rays by a Concave Lens.**

focus), and lies upon the same side as that from which the rays come to the lens. Here, precisely as in the case of convex lenses, the law holds good that the path of the rays is the same when the direction is reversed. If rays impinge upon the lens from its posterior aspect (a) with a convergence such that they are directed toward \( F \), they will be parallel upon their emergence from the lens at its anterior aspect.

The distance between the principal focus, \( F \), and the optical center \( h \), is called the principal focal distance. In convex lenses this lies upon the opposite side to that upon which the rays impinge; it is known as positive focal distance, and convex lenses are hence given the sign +. The converse is true of concave lenses, whose negative focal distance is denoted by the sign —. The refraction of rays by a lens is greater, ceteris paribus, the more curved its surface is—that is, the shorter its radius of curvature.

The *numeration* of lenses, the object of which is to show their refractive power, is based upon their principal focal distance, for, the more strongly the rays are refracted, the closer their point of union comes to the lens, and the shorter, therefore, is their principal focal distance. The latter accordingly is in inverse proportion to the refracting power of the lens, and can hence be utilized as a measure for it. A principal focal distance of 1 metre is assumed as unity, and the lens which has this principal focal distance is called a metre lens, and its refractive power a dioptry \((D)\). If 2 metre lenses are placed in apposition, twice the refractive power is obtained, namely, 2 dioptries \((2D)\). The principal focal distance is now one half that of the former lens—i.e., \( \frac{1}{2} \) metre = 50 centimetres. Instead of placing 2 metre lenses in apposition, we may grind a lens whose curvature is twice as great (or whose radius of curvature is half as large) as that of the single metre lens. We thus get a lens of a 2-dioptry refracting power and a principal focal distance of 50 centimetres. In analogous fashion a lens of \( 4D \)
would have one fourth the focal distance of the metre lens—i.e., 100 cm. ÷ 4 = 25 cm. A lens of $\frac{1}{3}$ D refractive power has, on the other hand, a focal distance of 100 cm. ÷ $\frac{1}{3}$ = 300 cm. The focal distance of a lens of $n$ D is thus 100 cm. ÷ $n$. The trial cases ordinarily employed for examining the eye contain lenses from 0.25 D up to 20 D.

136. The lenses so far considered have been biconvex and biconcave. For weak glasses plano-convex (Fig. 204 A) and plano-concave (Fig. 204 B) lenses are also employed, the refracting power of which is one half of that which the doubly curved lenses possess, the curvature of the surface being the same. There are also lenses one surface of which is convex, the other concave. If the radius of curvature of the two surfaces is the same, so that they are parallel with each other, the glass acts like a plane glass. This is the case in the coquille or curved protective glasses. Such lenses have refracting power only when the curvature of one surface surpasses that of the other (meniscus). If the convex bulges more than the concave surface, the lens acts as a convex lens (positive meniscus, Fig. 204 C). If, on the contrary, the concave is more strongly curved than the convex side, the combination acts as a concave lens (negative meniscus, Fig. 204 D). Menisci have the advantage over ordinary lenses that we see as distinctly when looking through the marginal portion of the glasses as when looking through their center, while ordinary lenses give distorted images when we look through their marginal portion. Hence, menisci are also called periscopic* glasses. They are, however, only suited for weak glasses, since the higher numbers of menisci are too heavy.

Besides the lenses just given, which are called collectively spherical lenses, there are also cylindrical lenses. If we image a segment cut out of a cylinder (Fig. 205), this segment forms a convex cylindrical lens (Fig. 204 E). This has the property of allowing rays which impinge along its axis, a a (Fig. 205), to pass without deflecting them.

* From πεπί, about, and σκωσίν, to see.
Rays which impinge perpendicularly to the axis, along a line corresponding to $b\ b\ b$, undergo the maximum refraction—i.e., that corresponding to the curvature of the cylindrical calotte. Rays which pass through the lens in meridians lying between the two main directions undergo a deflection which has a value somewhere between zero and the maximum, varying according to the angle that the meridian in which the rays impinge upon the lens forms with the axis. The same thing is true of concave cylindrical lenses (Fig. 204 F), which may be regarded as representing the mold of the positive cylinder.

Since cylindrical lenses refract unequally the rays impinging upon them in different meridians, they are calculated to compensate for a difference in refrangibility existing in the different meridians of the eye; they serve, accordingly, to correct regular astigmatism.

**Prisms** are employed for glasses either alone or combined with lenses. The number engraved upon prisms indicate their refracting angle; the deflection which the rays undergo amounts in the case of weak prisms to one half this angle. Prisms find their chief application in disturbances of equilibrium of the ocular muscles.

**Protective** glasses for shielding the eyes against light are made of various shades of blue or gray glass (London smoke). The coquille-shaped, curved glasses are the best, since they also moderate a part of the light that comes in from the side. Workmen’s glasses for shielding the eye against foreign bodies consist of glass, or, when the intention is to make them unbreakable, of mica or of fine wire gauze.

**Stenopæic** *spectacles* consist of a blackened disk of metal, in which is placed a round hole or a narrow slit. They are sometimes employed with advantage in cases of corneal opacities. They are adapted for those cases in which a part of the pupillary area of the cornea is clear, while another part is occupied by a semitransparent spot of cloudiness, which cause disturbance of vision through diffusion of light. If the disk is held before the eye in such a way that the aperture lies in front of the transparent portion of the cornea, the latter alone is used for seeing, and the opacity which causes the disturbance is entirely excluded. Since a man has only a very small field of vision in looking through such an aperture, and since, more-

---

*From στενός, narrow, and ἀπό, peep-hole.*
over, he can not move his eye about behind it, stenopæic spectacles are not suited for going about, but they often enable the patient (who can best manage them by holding them in his hand) to read in cases which it would be impossible to do so in any other way.

Old System of Numbering Lenses.—Up to a few years ago lenses were not numbered according to the metric system, but according to the inch system, and even at present most opticians sell lenses of this sort. The unit which formed the basis of the old system of numbering was a lens of 1 inch focal distance. A lens of 10 inches focal distance has only a tenth part of the refractive power of the 1-inch lens, and hence is denoted by the figure \( \frac{1}{10} \); for the same reason a lens of 30 inches focal distance is called a \( \frac{1}{30} \) lens, and so on. The refractive power of the glass is thus expressed by a fraction whose denominator is the principal focal distance, in accordance with the law that the refractive power is the reciprocal of the focal distance. Upon the lenses themselves are engraved not the fractions but their denominators—i.e., the focal distances. The numbers contained in the old cases of glasses run ordinarily from the weakest glass, No. 80, up to No. 2 or 14. To speak precisely, these numbers do not give the focal distances of the glasses, but their radii of curvature. The optician does not grind lenses of a certain refractive power, but lenses of a certain curvature—corresponding to the curvature of his grinding tool—and marks the radius of curvature upon the glass as its number. And, in fact, if the index of refraction of the glass is 1.5, the radius of curvature of a biconvex or biconcave lens is equal to its focal distance. But as the glass used for lenses almost always has a higher index of refraction than this, the focal distance of a lens is ordinarily somewhat less than the number engraved upon the glass. In practice this small difference can be neglected, and it therefore was an important advantage which the old system of numbering glasses had to offer, that from the number of the glass one knew at once its focal distance, and did not have to calculate it, as with the metric system. To compensate for this, the old system of numbering had so many disadvantages that it was seen to be necessary to give it up. The refractive power of the lens was expressed by fractions, which made the work of calculating the value of lenses rather complicated. The very unit of the system—namely, the inch—varied in magnitude in the different countries, so that a No. 10 glass bought in Paris had a different focal distance from that of one of the same number which had been made in London or in Vienna. In fact, the inch is everywhere destined to drop into oblivion. So when Nagel, in 1866, first proposed the metre lens as the unit of a new system of numeration, his idea soon found acceptance, and finally also passed into practical use, after an international commission appointed for this purpose, upon the motion of Monoyer, had declared itself in favor of the metric system of designating glasses.

The conversion of the numbers of one system into those of the other is very simple. The metre measures from 37 to 39 inches, according to the length of the inch in different countries. If we are not concerned in making a precise estimate, we may, in order to be able to carry the calculation in our heads, regard the metre as about 40 inches (the more so as the old No. 40, owing to the somewhat high refractivity of the glass—see supra—had generally a focal distance of somewhat less than 40 inches). A glass of 40 inches focal distance (\( 1 \) glass) is therefore about a dioptre. A No. 10 glass \( (\frac{1}{10}) \)—i.e., of 10 inches focal distance—has one fourth the focal distance of a No. 40 glass, and is therefore four times as strong as the latter; it is accordingly 4 dioptres. Hence, we get at the value of the old number in dioptres if we divide 40 by the old number. The conversion of the
new numbers into the old is done in a similar way: e.g., a glass of $5D$ has one fifth the focal distance of $1D$. The latter is about 40 inches; a glass of $5D$, therefore, has a focal distance of $40 + 5 = 8$ inches. Hence, the old number is converted into the new, or the new into the old, by dividing 40 by the given number, when the number in the other system is then at once obtained.

The problem very often confronts the physician of determining the strength of a glass which the patient brings along with him. If, as is generally the case, no great precision is required, we may employ the following methods for determining the strength of a lens:

1. Direct measurement of the focal distance. We station ourselves with the glass—supposing it to be a strong convex glass—close to the wall of a room which is situated opposite the window, and throw with the glass an image of the window upon the wall. Then we measure that distance of the glass from the wall at which the image is the sharpest. This distance gives the principal focal distance of the glass directly. Suppose, for instance, the distance to be 20 centimetres; then the number of the glass would be $100 + 20 = 5D$. In doing this the not quite proper assumption is made that the window is at an infinite distance from the glass, since the principal focus is the point of union of rays that are parallel—i.e., come from an infinite distance—when they impinge from the lens. But this error is negligible when the window is distant not less than 6 metres from the wall. At smaller distances this procedure, however, is not applicable. Moreover, it can not be used for weak convex glasses, which do not afford a sufficiently distinct image; nor for concave glasses, which do not produce a real image at all. For these two cases we must add to the glass to be tested a strong convex lens of known focal distance and determine the focal distance of the two together. Then from the number of dioptres corresponding to the combined focal distance must be subtracted the number of dioptres added. Suppose, for example, that we have found that a certain glass combined with a lens of $+10D$ throws a distinct image upon the wall at a distance of 14 centimetres. A focal distance of 14 centimetres corresponds to $7D$, for $100 + 14 = 7$. Since the auxiliary glass was one of $10D$, the glass which is being determined must be $7 - 10D = -3D$. It is therefore a concave glass having a refracting power of $3D$.

2. If we have a case of glasses at our disposal, we determine the refractive power of a lens most speedily by placing lenses of the contrary sign before it until we have found a lens which completely neutralizes the first one. So if we had to search for the number of a concave lens we would keep adding to it stronger and stronger convex lenses until the combined action of both lenses is the same as that of a plane glass. This is the case when vision through the combination is the same as with the naked eye. A still more certain way of deciding this question is by parallactic displacement. If we look at a distant object through a concave glass and then move the glass to and fro before the eye, the object executes an apparent movement in the same sense that the glass does; but if we look through a convex glass, the apparent movement of the object takes place in the contrary direction. Hence, as long as one of the two superimposed glasses is in excess of the other, we get a parallactic displacement in one direction or the other—a displacement which disappears the moment we combine two perfectly equivalent glasses of different sign.

The general practitioner who does not care to buy a complete trial case can get along with one having a smaller number of glasses (10 to 12 convex and as many concave), as by their combination he can produce the other numbers.

The effect of the glasses depends not only upon their refractive power, but also upon their distance from the eye. Generally speaking, the effect of concave glasses is weakened and of convex glasses is strengthened the farther they are
held from the apex of the cornea. The stronger the glass the greater the influence which its distance from the eye exerts. For this reason the intervals between the separate numbers are not required to be so numerous in the case of the stronger glasses as in the weaker ones, since the effect of the former can be readily increased or weakened by slight alterations in its distance. This change of strength from change of distance is mainly of advantage to those that have been operated upon for cataract, who possess no power of accommodation, and hence with their strong convex glasses can never have their sight adjusted except for one definite distance. By slightly displacing the glass they so far help matters that with the same glass they can see sometimes a little closer to them, sometimes a little farther off.

In prescribing glasses attention should be paid to having the centers of the glasses separated from each other as far as are the pupils of the person wearing the glasses, otherwise he would be looking through the edges of the latter. In this case the images are less distinct, and, moreover, the glasses then act like weak prisms.

It is frequently the case that a person needs glasses both for distant and near vision, but that these are of a different strength. If the gaze has to be directed alternately and in rapid succession at far and near objects, as, for example, in the case of a painter who looks first at the landscape then at his canvas, the continual changing of glasses would be very troublesome. For such cases glasses are employed composed of two bisected lenses which meet along a horizontal plane. The upper half is designed for distant, the lower for near vision, since in looking near by the visual plane is somewhat depressed. From their inventor,* who also was the first to use them, such glasses are called Franklin glasses. Instead of joining two separate glasses together we may also order the same glass ground, so as to have a different curvature in its upper half from that which it has in its lower (bifocal lenses), or, using the same curvature, we may make the two halves of the lens out of glass of a different refractive power.

The only advantage that glasses made of rock-crystal, which are much dearer than those ground from glass, have over the latter is that on account of their superior hardness they are less easily scratched—an advantage, however, which is of consequence only in convex lenses.

* [Benjamin Franklin.—D.]
CHAPTER II.

OPTICAL PROPERTIES OF THE NORMAL EYE.

(a) Refraction.

137. By the refraction of the eye we mean the state of its refractivity in the state of rest—i.e., in the absence of any accommodative effort. The refraction of the normal eye is so constituted that parallel rays impinging upon the cornea are united so as to form a sharp image upon the retina. The retina, therefore, is situated at the principal focal distance of the dioptic apparatus of the eye, and thus constitutes its focal plane. Such a refractive condition is called emmetropia,* E (Donders).

In order to follow the passage of the rays through the refracting media of the eye we must know precisely the curvature of the refracting surfaces, their distance from each other, and the index of refraction of the individual refracting media. On the basis of these data we can by a complicated calculation find the path of the rays from one refracting surface to the other. To facilitate this calculation for practical purposes, Donders has devised a simplified schematic model, the reduced or schematic eye (Fig. 206). This has an axial length of 20 millimetres (h b) and consists of a single refracting substance, which has an index of refraction of \( \frac{4}{3} \), and the anterior surface of which (representing the anterior surface of the cornea) has a radius of curvature of 5 millimetres. Hence, the center of curvature lies 5 millimetres behind the refracting surface and 15 millimetres in front of the retina, which is situated at a distance equal to the principal focal distance of the eye (20 millimetres). Since there is only one refracting surface present, its center of curvature coincides with its nodal point (nodal point of the eye)—i.e., with the point having this property that all rays passing through it ("principal rays") undergo no refraction.

This schematic eye varies very essentially from the normal human eye, the principal focal distance of which (axial length) amounts to about 24 millimetres; but calculations in regard to the size of retinal images, of diffusion circles, etc., which are made upon the basis of the schematic eye, give results which approximate very closely to those found for the real eye. Hence, for practical purposes the schematic eye can without hesitation be made the basis of calculation.

* From μετρον, in due measure, and ἀόρ, eye.
The calculation which the ophthalmic practitioner has most frequently to make concerns the size of the retinal image of a given object. To do this the size of the object and its distance from the eye must be known. We find the retinal image of an object by drawing from the terminal points, $o$ and $o_1$ (Fig. 206), of the latter the principal rays through the nodal point, $k$, to the retina, which they meet in $b$ and $b_1$. Accordingly, $b b_1$ is the retinal image of the object $o o_1$. The triangles $o o_1 k$ and $b b_1 k$ are similar; hence, $b b_1 : o o_1 = b k : o k$ and $b b_1 = \frac{o o_1 \times b k}{o k}$. If we call the size of the image $(b b_1) B$, that of the object $(o o_1) O$, and the distance of the latter $(o k)$ from the eye $E$, then $B = \frac{O \times 15 \text{ mm.}}{E}$. The size of the retinal image is therefore directly proportional to the size of the object and inversely proportional to the distance of the object from the eye. E.g., a rod 1 metre high placed at a distance of 15 metres from the eye would give a retinal image whose altitude $B = \frac{1,000 \text{ mm.} \times 15 \text{ mm.}}{15,000 \text{ mm.}} = 1 \text{ mm.}$ This rod, if approximated to one third of the distance—i.e., 5 metres—would give a retinal image of $\frac{1,000 \text{ mm.} \times 15 \text{ mm.}}{5,000 \text{ mm.}} = 3 \text{ mm.}$, or three times as great as before. This sort of calculation is often applied in order to discover the size of a diseased area of the retina, corresponding to which is a scotoma in the visual field, whose size can be determined by examination. The scotoma is then regarded as the object for which the size of the retinal image is calculated.

(b) Visual Acuity.

138. The smaller the objects that an eye can distinguish or the greater the distance at which it can distinguish an object of given size,
the greater is the acuity of vision that it possesses. Suppose, for instance, that the eye is able just to distinguish the object \( a b \) (Fig. 207) at the distance \( a \ k \). Another, better eye still distinguishes the object when it is carried twice as far off, to the distance \( a, k \). The size of the retinal image \( a \beta \), is in this case reduced to half of that in the former \( (a \beta) \)—that is, the visual acuity of the second eye is twice as great as that of the first. Instead of carrying the object \( a b \) twice as far off, we may leave it at the same spot but make it half as small \( (a b_1) \). In this case, too, the size of the retinal image would be reduced one half. In either case, therefore, a retinal image of the same size is obtained, and that, moreover, because the angle \( \nu \) remains the same. This angle is subtended by the rays which pass from the terminal points of the object through the nodal point of the eye to the retina. It is called the visual angle (angulus visius), and is the true measure of the visual acuity. For estimating the visual acuity—i.e., the least visual angle—there are from the above example two ways open to us, both of which are made use of. We may take an object of given size and carry it off with us from the eye until the farthest point at which it can be recognized is reached. This, for instance, is done when we try to find at what distance an eye is able to count the fingers when extended. The second way consists in conducting the test at a constant distance, objects of different size being presented to the eye and the attempt being made to find the minimum size which the object can

![Image of visual angle](image-url)

**Fig. 207.**—Behavior of the Visual Angle when Objects Vary in Size and Distance.

have and still be recognized. This method is employed when we test the visual acuity with test types.

What objects are best adapted for testing the visual acuity? A single dot, the distance of which from the eye is altered, is unsuitable because the visibility of a dot depends less upon the visual angle which it subtends than upon its luminosity. The fixed stars, radiant as they are, are nothing but mathematical points even when seen with the most powerful telescopes; they have, therefore, a visual angle equal to zero, and yet they are seen very clearly. Every one can recall having seen a cross upon the top of a church spire, when sparkling in the lus-
ter of the setting sun, at distances at which the church spire itself was scarcely distinguishable. Hence we select for the test not one but two points (or two parallel lines) and then determine the greatest distance from the eye at which they can still be perceived as separate objects.

From this can be readily calculated the minimum visual angle, which for a normal eye amounts to about 1' (Volkmann). On the basis of this determination Snellen has constructed his test types. These consist of letters of varying size arranged in rows. Each row contains letters of the same size, and has a number inscribed over it. This number gives the distances in metres at which the separate letters of the row appear to a normal eye under a visual angle of 5'. For example, the letter F' (Fig. 208), which has been taken from the row with the superscription 12, subtends an angle of 5' when placed at a distance of 12 metres. Like all the other letters of the test card, it is inscribed within a square, whose sides are divided by partition lines into 5 parts each. If, therefore, the whole square appears under an angle of 5' when placed at 12 metres, each partial square is seen under an angle of 1'. This is the minimum visual angle for the normal eye, and since the partial squares correspond to the details of the letter, these details consequently will still be made out by a normal eye. Hence the numbers standing over the letters give the distances at which each entire letter appears under an angle of 5', and at the same time the distances at which each row of letters can be made out if the visual acuity is normal. If the distance at which the letter can be seen is greater or less than that indicated, the visual acuity is greater or less than normal. The visual acuity, therefore, may be expressed by the ratio between the distance $d$, at which the letter is actually recognized, and the distance $D$, at which it ought to be recognized, because it then subtends an angle of 5'; this latter distance being the one inscribed over the letter—i.e., $S = \frac{d}{D}$ (where $S$ stands for sight—denoted also by $V = \text{visus, or vision}$). Hence, an eye that sees the letter $F'$ (Fig. 208) at 12 metres has $S = \frac{1}{12} = 1$. As a general thing, however, we make the person under examination stand always at the same distance from the card—namely, 6 metres. If at this distance he distinguishes the lowermost row which has 6 written over it, he has $S = \frac{6}{6} = 1$; but if, for instance, he distinguishes only the uppermost letters, No. 60, $S = \frac{60}{60} = \frac{1}{1}$. *

We determine the visual acuity by test types placed at a distance of 6 metres, so as to exclude the accommodation, which if taken into

* [In this country and in England the distances are generally expressed in feet—i.e., $V = \frac{20}{20}$ or $\frac{20}{\infty}$ means that a patient at 20 feet saw the line marked 20.—D.]
account would complicate the examination. So much the more should the accommodation be brought under consideration when the vision is tested for near points, which is done with small print, namely, with the low numbers of Jäger’s or Snellen’s test types. In doing this, we try to determine two distinct things—namely, what is the smallest-sized print that can be read, and what is the least and the greatest distance at which it is legible. From the minimum distance at which the print can be seen we estimate the accommodation, while the maximum distance depends upon the refraction and the visual power of the eye. It is evident from Fig. 207 that, the farther an object is from the eye, the smaller is its retinal image, and hence the greater will be the visual power requisite for its recognition. Conversely, the retinal images enlarge as the object is approximated to the eyes. Hence, the smaller the objects are, the nearer we hold them to the eye. Very myopic eyes often have defective visual acuity, and yet pass among the laity as being excellent, because they can distinguish extremely minute objects. But the only reason for this is that myopes are able to hold objects extremely close. Again, persons with diminished visual acuity like to bring objects up extremely close, so as to get quite large retinal images from them, and in this way make up for what the images lack in distinctness or the retina lacks in sensitiveness. Such persons are often wrongly regarded as very myopic.

When the visual acuity has become so reduced that the largest letters of Snellen’s test card can no longer be recognized at 6 metres, the patient must go up nearer to it, or we select, instead of the letters, objects that are easier to distinguish—e.g., the outspread fingers—and try to find at what distance they can be counted. When the visual acuity is still worse, nothing can be distinguished but the movements of the hand before the eye. When even this is no longer the case, so that the eye simply distinguishes light from darkness, we say that qualitative vision is lost and that only quantitative vision—i.e., mere perception of light*—is present.

Kühler, in 1843, and Arit, in 1844, were the first to introduce letters of different size (measured in lines) as a standard for determining the visual acuity. Ten years later Jäger published his scale of types, which soon acquired general acceptance, and which even at the present time is frequently employed. Practically these are very useful, since they present a great number of successive grades in the size of the letters; the objection that they are not arranged upon any scientific principle has been met recently by the issue of a modified set of them. The test types most extensively employed are those of Snellen. Snellen has based them upon the assumption that the minimum visual angle for a sound eye amounts to 1", so that No. 6 of the test types, the details of which appear under an angle of 1" at 6 metres, can still just be read at this distance. He has therefore assumed \( S = \frac{1}{6} \) as the normal visual acuity. But we are not to suppose that this is absolutely the greatest visual acuity that there is. Most eyes in young persons see No. 6 at a

* For the method of testing this, see § 155.
ANOMALIES OF REFRACTION AND ACCOMMODATION.

greater distance, as far as 12 metres or even farther, so that they may possibly have $S = \frac{4}{5} = 2$, or more. $S = \frac{4}{5}$ is accordingly to be looked upon simply as the minimum to be required of a normal eye; if the visual acuity sinks below this minimum, the eye is no longer to be considered as perfectly normal. The eyes of very aged persons are an exception, as such people even without any disease often show a visual acuity less than $\frac{4}{5}$. The cause of this lies mainly in the lessened transparency of the refracting media at an advanced age, and more particularly in the very dark-colored nucleus and unequal refractivity of the lens.

In order that persons who have a vision $S > \frac{4}{5}$ may not have to go beyond a distance of 6 metres, Snellen's cards are provided with still smaller letters—namely, with the numbers from 5 to 2. These, moreover, can be used for those cases in which the physician does not have a room 6 metres in length, but has at his command one of, say, only 5 or 4 metres. For persons who can not read, there are cards with figures and with hooks.

The illumination must be considered in making the tests for vision. Artificial illumination is the best one for the letter card, because this can always be made of the same strength, while the illumination produced by daylight varies according to the weather and the hour of the day. On a dark day we must make our own visual power the basis of estimation in determining the results obtained with the patient. If a physician, who with good illumination has $S = \frac{4}{5}$, sees on a cloudy day only $\frac{3}{5}$, the visual acuity of the patient found upon the same day must also be increased by one half.

The visual acuity as determined by Snellen's card is usually given without reducing the fractions; thus we write $S = \frac{4}{5}$ or $S = \frac{4}{5}$, not $S = \frac{4}{5}$ or $\frac{4}{5}$. This is done with the object of showing by the fraction in what way the visual acuity has been obtained—i.e., what number was read and at what distance this was done.

To know the absolute visual acuity of an eye we must test it in a condition of emmetropic refraction and with the accommodation completely relaxed. For the latter purpose the eye should be made to look at infinite distance. Since this can not be carried out in practice, we satisfy ourselves with hanging Snellen's card at a distance of 6 metres from the patient whom we are examining. The rays impinging upon the eye from this distance subtend such a small angle that for practical purposes they may be regarded as parallel—i.e., as coming from infinite distance. If the eye under examination is not emmetropic but has an error of refraction, it must first be corrected by glasses up to the point of emmetropia ($E$). The visual acuity, which an ametropic eye shows without glasses is its relative visual acuity, and furnishes no measure whatever of the general usefulness of the eye for vision.

(c) 

139. Suppose that we hold an open book at a distance of about 40 centimetres from one eye and the point of a pencil at about half this distance between the book and the eye, the other eye in the meantime being kept closed. We can soon convince ourselves that the print of the book and the point of the pencil are never seen clearly at the same time. All that we can do is to see either the print or the point distinctly, and it takes some time to "focus" from one object to the other, and in doing this a change is felt to take place in the eye. This change is the accommodation, which is alternately thrown into a state of tension and relaxation, by which means the optical adjustment of the eye is altered.
Why is it that, when we have our gaze fixed upon the print, we do not see the point of the pencil before us distinctly? Because we see it in diffusion circles. What does this mean? If the eye (Fig. 209) is focused for the rays emanating from the book, B, they are united upon the retina at b. The rays coming from the point of the pencil (S), which is nearer, have a greater divergence, and hence if the condition of the refracting media remains the same, are rendered somewhat less convergent by the latter; they would therefore unite at s—that is, behind the retina. As a matter of fact, the cone which they form has its apex truncated by the retina. The section thus made, which represents the image upon the retina of the point s, is circular because the base of the cone—namely, the pupil—is circular; hence, we say that the point S appears upon the retina under the guise of a diffusion circle. Why vision should be rendered indistinct by the diffusion circles is easy to understand. Suppose that there are two points so far distant from each other and from the eye that when the latter is accurately focused they appear as two separate punctate images upon the retina (Fig. 210 A); the points are then readily recognized as two. But if, in consequence of the eye’s being incorrectly focused for the position of either point, a diffusion circle is formed upon the retina, the two circles, provided they are but a short distance from each other, partly overlap (Fig. 210 B), and the eye imagines that it has before it only one elongated point. A line (Fig. 210 C), when seen in diffusion circles, does not look distinct, but appears broadened and hazy; for we may conceive a line to be com-
posed of an infinite number of points placed side by side, and if each one of these is seen as a diffusion circle, and the circles to a great extent overlap (D), the narrow line is converted into a broad band (E).

Vision, then, is always in diffusion circles when the eye is not properly focused for the object of fixation. This may occur not only through improper accommodation, as in the example selected, but also on account of faulty refraction, such as myopia or hypermetropia. All indistinct vision which is caused by an anomaly of refraction or accommodation is produced by diffusion circles. The larger the diffusion circles are, the more indistinct is the vision. We must therefore inquire upon what the size of the diffusion circles depends:

1. The diffusion circles are larger in proportion to the remoteness from the retina of the focus of the rays emanating from the object. Suppose (in the instance above adduced) that the eye is focused for the book, so that the point of the pencil (S, Fig. 211) appears in diffusion circles. If, now, a second object, P, is brought between the book and the eye and nearer to the latter than S is, the adjustment of the eye for this object will vary more widely even than in the case of S from the condition requisite for distinct vision—that is, the rays will intersect still farther behind the retina at P, and the diffusion circle will be correspondingly larger. We may therefore say, the more faulty the adjustment the more remote from the retina is the point of union of the rays; hence, the further from the apex of the cone of rays is the intersection of this cone by the retina, and consequently the greater is the size of this intersection—namely, the diffusion circle.

Another factor which influences the size of the diffusion circle is—

2. The width of the pupil. The pupil forms the base of the cone of rays; the smaller it is the smaller will be the section of the cone, supposing the distance of this section from the apex to remain the same. If the pupil (Fig. 212) contracts from the size a a to the size b b, the diffusion circle of a point P will be at the same time reduced from
a_1, a_2, to b_1. When one of two equally near-sighted persons sees better at a distance with the naked eye than the other does, it is owing to the fact that the former has narrower pupils. Short-sighted persons often believe that they become less near-sighted with increasing years because they see better at a distance; but this is often simply due to the circumstance that their pupils diminish in size with age. Far-sighted persons who are compelled to read close to them without convex glasses try to get as brilliant an illumination as possible, so that their pupils may become very greatly contracted and thus diminish the size of the diffusion circles. The same object is secured to a still greater extent by placing a fine stenopaeic aperture before the eye. This allows only a very narrow beam of rays to pass, and reduces the diffusion circles so greatly that they no longer exert a disturbing effect. If we repeat the experiment made above of attempting to look simultaneously at the book and the pencil point, and while we are doing it hold a minute aperture before the eye, we see the print and the pencil point distinctly at the same time. By means of a stenopaeic aperture myopic persons can see distinctly at a distance even without concave glasses.

The pupil, being the base of the cone of light, determines not only the size but also the shape of the diffusion circle, which accurately mirrors the shape of the pupil. In this way it happens that persons with irregular pupils (owing, for example, to posterior synechias) are very well able themselves to perceive these irregularities entoptically.

In making the above experiment with the pencil and book, we feel that the eye is called upon to make an active effort when it is directed by a process of adjustment from the more distant book to the less distant pencil. In the same way, although not quite so distinctly, we feel a relaxation of this effort when adjustment is made for the book again. It may be concluded from this that the change of adjustment from a more distant to a less distant point is an active process—i.e., a muscular effort. On the other hand, the relaxation of the accommodation by which the eye is again adjusted for a greater distance consists in a relaxation of the contracted muscle. When in a state of perfect rest,
the emmetropic eye is adjusted for infinite distance. This condition of adjustment we find existing when the ciliary muscle is completely relaxed either, naturally from paralysis of the oculo-motor nerve, or artificially from the use of atropine.

The mechanism of accommodation was determined mainly by the investigations of Helmholtz. It depends upon the elasticity of the lens, owing to which the latter always tends to approximate to the shape of a sphere. In the living eye the lens is inclosed in a capsule which is attached to the ciliary body by the fibers of the zonula of Zinn. These fibers are tightly stretched, and hence exert a uniform traction from all sides upon the capsule, so that the latter and the lens as well are flattened. The elasticity of the latter can only make itself apparent when the tension of the fibers of the zonula, and hence, too, of the capsule of the lens, is relaxed. This takes place most completely after division of the fibers of the zonula. When we remove the lens from the eye of a young person, we see it assume a spherical shape immediately upon the division of its connections. The same thing is observed in traumatic luxation of the lens into the anterior chamber. In the act of accommodation, the relaxation of the zonula is effected by the contraction of the ciliary muscle. It is the annular layer of fibers of the latter (Müller's portion; see Mu, Fig. 71) that is mainly of account in accomplishing this. When this fiber layer contracts, it lessens the size of the circle formed by the ciliary processes by approximating their apices to the border of the lens (shown by the black line
In Fig. 213). In this way the space between the ciliary body and lens, that is bridged over by the fibers of the zonula, is contracted and the zonular fibers themselves are relaxed. It is the task of longitudinal fibers of the ciliary muscle (Brücke's portion; $M$, Fig. 71) to reinforce the action of the circular fibers. The former have their anterior, fixed insertion in the corneo-scleral margin, while their posterior extremity loses itself in the movable choroid. By the contraction of these fibers the flat portion of the ciliary body and the most anterior portion of the choroid are drawn forward, and thus the relaxation of the fibers of the zonula which lie upon the surface of these structures is facilitated; but the main part of the work of accommodation always falls upon the annular fibers of the ciliary muscle, for which reason we find these fibers particularly well developed in eyes which have to accommodate a good deal—e. g., those of hypermetropes (see Fig. 225).

By the relaxation of the zonula the tension of the lens capsule is diminished, so that the lens is enabled in conformity with its elasticity to assume a more curved shape. At the same time there is necessarily produced a corresponding decrease in the equatorial diameter of the lens. The equator of the lens, accordingly, recedes inward toward the axis of the eye, and is thus kept from coming into contact with the ciliary processes as they advance.

The increase in curvature affects both the anterior and the posterior surface of the lens, but the former to a much higher degree (Fig. 213). The posterior surface of the lens does not change its place in the fossa patelliformis of the vitreous, the increase in thickness of the lens being affected simply by the advance of its anterior surface. Hence, the anterior chamber becomes correspondingly shallower; at the periphery alone is there a deepening of the chamber, inasmuch as here the iris recedes a little. The sphincter pupillæ and, if vision is performed with both eyes, the two internal recti also, contract in conjunction with the ciliary muscle. The act of accommodation, accordingly, is regularly accompanied by a contraction of the pupils and a movement of convergence.

140. Measurement of the Accommodation.—In order to measure the magnitude of accommodation we must determine two points. One of these is the point for which the eye is focused when the accommodation is completely relaxed (far point,* or punctum remotum; $R$). The second is the nearest point which the eye can see with distinctness when exerting its entire accommodation (near point, or punctum proximum; $P$).

* The far point receives its name because of the fact that for the emmetropic and myopic eye it is the farthest point at which the eye can see distinctly. This definition, however, is not applicable in hypermetropia, in which the far point lies behind the eye and recedes from the latter as the accommodation is put on the stretch.
ANOMALIES OF REFRACTION AND ACCOMMODATION.

In the emmetropic eye, with which alone we shall for the present concern ourselves, \( R \) lies at an infinite distance, since the emmetropic eye when in the state of rest is focused for parallel rays. Such an eye, accordingly, can see the letters of Snellen's card distinctly when the latter is hung up at a distance of 6 metres, which in practice is regarded as infinitely great.

When the position of \( R \) is the same for all emmetropic eyes, that of \( P \) varies greatly. It is determined by bringing fine print closer and closer to the eye until the limit of legibility has been reached. Suppose, for example, this occurs at 10 centimetres \((P = 10 \text{ cm})\). The space lying between \( R \) and \( P \)—i.e., in the example selected the space between \( \infty \) and 10 centimetres—is called the region of accommodation. But the extent of this region affords no measure for the amount of work done by accommodation; this, in fact, being measured by the increase of refractive power which the eye undergoes in passing from the state in which the accommodation is at rest \((R)\) to the state in which the utmost effort of accommodation is made \((P)\).

The amount of increase of refractive power is called amplitude of accommodation \((A)\), and is accordingly the difference between the refractive power of the eye when the accommodation is exerted to its utmost and when it is at rest—i.e., \( A = P - R \). For \( R \) and \( P \) in this equation should be substituted, not their linear values, but the corresponding number of dioptres; these being, in fact, our measure of the refracting power.

The method of determining the amplitude of accommodation requires some explanation which is best given by concrete examples. Let us assume the three following cases represented graphically in Fig. 214: 1. An emmetrope twenty years of age, whose far point lies at an infinite distance and near point at 10 centimetres from the eye; 2. An emmetrope thirty-seven years of age, whose \( R = \infty \) and \( P = 20 \text{ cm} \); and lastly, 3. A myope twenty years of age, whose \( R = 10 \text{ cm} \) and \( P = 5 \text{ cm} \). The region of accommodation—i.e., the space lying between \( R \) and \( P \)—is of a very different extent in these three cases. In cases one and two it is infinitely large, since it extends to an infinite distance, while in case three it amounts to only 5 centimetres. If, therefore, we were to reckon the work done in accommodation by the extent of the region of accommodation, we would arrive at the erroneous view that, with regard to the former as well as the latter, there is an enormous difference between the first two cases on the one hand and the third case upon the other.

But, as a matter of fact, the case is quite different, as can be gathered from the experimental test of the accommodation adduced above. Suppose that while we close one eye we hold before the other a book at a distance of 20 centimetres, and a pencil point midway between the book and the eye—i.e., at a distance of 10 centimetres from the latter. We then first look out into space over the book, so that the accommodation is completely relaxed, and then fix our gaze upon the print of the book. In so doing, we have a sense of accommodative effort in the eye. We now turn our glance from the book to the pencil point, and endeavor to see the latter distinctly. If this is possible at all, it costs us a very considerable effort which will tax the energies of most persons more than does the effort re-
OPTICAL PROPERTIES OF THE NORMAL EYE.

quired to adjust the eye from infinite distance to the book. Hence, the changing the accommodation from 20 centimetres to 10 centimetres costs

![Figure 214.—Region of Accommodation.]

1. In an emmetrope of twenty years; 2, an emmetrope of thirty-seven years; 3, a myo
twenty years.

least as much effort as the change from infinity to 20 centimetres. From this clear that we are not justified in taking the linear distance between the point of fixation as a measure of the accommodative effort, and that, therefore, the effort of accommodation can not serve as an expression of the work done in accommodation.

We get a correct idea of the amount of accommodation that is called into play if we take into consideration the increase produced in the refractivity of the eye by the accommodation. This increase of refractivity is effected by an increase in the curvature of the lens, a thing which we can also conceive of as accomp

![Figure 215.—Accommodation represented schematically by a "Supplemental" Crystalline Lens.]

by the addition to the unchanged lens of a second, weaker convex lens. "supplementary" crystalline lens (2, Fig. 215) represents the increase in refractivity and would form the best measure of the accommodation. Now, of course,
not determine the refractive power of this supplementary lens directly, but we can
determine what glass placed before the cornea of the eye would produce the same
increase of refractive power as would such a supplementary lens, conceived to exist
in the eye. What proceeding to adopt in doing this may be shown by case one of
those assumed above (Fig. 214). In this, when the accommodation is making its
utmost effort, the refractivity of the eye is increased by the supplementary lens to
such an extent that rays emanating from P—that is, from a distance of 10 centim-
etres from the eye—are united upon the retina (Fig. 215). We now paralyze the
accommodation in this eye with atropine, so that the eye remains steadily focused
for infinite distance, and try to find the convex glass with which the eye is enabled
to see the point, P, distinctly. We find that for this purpose a glass, L, of a focal
distance of 10 centimetres = one of 10 D is necessary (Fig. 216). If this glass
is placed in front of the eye—i.e., 10 centimetres behind the point P—the latter will
lie just in the principal focus of the glass.* The rays (pp, Fig. 216) emanating

\[ P \]
\[ 10^{20} \]
\[ 10D \]

**Fig. 216.—The Accommodation replaced by a Lens of Glass, L, set before the Eye.**

from P are hence made parallel by the glass, and being so, are united by the non-
accommodating eye upon its retina. The lens L, therefore, does the same work as
the natural accommodation (represented by the supplementary crystalline lens, \( s \)),
and can accordingly be taken as the measure of the latter. Accommodation
measured in this way we call amplitude [or range] of accommodation. This,
therefore, would be in the first case \( A = 10 \, D \). In the second case (Fig. 214, 2)
as may be shown in the same way, \( A = 5 \, D \). Hence, in the emmetropic eye, A
is expressed by the lens whose focal distance equals the distance of the near point
from the eye; or \( A = P \), when \( P \) is expressed in dioptres.

What relation does A bear in the third case (Fig. 214, 3)? Here \( P \) is situated
at 5 centimetres, and hence \( P = 20 \, D \). But this value can not be regarded as the
expression of the work done in accommodation, since the eye in question being
short-sighted, is, even when the accommodation is at rest, adjusted for a distance
less than infinity—i.e., for 10 centimetres. This eye, when its accommodation is at
rest, acts like a non-accommodating emmetropic eye before which has been placed
a lens of + 10 D (Fig. 216), for this eye, therefore, we can say \( R = 10 \, D \). But,
when making its utmost accommodative effort, this eye acts like a non-accommoda-
tive emmetropic eye before which has been placed a glass of + 20 D. Obviously,
in order to determine the work done in accommodation—i.e., the increase in re-
fractivity in passing from \( R \) to \( P \)—we must subtract from the value corresponding

* Properly, if we take into account the distance of the lens from the eye, we
should have to choose a lens of shorter focal distance—e.g., if the distance be-
tween the lens and the nodal point of the eye amounts to 1 centimetre, one of 9
centimetres.
to $P$ the value of $R$, or $A = 20D - 10D = 10D$. Hence, we may enunciate the following formula as representing the general law:

$$A = P - R,$$

in which $P$ and $R$ are expressed in dioptres. This formula holds good for all conditions of the refraction. For the emmetropic eye it is simplified by the fact that the latter, when the accommodation is at rest, is adjusted for infinite distance, so that $R = 0D$, and consequently $A = P$, as we found above.

Let us take another survey of the three cases, and compare the region of accommodation with the range of accommodation. We find that the former is infinitely large in the first two cases, and only 5 centimetres in the third case. Now, $A$ in the first case is 10$D$, in the second only half as great—i.e., 5$D$—and in the third case again is as great as in the first. Accordingly, from the range of accommodation we get an entirely different and in fact a more correct conception of the work done in the accommodative act than we do from the region of accommodation. This is owing to the fact that different portions of the region of accommodation represent entirely different values. It takes as much accommodative effort to bring the accommodation from 10 centimetres to 5 centimetres (case three) as to accommodate from infinity to 10 centimetres (case one); the value in both cases being 10$D$. This fact is in harmony with the sensations that we experience in our eyes when, in the experiment previously adduced, we look successively at infinite distance, at the book, and finally at the pencil point. Displacement of the accommodation through 1 centimetre of the region of accommodation is significant of an effort which is the greater, the nearer this centimetre is situated to the eye.

The region of accommodation, however, gives us a good idea of the availability of accommodation. In case one the region of accommodation is so situated that the eye sees clearly at all distances which can be considered to exist in practical life. But in case three the region of accommodation lies so close to the eye that practically it has no value whatever; this eye would be no worse off without accommodation. (This, of course, holds good only upon the supposition that correcting glasses are not worn, as by these the location of the region of accommodation is shifted.)

Practical Determination of $R$ and $P$.—Since the refraction of the eye as commonly determined, is its refractivity when the accommodation is at rest—i.e., when the eye is focused for the far point—the determination of the refraction and of the far point are synonymous; if the latter has been got at, the refraction is determined as well. Emmetropia is present when $R$ lies at infinity. How do we ascertain whether this is the case or not? Primarily by the fact that such an eye can read No. 6 of Snellen’s test types at 6 metres (a distance which is regarded as equivalent to infinity). In this case the condition in which $R$ is nearer than infinity (myopia) is excluded by the test, because then No. 6 could not be seen distinctly enough to be read. On the other hand, hypermetropia is not excluded, since this can be so far correct ed by an effort of accommodation that the eye is focused for infinite distance. But in this case No. 6 would also be seen distinctly with convex glasses—a thing which would not be possible for an emmetropic eye (see § 145). Hence, we must say: Emmetropia is present—i.e., $R = \infty$—when Snellen’s No. 6 is read at a distance of 6 metres with the naked eye, but not with the weakest convex glass.

$P$ is determined by the lowest numbers of the reading tests, but the rod optometer may also be employed. This latter consists of fine threads which are stretched in a metal frame, and which are brought closer and closer to the eye until they cease to appear perfectly distinct.

When $P$ has receded to such a distance from the eye that small objects like fine print or the threads of the rod optometer appear under too minute an angle,
and hence can not be seen distinctly at all, the following expedient is adopted: We place before the eye a convex glass—e.g., one of 6 D, by which near vision is rendered distinct—and then determine the near point. This is found to be, say, 15 centimetres. The refraction corresponding to this distance is 0.5 D, from which, in order to learn the actual near point, we must subtract the 6 D supplied by the lens. Thus \( P = 6.5 D - 0.5 D = 6 D = 200 \) centimetres.

Relative Accommodation.—
In the course of our considerations in regard to the accommodation hitherto, we have started from the assumption that vision is performed with only one eye. When the two eyes are employed simultaneously the convergence as well as the accommodation must be taken into account. These two functions go hand in hand. When our gaze is fixed upon the distance, \( A = \infty \), and the visual axes are parallel—i.e., the convergence, too, is in a state of rest. When we look at a near point—e.g., one situated at a distance of 20 centimetres—we are compelled both to accommodate and to converge for this distance. Hence, through constant practice an intimate connection is effected between accommodation and convergence, so that with any given accommodation the corresponding effort of convergence is always made, and vice versa.

This connection, however, is not one that is rigid and insusceptible of change. On the contrary, we have the ability of emancipating ourselves from it within certain limits—that is, while in the act of converging for a certain distance, of making a little more or a little less accommodation than corresponds to this distance. A man is made to fix his gaze upon fine print at a distance of 33 centimetres. Now, suppose that the subject is emmetropic and thus has his far point (\( R \)) at infinity, while \( P \) is situated at 10 centimetres, which corresponds to a range of accommodation (\( A \)) of 10 D (Fig. 217). Of this range of accommodation 3 D (100 + 33 = 3) will be employed in making convergence for 33 centimetres (= 3 me-
tre angles, see page 583). Now, a concave glass of $1 \, D$ is placed before each eye. The subject will for the first moment have obscuration of vision, but will soon see distinctly. He has compensated for the diminution of the refractive power of his eye, caused by the $-1 \, D$ glass, by exerting $1 \, D$ more of his accommodation. But the convergence meanwhile remains unchanged—i.e., it is still adjusted for 33 centimetres. The same phenomenon occurs when, instead of $-1 \, D$, a glass of $+1 \, D$ is placed before the eye. The refractive power of the eye is made too great by the convex glass, and this is neutralized by the eye’s relaxing its accommodation through $1 \, D$. In this way we can bring stronger and stronger convex and concave glasses successively before the eye until finally we come to those with which distinct vision is no longer possible. We thus find the limits within which the accommodation may be augmented or relaxed, the convergence remaining the same (relative accommodation).

In the example selected, suppose that the subject is able to see distinctly at a distance of 33 centimetres with a convex glass of $2 \, D$. This corresponds to a relaxation of his accommodation from $3 \, D$ to $1 \, D$—that is, his relative far point, $R$, lies at a distance equivalent to $1 \, D$, or 1 metre, from the eye. Suppose that, on the other hand, the subject with the same degree of convergence overcomes concave glasses of $3 \, D$, a thing which is effected by an augmentation of the accommodation from 8 to $6 \, D$, his relative near point, $P$, then is at a distance equivalent to $6 \, D = 17$ centimetres. The relative range of accommodation $A_1 = P_1 - R_1 = 6 \, D - 1 \, D = 5 \, D$. This is the relative range of accommodation for a convergence of 33 centimetres; for a different convergence the relative near point, far point, and range would be different still. On the other hand, there is only one absolute far point, near point, and range of accommodation.

The region of relative accommodation is divided by the point upon which convergence is made into two segments. One lies upon the proximal side of the point of fixation, and thus in the example selected extends from 3 to $6 \, D$. It represents the amount of accommodation which, if necessary, one can still press into service while keeping the convergence the same—i.e., it represents the amount of accommodation which one may be said to have in reserve. It is hence denoted as the positive portion (+, Fig. 217) of the relative range of accommodation. The other segment lies on the distal side of the point of fixation, and in our case extends from 3 to $1 \, D$. It is that part of the relative accommodation which has already been employed in maintaining the given degree of convergence—i.e., it is its negative portion (−, Fig. 217). Hence, with a convergence of 33 centimetres the positive portion of the relative accommodation amounts to $3 \, D$, the negative portion only to $2 \, D$. Upon the relation of the two segments to one another depends the ability of the eye to work continuously and without exhaustion while keeping up the necessary convergence and accommodation. A man is able to make frequent successive repetitions of a bodily effort only when this effort does not lie near the limits of his working capacity. If, for example, one has to set in motion the wheel of some machine which moves with such difficulty that he is able to make it revolve only by the exertion of his whole strength, he will possibly be able to do this two or three times in succession, but then will become exhausted. If a laborer is to keep the wheel in motion for an hour, each revolution of it must not take more than a moderate portion of his entire strength, so that another portion of his strength shall remain in reserve. This fact also holds good for the eyes. It is impossible to use them continuously except for a distance at which the positive portion of the accommodation is at least as great as the negative portion, otherwise exhaustion rapidly supervenes.

When the gaze is fixed upon infinite distance, the negative portion of $A$, is equal to zero, since then the accommodation is completely relaxed. All the relative
accommodation therefore is positive, and accordingly exhaustion of the eyes is impossible. Thus, no one will complain that his eyes get tired from walking.* For a convergence of 30 centimetres, it has been shown above that the positive portion of the relative accommodation \(A_1\) is half as large again as the negative portion, for which reason work can be carried on continuously at this distance without exhaustion. When fixation is made upon an object situated at the absolute near point of the eye, the entire relative accommodation \(A_1\) is negative. A positive or reserve portion of accommodation does not exist in this case, since the whole absolute accommodation \(A\) has been already used up. Hence, we can have distinct vision at our near point for only a moment or two at a time. From what has been said, it follows that work is more exhausting for the eyes the nearer it has to be brought to them.

**Changes of the Accommodation with Age.**

141. The accommodation diminishes with age, and this diminution is manifested by a continuous recession of the near point. The diminution in the accommodation can not be referred to the decrease in the power of the muscles in general and the ciliary muscle in particular occurring in old age, for it begins in youth, and probably even in childhood—that is, at the time when the muscles are still gaining in strength. In fact, the cause of the diminution of the accommodation lies in the gradual decrease of the elasticity of the lens. This, again, stands in causal connection with the condensation of the lens due to loss of water and leading to a process of sclerosis that begins in the center of the lens (formation of a nucleus). The harder the lens becomes in virtue of this process the more its elasticity is impaired, so that even after relaxation of the zonula it becomes less and less able to change its shape.

The state of the accommodation at different ages is shown in the accompanying figure (Fig. 218) taken from Donders. The line \(r r\) shows the position of the far point, the line \(p p\) that of the near point, for all ages from ten to eighty; the distance between the two lines gives the range of accommodation in dioptres at the different ages. The far point remains pretty nearly constant during the whole life—i.e., at infinite distance; but the near point continually recedes, so that the line \(p p\) forms a curve which constantly approaches the line for the far point, until finally it coincides with it. When this occurs the range of accommodation is equal to zero, and the lens no longer changes its shape.

The diminution in the range of accommodation does not begin to be troublesome until the near point has receded so far from the eye that the finer kinds of work become difficult or impossible to do. This

* [That is, no one that is free from refractive or muscular errors. Very troublesome asthenopia may be produced by looking at distant objects, when there are astigmatism and muscular anomalies, particularly hyperphoria and esophoria. — D.]
condition is known as presbyopia.* Since the diminution in the accommodation takes place with perfect uniformity from youth to age, and not by sudden advances, the point of time when presbyopia sets in must be established arbitrarily. Donders has assumed this time to be that at which the near point recedes beyond 22 centimetres \((A = 4.5\ D)\), an event which usually happens about the fortieth year of life. After this time it is hard work to read fine print, and hence glasses are desired.

Presbyopia is not a disease, but a physiological process which every eye undergoes. Persons who are presbyopic push the book farther away from them, like to avoid fine print, and overlook the footnotes. Reading at night gives them special trouble, because the pupils dilate owing to the enfeebled illumination, and hence the diffusion circles are larger. They then try the expedient of bringing the light between the book and their eyes, so as to make their pupils contract by having a large amount of light fall upon them. In the subsequent progress of presbyopia reading or fine work at last becomes absolutely impossible without glasses. Pain, however, or exhaustion does not occur, as it does in hypermetropes. When an eye is not emmetropic, but has an error of refraction, this error shifts the range of accommodation, and hence also the time when presbyopia begins. Reference in regard to

---

* From πρεσβυος, old man, and οφθαλμός, sight.
this point must be made to the chapters upon myopia and hypermetropia.

Presbyopia requires the use of convex glasses for near work. The glass must be strong enough to make the near point come into the place which appears demanded by the work in question. The situation of this depends primarily upon the nature of the work; the finer this is, the closer must the near point be approximated. But in addition to this the visual acuity must be taken into account. If the latter is defective, objects must be brought nearer, so as to make up in size what the retinal image lacks in distinctness.

From the reasons set forth above it follows that it will not do simply to prescribe for each separate age the convex glass that ought to be ordered. On the contrary, we must proceed according to the individual requirements of each case by itself, and determine the glass for it specially. Suppose, for instance, that the subject is sixty years old, and that his near point is one metre from the eye \((D = 1 D)\). The man is a cabinet maker, and in doing his work, which he carries on at arm's length—i.e., at about 50 centimetres—no longer sees distinctly. His near point, therefore, must be brought up to 50 centimetres \((= 2 D)\). As he himself can furnish \(1 D\), it suffices to give him a \(1 + D\) glass (or, better still, \(1.5 D\), so that he may not have to work at his near point, but may have some accommodation in reserve). Perhaps the same man also wishes a glass to read with in the evening when his work is done. For this purpose we must bring his near point up to at least 30 centimetres (3.5 \(D\)), so that he can read ordinary print with ease, and we would therefore recommend him a glass of \(+ 2.5 D\) or \(+ 3 D\).

Many erroneous views, which we must oppose, are prevalent among the laity with respect to the wearing of glasses in advanced life. Some consider it advantageous to begin wearing glasses as late as possible, and this from the fear that when once they begin they will have to keep on using stronger and stronger ones. But as far as this is concerned they gain nothing, whether they begin using glasses at the proper time, or for years struggle along laboriously without them until they can do so no longer. Every presbyope has to increase the strength of his glasses as long as his range of accommodation keeps diminishing. It is only when the range of accommodation has become equal to zero that he can stick to the same glass. It is just as erroneous to believe that by wearing glasses early one can "save" his eyes. Presbyopia goes on its appointed way unaffected by the wearing of glasses or by the nature of those that are worn, and independent of the fact whether the eyes are strained a good deal or not at all by fine work.

In examining Fig. 218 we are struck by the fact that the line \(r r\), representing the far point, does not run straight, as we should expect, but makes a curve. The far point of the emmetropic eye, which lies at infinity, recedes beyond infinity in the decade between fifty and sixty—that is, the refraction of the eye changes and it becomes hypermetropic. This fact has nothing to do with the diminution of accommodation. It depends upon a decrease in the refractive power of the eye, due to a senile change in the lens—a change which is effected by an increase taking place in the density, and hence in the refractive power, of the layers of the latter from within outward. Every ray of light passing through the lens undergoes a new deflection in each layer, so that the entire refraction is much greater than if the whole lens had even the high refractive power of its innermost layers but was at the same time homogeneous. Now, in old age, the process of condensation extends farther and farther from the center to the periphery, and the lens becomes
-constantly more homogeneous, so that as a whole it suffers impairment of its refractive power. The emmetropic eye thus gets to be somewhat hypermetropic, while the myopic eye becomes less near-sighted, and, in fact, slight degrees of myopia may disappear altogether in old age.

Optical variations of the eye from the normal may relate either to its refraction or to its accommodation. The anomalies of refraction are to be strongly differentiated from those of accommodation, with which they are frequently confounded. An eye whose refraction varies from the normal or emmetropic we call ametropic.* There are three varieties of ametropia: myopia, hypermetropia, and astigmatism. When the refraction of the two eyes is different, we speak of anisometropia.

* [From ἄ, privative, μέτρον, a limit, and ἄγω, sight.]
CHAPTER III.

MYOPIA.

142. Short-sightedness (myopia, $M$) is that refractive condition of the eye in which rays that are parallel to each other when they fall upon the eye come to a focus in front of the retina. Hence, when the rays strike the retina, they have already become divergent, and therefore form a diffusion circle upon the latter ($a a_1$, Fig. 219). A distinct image is formed upon the retina only when the rays have a certain degree of divergence as they arrive at the eye, which is the case when they emanate from a point $R$ situated close by (Fig. 219). This point is the far point of the myopic eye—i.e., is the point for which the eye is adjusted when in a state of accommodative repose. Accordingly, the far point in this case lies at a finite distance. The greater the myopia, the farther in front of the retina is the point of intersection of parallel rays, and hence the greater is the divergence that rays must have in order to unite upon the retina, and hence, too, the nearer to the eye must

![Fig. 219.—Path of the Rays in a Myopic Eye.]

the far point ($R$) lie. Consequently the degree of myopia is determined by the distance of $R$.

Determination of Myopia.—The distance of $R$ from the eye can be measured directly by placing fine print before the eye and gradually withdrawing it until it becomes too indistinct to be read. This method, however, has serious defects, so that we prefer to determine the position of $R$ by means of concave glasses. Let us assume that the eye has such a degree of myopia that its far point is 50 centimetres in front of the
eye (Fig. 220, $F'$); the rays, then, that emanate from this point come to a focus upon the retina (at $f$). How can we manage to have this eye see parallel rays distinctly—i.e., have them focused upon the retina? Evidently by giving them the same direction as if they emanated from the far point. This is effected by placing before the eye

![Diagram](image)

**Fig. 220.—Correction of Myopia by a Concave Glass.**

a concave glass of 50 centimetres, focal distance—i.e., of $-2D$. By this glass parallel rays are rendered as divergent as if they emanated from its focus (see page 662). This lies 50 centimetres in front of the glass—that is, at the same spot at which the far point of the eye is situated (at $f$). Accordingly, parallel rays acquire the same direction as if they emanated from the far point of the myopic eye, and are hence focused upon the retina of the latter so as to form a distinct image. (In this discussion the distance of the glass from the eye is neglected.)

The deduction made in the foregoing example holds good for all degrees of myopia. The following rule may therefore be enunciated: A myopic eye sees distinctly at infinite distance with that concave glass whose focal length is equal to the distance of the far point from the eye. And conversely: The focal length of that concave glass with which the myopic eye sees remote objects distinctly gives the distance of the far point from the eye—i.e., the degree of myopia. If a man sees remote objects distinctly with $-5D$, his far point is 20 centimetres ($100 + 5 = 20$). But in designating the degree of myopia we do not usually give the position of the far point, but give directly the refractive power of the correcting glass—writing, therefore, $M = 5D$.

If a glass of $-6D$ is placed before an eye whose $M = 5D$, such an eye would still see clearly at a distance; the extra strength of $1D$ being neutralized by a corresponding effort of the accommodation. Since in myopia there is often a tendency to accommodate, it is by no means rare to find myopes who are wearing glasses that over-correct. In order not to fall into the same mistake in determining myopia, and thus make the latter greater than it really is, we must regard as the correcting glass
the weakest concave glass with which the myope sees distinctly at a distance. Hence, in determining myopia we proceed as follows: We place the myope at a distance of 6 metres from Snellen's test card, and keep putting concave glasses before his eyes, beginning with the weaker ones and gradually advancing to those that are stronger, until the best vision is obtained which can possibly be secured in this special case. The weakest concave glass with which this vision is obtained gives the degree of myopia.*

This method of determining myopia, which was instituted by Donders, is the one generally employed. It is pretty tedious, since we are obliged to go gradually from weaker to stronger glasses, and frequently, therefore, have to place quite a large number of glasses before the eye before we get to the one that corrects. Hence, some have conceived the idea of determining not only myopia, but also the refraction generally in a more expeditious way, namely, by the use of various apparatus which are called optometers. These are constructed upon various principles. Most consist of a test object at which the eye looks through a single lens or through two lenses combined. The rays which enter the eye can be given a parallel, convergent, or divergent direction, and so adjusted to suit the different refractive errors that may exist, either by altering the place of the test object or by shifting the lenses. The refraction is then simply read off from a scale which is attached to the instrument. In spite of the advantage accruing from the almost instantaneous determination of the refraction which these instruments afford, they have not become popular, because the refraction as found by them is regularly too high; for the person who is looking into the instrument exerts, without being aware of it, some effort of accommodation. Hence, if we desire to find the true refraction—i.e., the refractive state of the eye when the accommodation is relaxed—we are obliged first to paralyze the accommodation with atropine, a procedure which causes the patient considerable discomfort and annoyance.

The determination of myopia by glasses or optometers is called the subjective method, because it is dependent upon the statements of the patient. For this reason its results are not always exact. It often happens that, by the patient straining his accommodation, a higher degree of myopia is simulated than really exists. Moreover, we are dependent upon the patient's good will and intelligence. Frequently we are dealing with malingerers, who purposely try to make their myopia appear too high, in order to escape military service. Again, in small children this method is not applicable. For such cases the

* [This is the rule, provided the accommodation is still active. If the accommodation is completely paralyzed by atropine, or homatropine, the rule is the reverse—i.e., the strongest concave glass with which the best vision is attained gives the proper correcting glass for the patient to wear when his accommodation regains its power. See also § 148 A.—D.]
MYOPIA.

Objective method, which consists in the determination of the refraction by means of the ophthalmoscope [or shadow test], and which is therefore independent of the statements of the patient (pages 18–24) is suitable. And even when the degree of myopia has been already determined by the subjective test, the result should in every instance be verified by the objective test for the refraction.

Causes of Myopia.—The fact of parallel rays coming to a focus in front of the retina, which constitutes the essence of myopia, may in general arise in two ways:

1. The refractive power of the eye is abnormally great, so that parallel rays are made too convergent, the retina in this case being in its normal situation. The cause of the increased refractive power may lie in the cornea or in the lens. In the cornea it is increased curvature that leads to myopia. This, therefore, is found in ectases of the cornea of the most diverse sort, but to the greatest degree and most obviously in keratoconus, because in this condition the cornea at the same time retains its transparency. Myopia caused by increased curvature of the cornea is always associated with a considerable degree of astigmatism.

The lens can cause abnormal elevation of the refractivity of the eye either through increased curvature or through augmentation of density. The following cases are to be regarded as belonging in this category: (a) In luxation the lens takes on an increased curvature because the tension exerted by the zonula is removed. If the case is one of luxation into the anterior chamber, the forward displacement of the lens contributes to the increase in refractive power, since with the lens the nodal point of the whole dioptric system is shifted forward. (b) Accommodation, which increases the curvature of the lens, may be kept permanently in action, and as long as this spasm of accommodation continues myopia will be present. The latter disappears when the accommodation is paralyzed by atropine. (c) Myopia due to increase in density of the lens not infrequently sets in at the beginning of senile cataract (see pages 399 and 414).

2. The refractive power of the eye may be normal, so that parallel rays come to a focus at the customary spot, but the retina may lie too far back. The cause of this is an elongation of the axis of the eye, for which reason this sort of myopia is called axial myopia. The distention of the sclera, to which the elongation of the eye is due, may affect either its anterior or its posterior division. We find the former condition after scleritis, in which the zone of sclera which adjoins the cornea is softened by inflammation, and then distended by the intracocular pressure (see page 230). But by far the most frequent site of the distention is in the posterior division of the sclera, which is bulged out posteriorly, forming the staphyloma posticum of Scarpa. This is the ordinary typical form of myopia, which therefore deserves special mention.
TYPICAL MYOPIA.

143. Myopia sees indistinctly at a distance, because of the presence of diffusion circles. To make these smaller, and thus see better, they screw the lids together, and in this way produce a stenopeic slit. In fact, it is from this habit of blinking that the name myopia* takes its origin.

Myopes see well near by, and, moreover, have the advantage that they need use little or no accommodation for this purpose. The range of accommodation has the same relation in the myopic eye (if the high degrees of myopia are excepted) as in the emmetropic eye. Only, since the far point lies at a finite distance, the whole region of accommodation is placed closer to the eye, as can be seen from Fig. 214 (No. 3), in which the region of accommodation lies between 10 and 5 centimetres in front of the eye. In working at close range, therefore, the myope needs to use less accommodation than the emmetrope, or even no accommodation at all. Suppose, for instance, that work has to be done at a distance of 20 centimetres. In this case the emmetrope requires an accommodation of 3 D \( (100 + 20 = 3) \). A myope whose myopia equals 1 D needs only 2 D of accommodation, and one having a myopia of 3 D needs none at all, since his far point lies at the working distance. As soon, therefore, as myopia has reached a certain degree, the accommodation ceases to be used (it being presupposed that no glasses are worn). Hence, in myopia of high degree the range of accommodation is, as a rule, not normal, but diminished.

For the same reason, in myopes presbyopia sets in later than in emmetropes, or does not set in at all. To be sure, the diminution in elasticity of the lens is produced in a myopic eye just the same as in any other, but practically it does not make itself so perceptible. If a man has a myopia of 4 D, his far point lies at 20 centimetres, and will always remain there though he be ever so old. During his whole life, therefore, there will be distinct vision at this distance, the only difference from what existed previously being that the patient, when at an advanced age he has lost his power of accommodation, will no longer be able to see closer than 20 centimetres—a thing, however, which there is no necessity of his doing in any case. Such a myope, therefore, does not become presbyopic at all. Those having myopia of less degree do become presbyopic, but do so later than emmetropes. The point of time when presbyopia sets in—i.e., when the near point recedes beyond 20 centimetres—can easily be calculated for each individual case if we know the degree of myopia and the amount of the range of accommodation at different ages.

The troubles that myopes complain of vary according to the degree

* From μηδέν, to shut, to blink, and εὖ, sight.
of myopia. In the lower grades of myopia distant vision is indistinct, and yet often suffices for ordinary purposes, so that many myopes of this sort do not use glasses. For near work moderately near-sighted eyes are generally regarded as serviceable, because they do their work with less accommodation, and, moreover, either become presbyopic late or do not become so at all.

It is otherwise with the high degrees of myopia. In this case not only is the complaint made of indistinct vision at a distance, but also of inability to keep on with work near by for any length of time; for, owing to the short distance from the eyes at which the far point lies, a considerable effort of convergence is required—an effort which, moreover, is often rendered difficult because the impulse to converge is diminished, owing to the abolition of the accommodation. Hence, a latent divergence and, as a result of it, troubles symptomatic of muscular asthenopia develop. By a transformation of this latent divergence into a manifest one, a strabismus divergens may be set up, a condition, therefore, which is most frequently met with as a result of marked myopia.

In myopia of high degree it is often the case that satisfactory distant vision is not attained even by glasses, because morbid changes exist in the fundus. For the same reason, vision close by is frequently defective in spite of the great approximation of the object. Moreover, complaint is made of rapid exhaustion of the eyes, of great sensitiveness to light, and of muscae volitantes. The last-named phenomenon is also, to be sure, found in healthy eyes (see page 434); but the myopic eye is more prone to see muscae volitantes, and sees them in greater number. This arises from the fact that myopic eyes without glasses see everything indistinctly; and upon a hazy background, such as is produced by this indistinct vision, opacities are better projected; moreover, in the higher degrees of myopia pathological opacities of the vitreous are apt to be present. Muscae volitantes are
not infrequently a source of constant annoyance and worry to myopic patients.

Objective examination of a near-sighted eye shows that it is longer than normal (Arlt). The elongation is produced, as dissection of such eyes shows, by the distention of the sclera at the posterior pole (Fig. 231). In marked myopia the enlargement of the eyeball is recognizable even in the living eye. The eye projects far forward (pop-eye); and when it is turned well in toward the nose, so that the equatorial region appears in the outer portion of the palpebral fissure, this does not, as in the case of the normal eye, make a sharp curve in turning backward, but runs back without much curving—almost straight, in fact. Very myopic eyes are also usually characterized by a deep anterior chamber and a dilated pupil.

The most important changes in myopia are those which are situated in the fundus and can be recognized by ophthalmoscopic examination. These, as a general thing, are the more extensive the higher the degree of the myopia. They affect above all the choroid and retina, which become atrophic, both in the vicinity of the papilla and in the region of the macula lutea (see pages 343–345). The latter spot, moreover, is the favorite seat of retinal hemorrhages. Numerous floating opacities are formed in the vitreous, the latter at the same time becoming liquefied. The consequences of the degeneration of the vitreous make themselves apparent both in the lens and in the retina. In the former there develop opacities, and, as a result of the atrophy of the zonula of Zinn, tremulousness and even luxation; in the retina, detachment occurs.

Most cases of myopia are those of low degree, which develop during youth and come to a stop after the completion of the body growth (stationary myopia). In other cases, however, the myopia attains a considerable height even in youth, and then does not remain stationary, but increases steadily during the whole life, so that finally it reaches the greatest possible degree (progressive myopia). It is mainly these cases that lead to destructive changes in the interior of the eye, and that cause myopia to appear in the light of a disease of the eye, and of a severe disease, too, which in advanced age often gives rise to amblyopia or even blindness.

144. Causes of Myopia.—Myopia is only exceptionally congenital, elongation of the eye in that case existing at the time of birth. The rule is that myopia develops in youth at the time when, as the whole body is growing rapidly, considerable demands are at the same time made upon the eyes by school life or by work. It has been established by many observations that acquired near-sightedness is found almost exclusively in those persons who are compelled to strain their eyes with near work. Such are, on the one hand, the members of the cultivated classes who apply themselves to study; and, on the other hand, working people, like tailors, seamstresses, compositors, lithographers, etc., who
have fine work to do. There is thus no doubt but that the cause of myopia is furnished by near work. Here two factors come in for consideration, namely, the accommodation and the convergence, by the combined action of which the distention of the posterior pole of the eye is effected. But, although straining of the eyes in near work is the cause of myopia, not all but only a fraction of those who are subjected to this strain actually become near-sighted. In this fraction, therefore, special additional factors must be present which favor the development of the myopia due to near work. The following are the factors of this sort that we know of: 1. A predisposition to myopia, which doubtless has its seat in definite anatomical conditions, such as too slight resistance of the sclera, peculiarities in the relations of the ocular muscles or of the optic nerve, etc. Since anatomical peculiarities are prone to be inherited, the hereditary character of myopia is also readily explainable. The children of near-sighted parents are not, to be sure, born near-sighted; but if they are exposed to those conditions which favor the development of near-sightedness, they show a greater tendency to become myopic than do the children whose parents have normal sight. 2. Those circumstances which compel too great approximation of the work, and thus require an abnormally great accommodation and convergence. This is the case when particularly fine work has to be done, or when work is carried on with insufficient illumination, and also when the visual acuity is diminished (by macula of the cornea, opacities of the lens, astigmatism, etc.), so that it becomes necessary to bring the objects closer than usual (see page 673). 3. Latent divergence [exophoria, convergence insufficiency]. The greater the myopia, and hence the nearer the point at which objects have to be held, the greater the effect which this factor exerts. It impedes the act of convergence, and in this way accelerates the progress of the myopia. 4. Spasm of the accommodation at first simulates myopia and afterward generally passes into actual near-sight. It arises from the fact that the accommodation is kept strained upon close work for many hours every day; then, finally, it happens in young persons suffering from this accommodative spasm that they are no longer able to relax their accommodation completely, so they still accommodate when they are looking at the distance, and hence appear to be near-sighted, although they are really emmetropic, or even hypermetropic; and if they are actually near-sighted, a still higher degree of myopia is simulated because of the spasm. The existence of a spasm of accommodation is discovered by our finding the myopia to be higher when we make the subjective test with glasses than when we determine it objectively with the ophthalmoscope, for the accommodation is usually completely relaxed during the examination with the ophthalmoscope, so that the eye manifests its true refraction. The test of the correctness of our determination is the instillation of atropine, which paralyzes the accommodation and thus removes the
spasm, so that when the examination with glasses is made the true refraction is found.

**Treatment.**—It is impossible to do away with the elongation of the eyes, that forms the basis of myopia. We must confine ourselves to making provision by means of suitable glasses for distinct vision, and to procedures that will enable close work to be carried on as far as may be without exhaustion. Moreover, the progress of the near-sight must be checked as far as possible, and any complications present be attacked.

The following principles hold good with reference to the wearing of glasses by myopes: In the low degrees of near-sight (up to about 2 $D$) it is sufficient to order glasses for distance, provided that any desire for them is expressed. For near work glasses are unnecessary, since vision can be carried on without them at a sufficient distance—that is, up to or beyond 50 centimetres. In the medium degrees of near-sight—i.e., from 2 to about 7 $D$—glasses are necessary for distance, and they are often desirable for near work as well; for otherwise the work would have to be held too close, and would thus require great convergence which might give rise both to exhaustion of the eyes and to progressive increase of the near-sight. If the eye is otherwise healthy, and the range of accommodation is large enough, a glass is prescribed which can be worn constantly for both distant and near points. This glass ought not quite to correct the myopia—e.g., in a myopia of 5 $D$ a glass of, say, $-4$ $D$ would be given.* If the range of accommodation is small, either on account of advanced age or from other reasons, the glass which nearly corrects the myopia will not be borne for near work. Near-sighted persons who have worn the same glass constantly for many years find that, as they become older, reading with this glass becomes more and more difficult. In such cases two sets of glasses must be ordered: a stronger one, which almost corrects the myopia, for far points; and a weak one, for near work, which removes, the working distance to the point desired. The same rule holds good for the high degrees of myopia, in which, likewise, different glasses must be prescribed for far and near. When, owing to complications, the visual acuity is greatly diminished, glasses are in any case of little or no use.

Prescribing glasses for near-sighted persons requires much experience and a careful consideration of all the attendant conditions. In no case should the choice of glasses be left to the optician.

---

* [From a large body of statistics collected in this country it has appeared that the full and early correction of myopia tends to check the progress of the process. It is therefore becoming a more and more prevalent practice here to correct myopia fully, even when of slight degree, and, as far as possible, to get the patient to use the same glass for distance and near. In this way the eyes are placed under more normal conditions both for distant and near vision and also as regards its accommodative functions. The result of this practice in individual cases has proved eminently satisfactory. See also § 148 A.—D.]
In addition to the selection of glasses, the regulation of the patient's habits, both as regards his general condition and his eyes, must be attended to. This is the more important the greater the myopia is, and the more reason there is to apprehend its progressive advancement and the development of complications. And, first of all, near work must be restricted as much as possible. Such work as has to be done under any circumstances should be performed at the greatest possible distance from the eyes. To effect this we must see to it that the print of the books is good, that the illumination is sufficient, that the correct position is maintained in reading and writing, etc. Work in the evening by artificial light must be restricted as far as possible. It is very advantageous to interrupt the work at frequent intervals and rest the eyes by looking at a distance. If it is apparent that the near-sight is making rapid progress and threatens to reach a still higher degree, it is advisable to drop all studies for quite a long time. If spasm of the accommodation exists, intervals of this sort can be utilized for treatment with atropine. Young people with markedly progressive myopia should be warned to take the condition of their eyes into account in choosing a profession. An occupation, like that of civil-service clerk or one of the learned professions, that requires constant reading and writing, is not suitable for people of this sort.

In the highest degrees of near-sightedness, we may remove the lens by discission, even if it is still transparent (Fukala). The operation is a suitable one for young persons, whose myopia amounts to more than 15 D, and who do not show excessive pathological changes in the fundus. The eye may thus be brought nearly to the point of emmetropia, so that it is able to see distinctly at a distance without any glass. We must not, however, overlook the fact that by this operation we sacrifice the accommodation, and that the operation does not act to check the increasing elongation of the eyeball and the consequent changes in the fundus.

The anatomical demonstration of the enlargement of the myopic eyeball was first made by AruK, and thus the nature of myopia was established (1854). Scarpa, to be sure, had already at an earlier date (1807) observed the ectasia of the posterior pole of the eye peculiar to myopia, but did not recognize it as the cause of the latter. The size of this ectasia is in direct ratio to the degree of the myopia. In near-sight of moderate amount the ectasia is limited simply to the posterior pole of the eye; but in the higher degrees of myopia the ectasia (e e, Fig. 221) extends until the optic nerve is implicated, and gets to lie upon the side of the protrusion. The elongation of the eyeball due to the ectasia may be very considerable; there are eyeballs which have an axial length of upward of 35 millimetres, while the normal eye is only 24 millimetres long.

The most striking feature presented by microscopical examination of the ectasia posterior segment of the eyeball is the displacement of the sclera with reference to the optic nerve. It looks as though the trunk of the nerve had been pulled away from the foramen sclerae and toward the nasal side; and, as the head of the optic nerve is fixed in the foramen sclerae, the effect of this traction is that the nerve itself is made to bend at its extremity (Figs. 221 and 222). The external sheath is thus drawn away from the trunk of the nerve, particularly at the temporal side; for, as the optic nerve is displaced to the nasal side, it is carried farther and farther away on its temporal side from its outer sheath, which is derived from the sclera.
ANOMALIES OF REFRACTION AND ACCOMMODATION.

A. OPHTHALMOSCOPIC IMAGE OF THE PAPILLA.—The papilla, b-c, is of the shape of an ellipse with its long axis vertical. In its outer half it shows the large physiological excavation, upon whose floor are visible the gray stipplings of the lamina cribrosa, while the central vessels ascend on the inner wall of the excavation. Adjoining the inner border of the papilla and not sharply separated from it is the bright crescent, a-b. This is of a white color, while the papilla itself is reddish. The crescent is covered with brownish, elongated markings, representing remains of the stroma pigment of the chorioid. The temporal border of the crescent is sharply defined, and the chorioid adjoining it is somewhat more pigmented than usual. On the other hand, the chorioid in the vicinity of the nasal border of the papilla shows a somewhat lighter coloration in the space between c and d, so that a yellowish crescent, which, to be sure, is not much more than a suggestion of one, is formed on the nasal side of the disk (superficial crescent).

B. LONGITUDINAL SECTION THROUGH THE HEAD OF THE OPTIC NERVE. Magnified 14 × 1. Here the displacement of the optic nerve with relation to the aperture in the sclera and chorioid designed for its passage is obvious. The optic nerve funiculi, wherever they consist of medullated fibers, are colored black by Weigert's hematoyxlin stain; between them can be seen the septa, which remain unstained, and the longitudinal sections of the central artery and central vein. The black staining ceases abruptly at the lamina cribrosa. In front of the lamina cribrosa the head of the optic nerve presents the physiological excavation. This is a depression whose floor at its deepest part is formed by the lamina cribrosa. The temporal wall of the excavation slopes down quite gradually from the retina. The nasal wall declines abruptly, and shows the cross section of the central vessels. The trunk of the optic nerve is inserted obliquely into the eyeball, a fact that is particularly evident when comparison is made with Fig. 9 B. This obliquity affects all parts of the nerve, but is most pronounced in the spot where it traverses the sclera and chorioid. The foramen sclerae is properly a short canal, and in the normal eye its walls converge from behind forward (Fig. 9 B); but here, owing to the displacement of the nerve, they get to have an oblique course running from the nasal toward the temporal side. The temporal wall, therefore, is turned somewhat forward, and hence, since the overlying retina is transparent, comes into view when looked at from in front (with the ophthalmoscope), forming a bright crescent extending from b to the point c, where the pigment epithelium begins. The stroma pigment of the chorioid extends somewhat farther inward than does the pigment epithelium, and is consequently seen under the form of brown spots upon the bright disk of the crescent. The nasal wall of the scleral canal is turned partly backward, so that it has to pass in front of the most nasally situated portion of the optic nerve, c-d. As the displacement affects not only the aperture in the sclera but also the chorioid, the latter is also drawn up over the nasal border of the optic nerve as far as the point c. Since now this nasal portion of the papilla, being covered by the sclera and chorioid, is not distinctly visible with the ophthalmoscope, the papilla appears contracted in its horizontal diameter. Nevertheless, the portion of the optic nerve that is thus concealed glimmers through its covering, so as to be distinguishable under the form of an ill-defined yellowish crescent at the nasal border of the papilla (c-d). The displacement of the optic nerve with reference to the sclera is shared in by the sheaths of the nerve. The dural sheath, du, and the adjoining arachnoid sheath, ar, are separated from the nerve, especially at its temporal side, and the intervaginal space, e v, is consequently dilated. On the other hand, the pial sheath, p, lies in close apposition to the nerve.
Hence, on the temporal side a marked dilatation of the intervaginal space is produced. This same displacement is recognizable in the choroid, from the fact that the latter is drawn away from the optic disk on the temporal side, so that the atrophic crescent is produced there, while at the nasal border the choroid is not infrequently drawn up over the optic disk (Fig. 222). The sclera, wherever it happens to lie within the octasia, becomes attenuated, so that often it is only as thin as paper. The superjacent choroid and retina present in the main the appearances of atrophy together with slight inflammatory changes; in the later stages both membranes are reduced to a thin pellicle almost destitute of pigment. The vitreous in its posterior division is detached from the retina, and the space thus formed is filled with liquid (posterior detachment of the vitreous; b, Fig. 221).

The anterior segment of a very myopic eye, as far back as the ciliary muscle, is normal (Iwanoff). This muscle has a smaller transverse diameter than in the emmetropic eye, since the circular fibers are less developed, and are sometimes, indeed, almost entirely wanting (Fig. 224). These circular fibers, in fact, are mainly the ones whose function it is to provide for accommodation; and as accommodation is but little employed in a myopic eye, they are not properly developed there. But as the ciliary processes, too, in the myopic eye are not as large as usual, the whole ciliary body appears abnormally flat (Fig. 221). In hypermetropic eyes the opposite condition exists. In these, Müller’s portion of the ciliary muscle is hypertrophied by constant accommodative effort, and thus the whole muscle is increased in size; and as the ciliary processes, too, are more fully developed, the entire ciliary body projects farther toward the interior of the eye (Fig. 225). A comparison of Figs. 224 and 225 with each other and with Fig. 223, which represents the ciliary body of an emmetropic eye, shows how the shape of the sinus of the anterior chamber is determined by the form of the ciliary body. In a myopic eye the sinus is deeper, in a hypermetropic eye shallower, than in the emmetropic eye. This relation, which can also be observed macroscopically in the living eye, is held to be of importance in the genesis of glaucoma. We know that in the latter condition the iris is pushed against the cornea, and the sinus of the anterior chamber is obliterated, owing to swelling of the ciliary processes (see page 377). Obviously the larger the ciliary processes and
the narrower the sinus of the anterior chamber the more readily will this result take place. In this fact is probably contained, at least in part, the reason why hypermetropic eyes are very frequently, and myopic eyes, on the contrary, are very rarely indeed, attacked by inflammatory glaucoma.

The ophthalmoscopic and anatomical changes which make their appearance in the higher grades of myopia render it evident why the visual acuity is almost never found to be normal in very marked near-sight. Among the laity there is a belief that near-sight diminishes in age; but this is true only for the lowest degree of myopia. In advanced age the emmetropic eye, owing to diminution in the refractive power of the lens, becomes hypermetropic (see page 688); consequently, in a myopic eye the myopia must diminish. Myopes, however, often believe that they are becoming less near sighted because they see better at a distance without glasses than they used to do, and yet testing with glasses shows no diminution in the myopia. This improvement in vision depends upon the fact that in old age the pupils become more contracted, and hence, when looking with the naked eye, the diffusion circles are smaller. But all persons who have a great degree of near-sight see worse and worse as their age increases, because not only is the myopia augmented, but the complications of myopia tend to develop more and more.

Near-sight of any high degree incapacitates the subject for military service. In Austria, according to the military regulations of 1888, capacity for every branch of the service is held to exist when the myopia of the more near-sighted eye is not more than that represented by an approximation of the far point equal to 25 centimetres ($M = 4 D$). For the one-year volunteers this limit for the far point is reduced to 20 centimetres ($M = 5 D$), and for surgeons, apothecaries, and veterinary surgeons, to 15 centimetres ($M = 6.5 D$). Moreover, recruits are admitted, although only to the reserve corps, whose far point varies between 25 and 20 centimetres ($M = 4$ to $5 D$) while any higher degree of near-sight excludes them altogether from actual military service. The visual acuity is also taken into account. Those only are regarded as available for all purposes who have at least vision $= 2/3$ in both eyes (after correction of any existing ametropia). Any one whose vision in the better eye is only $2/3$, and in the worse eye at least $2/3$, may be admitted to the reserve corps, while diminution of the visual acuity below this standard incapacitates the candidate for military service.

In Germany a myopia in which the far point in the better eye is distant 15 centimetres or less ($M = 6.5 D$ or more) is regarded as permanently incapacitating the candidate from military services. A less degree of near-sight than that above given renders a man conditionally fit for service if the visual acuity amounts to more than half of the normal (German army orders of November 22, 1888).

Near-sightedness is so widespread and important a disease that it has received an amount of investigation which, for extent and for thoroughness along all lines of research, few other diseases can equal. The main thing that these numerous investigations have proved is that near-sight is an attribute of culture. In the country, for example, we encounter fewer people with glasses than we do in the city. In the latter, again, it is the schools which are the main hotbeds for the propagation of near-sightedness. Cohn by his extensive researches was the first to direct general attention to this fact. Since then statistical researches in regard to myopia have been published in almost all countries—researches which extend to all classes of every condition and every age, even including newborn children. It has been proved that among newborn children myopia practically never occurs; in fact, they are almost without exception hypermetropic. Near-sightedness is acquired later in life through straining the eyes, and hence fails to occur when this strain is absent. In savage nations near-sightedness no more occurs than it does among
MYOPIA.

children. Again, in the lowest order of schools—the common schools—there are extremely few near-sighted persons, and the same is true of the rural population, whose education does not, as a rule, get much beyond the common school. The school most dangerous for the eyes is the high school. It is in this that myopia first develops and then increases, both as regards its intensity and as regards the number of myopes in proportion as we ascend the classes. In Germany about twenty per cent are myopic in the lowest classes of the high schools and sixty per cent in the highest classes. In going into the higher classes the scholar who is already near-sighted becomes more and more so; and, furthermore, new scholars are constantly being attacked with myopia. In the university the conditions are still more unfavorable. Near-sight acquired as a result of study thus rightly bears the name of "school myopia."

Continuous employment of the eyes upon fine work exerts the same influence as do schools. Among lithographers Cohn found forty-five per cent and among compositors fifty-one per cent to be myopic.

The male and female sex are equally predisposed to myopia. It is true that fewer near-sighted women are seen than near-sighted men. This is partly due to the fact that the course of study among women is shorter; but in part the difference between the sexes which makes it seem as though there were but few near-sighted women is apparent only, since women are unwilling to do what they regard as unfashionable and put on glasses. But whatever may be the influence of sex, it is assumed that certain races, and chief among them the Germans, are more predisposed to myopia than others are.

The great prevalence of near-sight, particularly among the young who are engaged in studies, has justly excited widespread anxiety and led to endeavors to put a stop to the extension of the evil. First of all, the excess of work which many scholars have at present to struggle with should be reduced to the proper standard. The way in which scholars are overtasked, both in school and at home, is admitted by most, and is prejudicial not only to the eyes, but also to the boy's whole mental and physical development. Instruction ought not to be begun too early (if possible, not before the completion of the sixth year), and more time should be allotted to bodily exercise, especially in the open air, than has hitherto been the case. The hours set apart for this latter purpose should alternate suitably with the hours devoted to sedentary occupations, so as to serve as a rest from both mind work and eye work. That amount of work which absolutely has to be done should be done under the most favorable conditions. To accomplish this, special attention must be paid to the schools, since the work done at home is beyond our control. The requisites which in many modern schools are already carried out are: 1. Good illumination—i.e., illumination of sufficient strength and falling upon the work in the proper direction; the light should come mainly from the scholar's left side. 2. Well-constructed seats and tables, which, furthermore, should be adapted to the varying size of the scholars, so that they may not be forced to adopt a bad attitude of the body. If, however, the scholars do bend forward too much, especially in writing, the use of some straightening appliance (that of Kallmann, in Breslau, is the best) is indicated. 3. A proper method of instruction in writing which will enable the pupil to keep the head and body straight while writing (upright script). 4. Good print. Books having too fine print, and also too fine fancywork for girls, should be banished from schools.

While no one doubts that near work produces near-sight, observers have not been able to agree as to how it does it. As regards this point different theories have been propounded, each one of which probably contains one or more points that are correct, although none is perfectly satisfactory. Those who accuse the accommodation of being the cause of myopia declare that during accommodation
the intra-ocular pressure is somewhat elevated. If this process is frequently repeated, it may lead to distention of the posterior portion of the sclera where it is most yielding. According to Von Graefe, inflammatory processes in the choroid and sclera (scleroto-choroiditis posterior), by which the sclera is rendered softer, are also to be considered in this connection. Others believe that it is not so much the accommodation as the convergence that should be made accountable for the development of myopia, inasmuch as in convergence a pressure is exerted upon the eyeball by the external ocular muscles, which leads to its distention. It has been supposed that either the internal and external recti which in the act of convergence are stretched more tightly over the eyeball, or the two obliques which surround the eyeball, like a sort of noose, may produce this effect. The muscles last named are, furthermore, so situated that they press upon the points of exit of some of the veins vorticos from the eyeball, and may thus produce venous congestion in the latter. Convergence might, however, produce distention of the posterior pole of the eye in another way—namely, by the fact that the latter is displaced outward, and consequently is pulled upon by the optic nerve. This action would be particularly looked for when the optic nerve is, relatively speaking, too short (Hamer, Weiss). This view gains in weight from the result of anatomical investigations which show changes in the head of the optic nerve, that must be referred to tension exerted in the direction mentioned.
CHAPTER IV.

HYPERMETROPIA.

145. Far-sight, hypermetropia* (H), is that refractive condition of the eye in which parallel rays falling upon the eye come to a focus behind the retina (at f, Fig. 226). Properly speaking, the rays do not come to a focus at all, since the conical beam of rays has its apex truncated by the retina, and a diffusion circle is formed there. Hypermetropia is the opposite of myopia; in the former the apex of the cone of rays lies behind the retina, in the latter in front of it.

What sort of rays, then, can come to a focus, so as to form a distinct image upon the retina? When we try the experiment of bringing an object from infinite distance closer to the eye, we find that it becomes more and more indistinct; for, the more divergent the rays are when they reach the eye, the farther behind the retina will they be when they come to a focus (thus in Fig. 226 the rays coming from O come to a focus at f₁), and hence the larger will be the diffusion circles. Accordingly, the hypermetropic eye can not, without the exercise of accommodation, see either distant or near objects distinctly. For rays to come to a focus upon the retina of a hypermetropic eye, they must have a certain degree of convergence as they fall upon the eye (e e, Fig. 227). How great must this convergence be? To ascertain this we must pro-

* [From ὑπερ, in excess of, μέτρον, measure, and ἀφ', sight.] Also called hyperopia [from ὑπερ and ἀφ'].

45

705
long the rays until they meet. This would occur at a point \( R \) (Fig. 227) situated behind the retina. The distance of this point from the eye gives us the measure for the degree of convergence of the rays that is requisite in order that the latter should meet upon the retina. This point is, accordingly, the far point, \( R \)—i.e., the point for which the hypermetropic eye is adjusted when in a state of accommodative repose. It is at a finite distance, just as is the far point in myopia, but is behind the eye and not in front of it, as in myopia. The difference between the two consists in this, that in myopia the rays that are brought to a focus by the eye emanate from the far point, while in hypermetropia they converge to the far point. The far point in hypermetropia, therefore, is not a point from which the rays actually start or at which they actually unite, but is an imaginary point which is simply adopted to indicate the direction of the rays. We say, therefore, that the hypermetropic eye has only a virtual far point, and we designate it by the negative sign: \(- R\).*

_Determination of Hypermetropia._—The greater the hypermetropia, the greater must be the convergence of the rays that come to the eye for them to unite upon its retina, and the nearer, therefore, to the posterior pole of the eye must be the point of union of these rays, if they are supposed to be prolonged without undergoing refraction. Now this point of union is the far point. The degree of hypermetropia is determined, therefore, just like the degree of myopia, by the distance of the far point from the eye; in both cases the error of refraction is the greater the nearer the far point is to the eye. The only difference is that in myopia the far point lies in front of the eye, and in hypermetropia behind it. For this reason the distance of the far point can not in hypermetropia be measured directly as it can in myopia. We are forced to determine it indirectly by means of the test

*The points \( f \) and \( f' \), in Fig. 226, which likewise lie behind the eye, have nothing to do with the far point, but are simply the foci for parallel or divergent rays incident upon the hypermetropic eye.
HYPERMETROPIA.

with glasses. In doing this we start as in correcting myopia with the attempt to cause such a refraction of parallel rays by means of the lens that they shall come to a focus upon the retina. Obviously a convex lens is required for this purpose, since this alone is able to render parallel rays convergent. If the far point of the hypermetropic eye lies at $-50$ centimetres ($R, \text{Fig. 227}$), we would have to take a lens of 50 centimetres’ focal length ($= 2D$). Parallel rays ($\infty \infty$, Fig. 227) falling upon the lens will be so refracted by the latter as to converge toward its focus, which lies 50 centimetres behind the eye—i.e., at the same spot as the far point. These rays will therefore be brought to a focus upon the retina. In this discussion, for the sake of simplicity, the distance of the glass from the eye has been neglected.

As the same thing can be proved for hypermetropia of any other degree, the following statement may be enunciated as a general law: To see distinctly at infinite distance the hypermetropic eye requires that convex glass whose focal length is equal to the distance of the far point from the eye. Accordingly, the glass that corrects the hypermetropia gives through its focal length at once the position of the far point and the degree of the hypermetropia. We express the latter by the number of dioptries which the correcting glass represents; and hence say a hypermetropia of $2D$, not a hypermetropia with far point at 50 centimetres.

While it was said above that hypermetropes can see neither distant nor near objects distinctly, this statement only holds good when no accommodation is made; for by means of his accommodation the hypermetrope is able to increase the refractive power of his eye precisely as if a convex glass had been placed in front of it; he can correct his hypermetropia by accommodation. This fact renders the exact determination of hypermetropia difficult. If we examine the same individuals at different times for hypermetropia, we find that it is not always of the same degree. For example, it may happen that in a young hypermetrope the hypermetropia to-day is found to be $1.5D$, a little while after $1D$, and to-morrow perhaps $2D$. Which of these findings are the correct one? If we instill atropine several times and again make the examination, we now find the hypermetropia to be constantly the same but considerably higher than before—e.g., $4D$.

The only possible reason for the fact that the hypermetropia as determined by us before atropinization was too low is that a part of this hypermetropia is concealed all the time by the accommodation. The hypermetrope is so accustomed to accommodate that he is unable to relax his accommodation completely even when convex glasses are placed in front of the eye, which render his accommodation superfluous, or even a disadvantage. Thus, with a glass which completely corrects his hypermetropia, the hypermetrope sees at a distance no less badly, and as a general thing much worse than with his naked eye. If we
begin by placing very weak convex glasses before his eyes and then gradually use stronger and stronger ones, he will indeed keep on relaxing his accommodation, but only up to a certain point; he always retains a reserve of accommodation which he is unable to give up. With the glass thus found, combined with the residuum of accommodation, he corrects his hypermetropia and sees distinctly. If still stronger glasses are placed before the eye, these combined with his residuum of accommodation produce an over-correction of his hypermetropia, and vision will once more become indistinct. When, then, we determine the glass with which the hypermetrope sees most distinctly, this does not give us the entire hypermetropia, but only that portion of it which has been unmasked by the relaxation of the accommodation. This is called the manifest hypermetropia ($H_m$). The remaining portion which is concealed by the accommodation all the time is the latent hypermetropia ($H_l$). Both together constitute the total hypermetropia ($H_t$)—i.e., $H_t = H_m + H_l$. In the example adduced above, $H_m = 1$ to $2\, D$, $H_l = 4\, D$, and hence $H_t = 2$ to $3\, D$.

The ratio of $H_m$ to $H_t$ depends upon the range of accommodation, and hence chiefly upon the age. In youth, when the range is large, upward of half of the total hypermetropia is latent. The older a man grows the more manifest hypermetropia increases at the expense of that which is latent, until in old age $H_m = H_t$. Hence, when we test an old man with convex glasses, we find the whole hypermetropia at once; but in persons who still possess the power of accommodation, a determination of the total hypermetropia is possible only after paralyzing the accommodation with atropine."

In practice we generally abstain from determining the total hypermetropia, because atropinization is accompanied by effects which are disagreeable to the patient and which last several days. We ascertain simply the manifest hypermetropia from which, when we know the age of the subject, a conclusion can be drawn as to the total hypermetropia. However, that we may come as near as possible to the true value of the hypermetropia, we try to get the patient to relax his accommodation all that he can. For this purpose we proceed as follows:

We place before the eyes of the patient, who is stationed at a distance of 6 metres from Snellen's test card, convex glasses, passing very gradually from weaker to stronger ones, until the best possible vision has been obtained. The strongest convex glass with which this occurs gives the manifest hypermetropia."

---

* [This is often the case even when the patient is forty-five or fifty years old.—D.]

† [See, however, § 148 A.]

‡ [If the accommodation is completely paralyzed, the rule is the reverse of that given—i.e., the weakest convex glass with which a patient gets maximum vision is the measure of the hypermetropia.—D.]
HYPERMETROPIA.

It very often happens that a hypermetrope has perfect vision with the naked eye, because he corrects his entire hypermetropia by means of the accommodation. In this case it is obviously impossible to improve his visual acuity with convex glasses. For a case of this sort the statement made above may be expressed as follows: The degree of manifest hypermetropia is determined by the strongest convex glass with which the patient is still able to see as well as with the naked eye.* The fact that any one sees as well at a distance with a convex glass as with the naked eye is of itself enough to prove the existence of hypermetropia, since the emmetrope and still more the myope see worse with even weak convex glasses; for, while concave glasses can be overcome by a suitable effort of accommodation, there is no way of combating the effect of a convex glass, since the crystalline lens can not be made flatter than it is already when in the state of accommodative repose.

In the case of hypermetropia, even more than in that of myopia, it is necessary to confirm the results of the subjective method by an objective determination. It is only exceptionally the case that we get at the true amount of hypermetropia by the former method; but with the objective test the total hypermetropia is usually found, the accommodation being entirely relaxed during the examination with the ophthalmoscope.

Causes of Hypermetropia.—The condition, characteristic of hypermetropia, in which parallel incident rays are brought to a focus behind the retina, may in general be produced by two different causes:

1. The refractive power of the media is altered so that parallel rays are not rendered sufficiently convergent to come to a focus upon the retina, although the latter is in the same situation as in the normal eye. The cornea may be the part accountable for this state of things—e.g., when it is flattened by cicatrices. In this case there is always a considerable degree of astigmatism as well. The lens gives rise to hypermetropia when its refractive power abates, as is the case in advanced age; old people, therefore, if they were formerly emmetropic, become then slightly hypermetropic (see page 688). A high degree of hypermetropia is produced when the lens disappears from the pupillary area, either from being luxated or because it has been removed from the eye altogether (aphakia). In this case the eye is not only hypermetropic, but also loses its power of accommodation.

2. Hypermetropia also develops when the refractive power of the eye is normal, but the retina lies too far forward (axial hypermetropia). This may be produced by a protrusion of the retina due to exudations of tumors. But the most ordinary cause of axial hypermetropia is an abnormal shortness of the entire eye, so that typical hypermetropia

* [Or, as we say, "the strongest glass that the patient accepts."—D.]
is left to effect the adjustment for shorter distances. Let us assume that work has to be done at a distance of 33 centimetres. For this purpose the emmetrope must use an accommodation of $3D$. A hypermetrope with $H = 2D$ also uses the same amount of accommodation; but he must employ $2D$ more to conceal his hypermetropia, so that altogether he must make an accommodative effort of $5D$. Now, as his range of accommodation is no greater than that of an emmetrope, this great amount of accommodation causes him proportionally more trouble. He may be said to be always dragging about with him a deficit in his accommodation, namely, the quota of the latter necessary for the correction of the hypermetropia—a deficit which causes him to become exhausted quickly when doing near work (asthenopia). At first, vision near by is distinct and the work goes on well; but after a little while the object, print, near work, etc., begin to grow indistinct and are blurred as though enveloped in a slight haze. This is owing to the fact that the overstrained accommodation gives way, and the eye then ceases to be properly focused. A short period of rest, during which the eyes look at distant objects or are kept closed, enables them to continue the work. But the same obscurations soon sets in again and compels another pause. These periods of enforced rest are the more frequently repeated and are of greater duration the longer the work is kept up. With them are associated pains in the eyes, and more especially pains in the forehead and headaches. The symptoms just described at first make their appearance only after quite prolonged work—i.e., toward evening. But afterward they keep coming on earlier and earlier all the time, so that the work has to be set aside after even a short period of exertion. After quite a prolonged rest—for example, after the repose of Sunday or upon laying work asidé for several weeks—the symptoms probably disappear for a number of days in succession, but only to appear again in the old way and in an even more aggravated fashion. They are dependent upon an exhaustion of the ciliary muscle, and are hence comprised under the name of *asthenopia accommodativa* to distinguish them from asthenopia muscularis (see page 614), and asthenopia nervosa (see page 501).

The injurious effect of hypermetropia upon vision at near points furthermore finds expression in the fact that *presbyopia* sets in earlier than in emmetropic eyes. At the same age—i.e., with the same range of accommodation—the near point of the hypermetrope is situated farther from the eye than is that of the emmetrope. In an emmetrope of thirty-three years with a range of accommodation of $6D$, $P$ lies at 17 centimetres ($100 \div 6 = 17$). A hypermetrope having a hypermetropia of $2D$ would at the same age and with the same range of accommodation have his near point at 25 centimetres (corresponding to $4D$), since he has to use $2D$ of his range of accommodation for correcting his hypermetropia. Such a hypermetrope, therefore,
would be already on the threshold of presbyopia at the age of thirty-three.

The shortness of the eyeball, which is the cause of hypermetropia, is congenital. Almost all newborn children are hypermetropic, their eyes being originally constructed too short in proportion to the refractive power of the media. As the child grows the eyeballs elongate in proportion, so that they acquire their requisite axial length and become emmetropic—indeed, the elongation may even shoot beyond the mark and pass into myopia. On the other hand, the elongation of the eye may fail to take place to a sufficient degree, so that a certain amount of hypermetropia remains during the whole life. This is the typical hypermetropia of which we are speaking. Higher degrees of it can be recognized by external examination of the eye, which shows that the eyeball is distinctly diminished in size, and that the anterior chamber is shallower and the pupil more contracted than usual. If the eye is turned strongly inward, we see that the equatorial region of the ball, which comes into view in the outer part of the palpebral fissure, presents a particularly sharp curve as it turns backward, and thus gives evidence of the shortness of the axis of the eyeball. The ophthalmoscope shows that the interior of the eye is sound. The hypermetropic eye, accordingly, is an optically defective but otherwise healthy eye, as opposed to the myopic eye, which is diseased, and is hence threatened by dangers of various kinds.

In the extreme degrees of hypermetropia, however, the eye is no longer normal as a whole. It is abnormally small even from the time of birth (slight degree of microphthalmus), and many of these eyes show other signs of disturbed development, such as a strikingly small cornea, marked astigmatism, deficient visual acuity due to incomplete formation of the retina, and other congenital anomalies.

Hypermetropia does not change in its amount in the later years of life; it remains stationary. It is true that to the laity it appears as if it increased with years, because vision at near points becomes steadily worse; but this is not due to an increase in the error of refraction, but to a diminution in the power of accommodation, the result of which is that less and less of the hypermetropia is concealed all the time.

Treatment.—There is no way of curing hypermetropia—i. e., of transforming it into emmetropia. All that we can do is to make vision distinct by means of properly selected glasses, and enable it to be performed without exhaustion.

When the hypermetropia is not great and the range of accommodation is good, glasses for distant vision are not as a general thing required. In the contrary event, convex glasses are given which correct the manifest hypermetropia. Full correction of the total hypermetropia is indicated only in those cases in which we have to combat a
strabismus convergens that is beginning to develop in consequence of the hypermetropia.

Of more importance than the glasses for distance are those for nearpoints or for working. A priori it would seem best to have the hypermetrope start at once by wearing that glass which corrects the total hypermetropia and so converts him into an emmetrope; but in that case he would soon quite forget altogether how to correct his hypermetropia by his accommodation in case of necessity. Should he then be accidentally deprived of his glasses he would be thrown into a very embarrassing position, for he could no longer see clearly with his naked eye. We therefore confine ourselves to correcting the hypermetropia by glasses only as far as is required to relieve the asthenopia. For this purpose it is generally sufficient to give a glass which is somewhat stronger than the manifest hypermetropia. Inasmuch as the latter increases with the age, the hypermetrope must keep on getting stronger and stronger glasses. It is only when he has reached an age at which his range of accommodation = 0, and hence his whole hypermetropia has become manifest, that he can keep on using the same glasses.

Formerly presbyopia and hypermetropia were confounded with each other. People saw a hypermetropic boy, whose eyes soon grew tired in studying, finally take up his grandfather’s glasses and then read well with them and without becoming tired. This boy, they reasoned, must have the same sort of weakness in his eyes that his grandfather has, only that with him it has already set in in youth, and therefore is very serious. This “hebetudo visus” was attributed to a weakness of the retina, and it was believed that it might possibly go on to blindness. The only thing which might have ameliorated the sufferings of the hypermetrope—namely, the use of glasses—was held to be particularly dangerous.

Donders deserves the great credit of having discovered the true nature of these conditions. The weak sight of the old man is presbyopia and has reference to the accommodation. It is, however, not an anomaly of accommodation, but a physiological state. The boy’s bad sight depends upon hypermetropia, which has nothing to do with the accommodation, but is an error of refraction that exists in the eye even when destitute of accommodation. The similarity of the two conditions lies in their having one symptom in common—namely, impairment of vision for near points; and yet even in this regard there is an essential difference between the two. In presbyopia, distinct vision inside of a certain distance is simply impossible. In hypermetropia, distinct vision at near points is generally still possible (if the range of accommodation is great enough), but is associated with straining and exhaustion of the eyes.

Donders also has shown that the asthenopia of hypermetropes is not the symptom of a serious lesion of the eye, but is an evidence of fatigue consequent upon unfavorable optical conditions. By the correction of these conditions into simple optical devices, a countless number of men have since this discovery been rendered once more capable of work and have been freed from the dread of growing blind.

Myopia is a state which is the direct opposite of hypermetropia, and yet

* [See also § 148 A.—D.]
there are cases in which these two conditions might be confounded with each other. When the hypermetropia has attained a very high degree, even the strongest effort of accommodation proves insufficient for rendering the vision at near points distinct. Then the hypermetropia gives up altogether the attempt to focus his eye for near points and holds the object as close as possible so as to get large retinal images, just as ambyopic patients do (see page 678). In this way very small print is often read well at a distance of a few centimetres, and, as at the same time distant vision is pretty bad, such a condition may easily be regarded as myopia. Examination with glasses and with the ophthalmoscope, however, will at once rectify the diagnosis.

The difference in the capacity of the emmetropic, the myopic, and the hypermetropic eye for close work is explained by the difference in the position of their region of accommodation (see page 683). In emmetropia it has its normal position, in myopia it is carried inward (3, Fig. 214), and in hypermetropia it is displaced outward. For example, suppose that an emmetrope twenty years old has a range of accommodation of 10 D. His region of accommodation then extends from $\infty$ to a point 10 centimetres from the eye where his near point is situated (1, Fig. 214). Let us compare with this an eye having the same range of accommodation but with a total hypermetropia of 4 D. In this case $R$ lies 25 centimetres ($100 - 4 = 25$) behind the eye. In the graphic representation of the region of accommodation annexed (Fig. 238), $R$ is denoted, for purposes of more ready demonstration, as being situated on the farther side of $\infty$. [This assumption is justified by the following consideration.] Rays coming to the eye from a finite distance are divergent. The farther the starting point of the rays is situated from the eye the more does the divergence of the former decrease, finally disappearing altogether and being replaced by parallelism when infinite distance has been reached. If now we could go beyond infinite distance, the parallelism of the rays would be transformed into convergence. As now in hypermetropia the far point is the place from which rays that are convergent emanate, the custom is to denote them as being situated beyond infinity, and in the example selected at a distance of 25 centimetres (corresponding to 4 D) from it. To change its adjustment from this far-point to infinity, the eye must employ 4 D of its accommodation. Hence, out of its whole range of accommodation of 10 D the eye has only 6 D left, and by means of this it is enabled to approach to within 17 centimetres of the object. This distance, therefore, is the near point (P) of the eye. Hence, the region of accommodation of the latter is displaced in comparison with that of an emmetropic eye having the same range, and in such a way that the near point is made to recede 7 centimetres farther away, while at its other end a part of the region of accommodation (represented in Fig. 238, as situated beyond $\infty$) is made to lie behind the eye, beyond infinity. But as this latter portion cannot be utilized, and, on the other hand, the recession of the near point hinders the vision of objects close by, the displacement of the
region of accommodation is unfavorable to the availability of the eye for working purposes.

The calculation of the range of accommodation in hypermetropia is made according to the same rules as in emmetropia. \( P \) can be found directly, \( R \) is determined by the convex glass which corrects the error. \( A = P - R \); hence, in the example selected, \( A = 6D - (-4D) = 10D \). \( R \) must be taken as a negative because it lies on the farther side of \( \infty \).

The approximate position of \( R \), and consequently the \( Ht \), can be estimated from the position of \( P \), it being presupposed that we know the age and hence the range of accommodation of the subject. Since \( A = P - R \), \( R = P - A \). If in the above example \( P \) had been found to be \( 6D \), and for the age of twenty \( A \) is assumed to be \( 10D \), we would have \( R = 6D - 10D = -4D \). Hence, \( Ht = 4D \).
CHAPTER V.

ASTIGMATISM.

147. By astigmatism *(A)s* we understand that refractive condition of the eye in which parallel rays falling upon the eye are *not at any spot* brought to a common focus. This is the case when the curvature of the refracting media is irregular. We distinguish two kinds of astigmatism: regular and irregular.

(a) Regular Astigmatism.

This is present when the curvature of the refracting media is regular in each meridian considered by itself, but the separate meridians are distinguished from each other by differences in curvature. The place in which regular astigmatism is ordinarily situated is the cornea. In Fig. 229, let \( v \ h \ v_1 \ h_1 \) represent the circumference of the cornea, and \( v \ v_1 \) its vertical meridian, which has a curvature such that the rays passing through it come to a focus at \( f \). In the meridian immediately adjoining the curvature becomes a little greater, and in the succeeding meridians it increases still more, so that it reaches its maximum value in the horizontal meridian, \( h \ h_1 \). The rays passing through the latter may be supposed to intersect at a point as near as \( f_1 \). In this case we would have one meridian (the horizontal one) which refracts rays most strongly, and one perpendicular to it (the vertical meridian) which refracts most feebly; and corresponding to these are the most anterior and posterior foci, \( f_1 \) and \( f \). These two meridians thus distinguished from the others are called principal meridians; those meridians lying between them represent all intermediate stages of curvature and refractive power, and the rays passing through them cut the optical axis in the portion lying between \( f \) and \( f_1 \). We see that when the refracting surface is of this character there is no point at all at which all the rays passing through the surface will unite. The image of a point cast by such a surface is therefore not a point, but a diffusion circle. In reality, however, the image does not always have a circular shape. On the contrary, its shape depends upon the spot where the retina is situated and cuts the conical beam of rays. Let us assume that the retina is at the point marked \( J \). Here the rays passing through the

* From ἄ, privative, and στεγμα, point.
horizontal meridian are already brought closer together than those incident upon the vertical meridian; hence the section of the cone of rays is an erect ellipse. At 2, where the rays of the horizontal meridian come exactly to a focus, the image of the point is a vertical line. In the same way the shape of the cross section of the beam—i.e., the shape of the diffusion image of the point—can be ascertained for the more posteriorly situated points from 3 to 7. This cross section is sometimes an erect or horizontal ellipse, sometimes a vertical or horizontal line, according as it is more or less distant from the refracting surface. It is only at 4 that there is really a diffusion circle, because here the rays passing through the horizontal meridian diverge to the same extent that those of the vertical meridian converge.

The vision of an astigmatic person is not simply indistinct, like that of one who is near-sighted or far-sighted, but presents special peculiarities on account of the elongated form of the diffusion images. Circular surfaces—e.g., the full moon—appear elliptical. Straight lines sometimes look distinct, sometimes indistinct, according to the direction that they take. Let us assume that we have before us an astigmatic who sees the diffusion image of a point under the form of a vertical line (2, Fig. 229). If this man looks at two lines standing perpen-
Anomalies of Refraction and Accommodation.

dicular to each other (Fig. 230 A) the horizontal line appears broadened and indistinct but the vertical line seems sharply defined. For, we may imagine these two lines to be composed of an infinite number of points. Each one of these points appears upon the retina of the astigmatic patient under the form of a short vertical stroke, and the horizontal line therefore appears under the form of a series of such vertical strokes, which coalesce and constitute a band of a certain degree of breadth (Fig. 230 B). In the vertical line the vertical strokes are superimposed and cover each other, so that the line appears sharply defined. Only the uppermost and lowermost diffusion lines extend beyond the terminal points of the vertical line and make it seem somewhat longer than it is. Thus, for every astigmatic person there is one direction in which straight lines appear most distinct, and one, perpendicular to it, in which they appear most confused. Most people looking attentively at Fig. 231 will find that, of the radii of the star, two situated opposite to each other are distinguished by being particularly black, while the radii which are placed perpendicular to them are the ones that look most pale and hazy. If one is unable to perceive this phenomenon with the naked eye, he can readily do so if he makes himself artificially astigmatic by placing a cylindrical glass before his eye.

The principal meridians usually intersect at a right angle, and the cross formed by them is generally vertical, more rarely oblique. The rule is, that the vertical meridian has a greater curvature than the horizontal; but the reverse condition (selected for Fig. 229 because of being more readily represented) also occurs, and is then known as "astigmatism against the rule." The degree of astigmatism is expressed by the difference between the meridians of greatest and of least refraction. As long as this difference remains below 1 D the astigmatism may be regarded as physiological, since most eyes are affected with a slight error of curvature of this sort; but as soon as the astigmatism

*In default of this, an ordinary convex or concave glass may be used, which is held obliquely before the eye.
ASTIGMATISM.

amounts to 1 \textit{D} or over it must be regarded as pathological. It then affects the visual acuity, and in many cases causes asthenopic troubles.

The \textit{determination} of astigmatism must be undertaken\textsuperscript{*} whenever in making our tests perfect vision can not be attained with spherical glasses.

Various \textit{kinds} of astigmatism are distinguished, according to the character of the refraction of the principal meridians. If one meridian is emmetropic and the other hypermetropic, the condition is called simple hypermetropic astigmatism; but if both meridians are hypermetropic, it is compound hypermetropic astigmatism. In analogous fashion we speak of simple and compound myopic astigmatism. If one meridian is hypermetropic and the other myopic, the condition is known as mixed astigmatism.

The \textit{cause} of regular astigmatism in the great majority of cases is a \textit{congenital} irregularity of the curvature of the cornea—a condition which is apt to be transmitted by heredity. High degrees of congenital astigmatism are associated not infrequently with other defects in the development of the eye, in which case it is impossible, even with perfect correction of the astigmatism, to bring the visual acuity up to the normal pitch. Congenital astigmatism is often present in both eyes, although not always in the same degree, and the direction of the principal meridian is apt to be symmetrical in the two eyes. \textit{Acquired} astigmatism may have its cause in the cornea or in the lens. The former variety occurs when the curvature of the cornea has been altered, either because of diseases affecting it, or still more frequently because of operations. After every cataract operation, and in fact even after an iridectomy, a certain degree of corneal astigmatism develops, which indeed diminishes with the consolidation of the cicatrix, but seldom disappears entirely. The lens gives rise to regular astigmatism when it is obliquely placed, as, for example, in case of subluxation. This state of things can readily be imitated experimentally if, as was said above, we look through a spherical lens obliquely. The print then looks as if in a state of astigmatic distortion, and the separate radii of Fig. 231 seem to differ in distinctness.

\textsuperscript{*}[According to the usage in America, undertaken in every case in which we are testing the refraction.—D.]
Accordingly, an obliquely placed spherical lens acts also as a cylindrical one. Many astigmatic patients who wear spherical glasses hit upon this fact themselves; to see better, they place their spherical glasses in such a way as to look obliquely through them.

The treatment of astigmatism consists in correcting it as precisely as possible by means of cylindrical glasses. In this way distinct vision can be secured, and at the same time the asthenopia is relieved.

(b) Irregular Astigmatism.

148. Irregular astigmatism occurs when the curvature in any one single meridian is not everywhere alike, so that the rays passing through the same meridian are never united into one point. A certain degree of irregular astigmatism must be regarded as physiological, as it exists in every eye, its location being the lens. The individual sectors composing the latter do not all have the same refracting power, this being probably due to unequal curvature of their surfaces. Accordingly, the images of a point which these sectors cast do not all fall upon the same spot in the retina, although they come so close together that for the most part they overlap. For this reason even a normal eye does not see a star, which is really nothing but a mathematical point, as such, but under a stellate form—i.e., provided with radiating projections. The rays of the star are simply the images produced by the separate sectors of the lens, the central ends of these images meeting in the center of the star-shaped retinal image.

Under pathological conditions—e.g., in beginning opacity of the lens—this lenticular astigmatism is so much increased as to give noticeable trouble. As the refractive power of the separate sectors of the lens becomes more and more different, the images produced by them recede farther and farther apart, so that ultimately they appear entirely distinct from each other. It is in this way that monocular polyopia develops in incipient cataract (see page 398). A very high degree of irregular astigmatism occurs in subluxation of the lens when the lenticular displacement is so considerable that part of the pupil still has the lens in it and part is aphakic.

Pathological irregular astigmatism originates from the cornea even more frequently than it does from the lens. It is found in this situation as an accompaniment of marked regular astigmatism, and still more often in consequence of pathological processes—e.g., in faceting of the cornea after ulceration, or in flattening or ectasis of the entire cornea.

Irregular astigmatism makes objects appear irregularly distorted, and sometimes also looks multiple, and in this way diminishes the visual acuity. It is impossible to correct it by glasses. In many cases of irregular corneal astigmatism a stenopsic slit is of service for making out minute objects (see page 665).
The sort of regular astigmatism that is present, whether hypermetropic, myopic, or mixed, does not depend upon the curvature of the cornea, but upon the situation of the retina. If the latter is situated at point 2 (Fig. 229), where the rays passing through the horizontal meridian come to a focus, this meridian has an emmetropic refraction. But the vertical meridian is hypermetropic, since the rays passing through it would meet behind the retina. In this case, then, there would be simple hypermetropic astigmatism. If the position of the retina were farther forward—e.g., at 3—both meridians would be hypermetropic; that is, compound hypermetropic astigmatism would be present. If the retina was situated at any point between 2 and 6, the rays passing through the horizontal meridian would have their focus in front of the retina, those passing through the vertical meridian behind it, and mixed astigmatism would exist. If the retina is situated at 6, simple myopic astigmatism is present, because there is emmetropia for the vertical meridian and myopia for the horizontal meridian. Finally, if the retina should be situated still farther back—that is, behind the foci of both meridians—myopia would be present in both the latter, or there would be compound myopic astigmatism. Hypermetropic astigmatism is the kind most frequently occurring; mixed astigmatism is the rarest.

The vision in regular astigmatism is distinguished from the vision in other errors of refraction by the fact that objects are distorted, and that not all their parts are seen with the same indistinctness. If the principal meridians are respectively vertical and horizontal, the horizontal strokes of the letter E will appear distinct, the vertical ones indistinct, or vice versa. The astigmatic subject then tries from the parts which he does see to guess the rest. If we test the visual acuity of a myope at a distance of 6 metres, he will read Snellen's test types well down to a certain line, and then stops because he does not see any farther down. The astigmatic patient, on the contrary, often reads the whole card down to the bottom, but tells almost every letter wrong. In fact, he takes refuge in guessing—an attempt, however, which gives rise to a peculiar and very unpleasant form of asthenopia.

How astigmatism is determined and corrected may be illustrated by the following example: We first make the astigmatic patient look at Fig. 231, or some similar stellate figure, and thus, for instance, determine that the horizontal radii of the star appear blackest. From this we conclude that vertical lines are seen distinctly, because the horizontal radii are composed of vertical lines. If vertical lines appear distinct, the diffusion lines or diffusion ellipses must be vertical (Fig. 230)—i.e., the adjustment for the horizontal meridian must be correct, or at least better than the adjustment for the vertical meridian. We now place the stenoptic slit before the eye, in the horizontal meridian first, and determine the refraction of the latter by means of spherical glasses. Suppose that this refraction is \( M = 1 D \). In the succeeding test of the refraction which is made with the slit in the vertical position a myopia of 3 \( D \) is found. Accordingly, myopic astigmatism (\( A m \)) is present, and one, namely, of 2 \( D \), since the degree of astigmatism is given by the difference in refraction of the two meridians. The correction of this astigmatism would have to be made by two concave cylindrical glasses, the axes of which run vertical and horizontal. The cylindrical glass refracts most strongly in the direction perpendicular to its axis (see page 665). Hence, to correct the horizontal meridian, we must place a cylindrical glass of \(-1 D\) with the axis vertical, and for the vertical meridian a glass of \(-3 D\) with the axis horizontal. This is written as follows:

\[ -1 \text{ D cyl. vert. } \ominus -3 \text{ D cyl. horiz.} \]

*[According to the notation prevailing in this country, this would be written:
\(-1.00 \text{ cyl. axis } 90^\circ \ominus -3.00 \text{ cyl. axis } 180^\circ\). So also the equivalent formula, men-
ANOMALIES OF REFRACTION AND ACCOMMODATION.

In cases where the sign of both cylinders is the same, a simplification of the combination is obtained in the following way: If, in the example chosen, we give a spherical glass of \(-1D\), this will correct the horizontal meridian to the point of emmetropia, and the vertical meridian to \(2D\). To get the complete correction, therefore, we only need to add to the spherical glass a \(-2D\) cyl. horiz. We would therefore prescribe

\[-1D\text{ sph. }\cap -2D\text{ cyl. horiz.}\]

As can be seen from the example above, given cylindrical glasses may be combined with cylinders and also with spherical glasses, and they may likewise be combined with prisms. Cylinders are generally prescribed in spectacles in order to insure the axes of the glasses being in proper position.

śioned just afterward, would be written: \(-1.00\text{ sph. }\cap -2.00\text{ cyl. axis }180^\circ\). In this notation the direction of the axis is indicated by the angle which it makes with the horizontal, the angles being numbered continuously from \(0^\circ\), which is situated at the left side of either eye (nasal side of the right eye, temporal side of the left eye), round to \(180^\circ\) at the right side of the eye. This is shown in the following diagram:

Another system is in vogue in the Ophthalmic and Aural Institute in this city. According to this notation the vertical meridian is indicated by \(0^\circ\) or \(V\), and from this point the angles are numbered on either side to \(90^\circ\) (or \(H\)), which is the horizontal; those angles on the temporal side being indicated by \(t\), those on the nasal side by \(n\). This system is shown in the following diagram:

In each eye the position of the axis of the cylinder is denoted by the angular deviation of its upper end from the vertical meridian (\(V\) or \(H\)) either on the nasal or on the temporal side, and is written \(5n = 5^\circ\) nasal, \(5t = 5^\circ\) temporal, etc., down to \(5H = 90^\circ\) (horizontal).

Both systems are also employed for indicating the direction of the axis of a prism—for example, prism \(1^\circ\), apex at \(75^\circ\), indicates a prism of \(1^\circ\) refracting angle with its apex turned to the left \(15^\circ\) from the vertical.—D.]
The result which we obtain by the methodical method of determining the astigmatism above described we can get at more quickly in the following way: If we suspect astigmatism, we put on a weak cylindrical glass and rotate it before the eye. If there is no astigmatism worth mentioning, the patient sees worse through the cylindrical glass, no matter what direction it occupies in front of the eye. But if astigmatism is present, the sight will become better when the glass is in a certain position, worse when it is in another. In this way we find the direction of the principal meridians. Then, convex or concave cylinders of varying strength, and either alone or combined with spherical glasses, are successively placed before the eye in a direction corresponding to the principal meridian, until the best combination has been found.

The astigmatism is frequently found to be greater* after atropinization than before (Dobrowolski).

It is unnecessary to correct every case of astigmatism; this is done only when the astigmatic patient wishes to see more distinctly, or when he has asthenopic troubles from his astigmatism.†

The objective determination of astigmatism can be made in different ways. Astigmatism manifests itself to the ophthalmoscope by the alteration in the shape of the papilla, which in regular astigmatism appears elongated either lengthwise or laterally (see page 24); in irregular astigmatism it appears irregularly distorted. In the erect image, in cases of regular astigmatism, the horizontal and vertical vessels are not seen distinctly at the same time, as, owing to the difference in their refraction, they require different correcting glasses. It is on account of this fact that it is possible to determine the astigmatism with the erect image by finding for each of the two principal meridians the correcting glass with which the vessels of this meridian are seen most distinctly. Astigmatism can also be made out and measured by means of keratocuscope, and by following Schmidt-Rimpler’s method.

Regular corneal astigmatism can be determined by measuring directly the radii of curvature of the individual corneal meridians. This is effected by the ophthalmometers, of which the principal varieties in use are that of Helmholtz and the more recent one of Jaaval and Schütz (the best form of which is that made by Kagenaar). The former is chiefly of service for precise, scientific examinations; the latter is more adapted for practical purposes on account of the rapidity with which the measurements can be made. A very useful instrument for determining whether there is actually any great amount of astigmatism present is Placido’s keratocuscope. This consists of a disk of cardboard, one surface of which bears a number of black concentric rings upon a white ground. An aperture in the center of the disk, and corresponding to the center of the rings, allows the observer to look through the disk. The disk is held so that the side with the rings upon it is turned toward the eye that is being examined, and so that the plane of the disk is parallel to the base of the cornea. If now we look through the central aperture at the eye, we see the rings mirrored upon its cornea. If the cornea has the normal curvature, these rings appear perfectly circular; if not, the rings are transformed into ellipses, or show irregular bulgings, according as regular or irregular astigmatism is present.

In irregular corneal astigmatism the attempt has been made to secure distinct vision by placing a glass of watch-glass shape upon the cornea; the anterior surface of the glass is ground to correspond to the radius of the cornea, while the pos-

* [Occasionally less.—D.]
† [Astigmatism in this country is corrected much more systematically than in Europe, and great attention is paid to the correction of slight degrees (of 0.25 D., or even 0.12 D.). See also § 148 A.—D.]
terior surface rests upon the cornea. These contact glasses (A. Fick, Sulzer), however, have not proved serviceable in practice, since the cornea does not bear the permanent contact of the glass.

[148 A. Cycloplegics and the Correction of Refractive Errors.*—In this country a cycloplegic is very frequently used in determining the refraction whether the case is one of hypermetropia, myopia, or astigmatism. Homatropine (in 2- to 3-per-cent solution) is the agent mainly in use, although some prefer scopolamine (in $\frac{1}{5}$-per-cent solution). Homatropine instilled three or four times at intervals of ten or fifteen minutes suffices in almost all cases to produce in the course of an hour a complete relaxation of the accommodation. The effect begins to abate pretty soon, and disappears completely in from twenty-four to thirty-six hours.

The practice in regard to the use of a cycloplegic varies, although oculists here may be said to employ one in from 40 to 90 per cent of their refraction cases. The translator's own practice is to use homatropine whenever practicable, especially insisting upon its employment in children and where there is a suspicion of spasm of accommodation (difference between subjective and objective tests) or where there are evidences of convergence excess (see page 619). Contrary to the statements generally expressed, he has found it advantageous to paralyze the accommodation in patients between forty and fifty. It has at times been his experience to find patients of this age in whom the refraction could not have been determined accurately without a cycloplegic. He has found the latter particularly serviceable at the time when presbyopia is beginning (about forty)—when apparently the patient, in struggling to use his failing accommodation, often overexerts the latter for distance and conceals some part of his ametropia.

Of course, in using homatropine for these elderly cases, we must exclude any suspicion of glaucoma, and particularly be careful to avoid a cycloplegic when the pupil in a non-myopic patient is unnaturally dilated.

The gain † in certainty both for the physician and the patient that we get by using a cycloplegic is so great in comparison with the moderate inconvenience ‡ produced, that it seems proper to advise the employment of this aid in all cases except in the very old and in those who are likely to develop glaucoma.

* [The following section has been added by the translator as covering ground that is regarded as of particular importance by practitioners in America, and as showing what the usage in this country is. For the views here expressed, he is alone responsible.—D.J.]

† A gain, be it noted, that obtains for the objective as well as the subjective tests.

‡ In a myope of 3 D or more the inconvenience, except for the dazzling produced by the mydriasis, is practically nil, as such a one, having a far point at thirteen inches or less, can still read when his accommodation is paralyzed.
Occasionally homatropine fails to produce complete cycloplegia. This will be evident from the failure to obtain satisfactory or consist-
ent results by subjective testing, and from a continued discrepancy
between the results of the objective and subjective tests (particularly
between the test with the trial case and the shadow test). This failure
of homatropine to produce complete paralysis is especially apt to occur
in cases of spasm of accommodation. Here, as well as in cases of con-
vergent strabismus, atropine should be used freely and persistently,
according to the principles so well laid down by Fuchs (see pages 631
and 732).

The glass prescribed after the refraction has been determined under
a cycloplegic will depend upon various factors. Each case must be
judged by itself and in accordance with the effect we wish to produce.
In general we may say:

1. We correct the total amount of astigmatism found under a
cycloplegic. The only exception is when the astigmatism is very high
(5 D, or over), in which case a partial correction is occasionally less
annoying to the patient than is a complete correction which gives better
vision. With properly adjusted glasses, however, it will usually be found
that even very strong cylinders will be worn with comfort and advantage.
Slight degrees of astigmatism (0.25–0.50 D) may often be left uncor-
rected. They should be corrected (a) whenever a glass has to be used
anyhow (as in presbyopia); (b) in most cases also when the patient has
to use his eyes excessively for near work; (c) when there are marked
symptoms of eye strain, such as headache, asthenopia, and obstinate
blepharitis or conjunctival irritation.

2. We correct the total amount of myopia found under a cyclo-
plegic. The main exception will be when the myopia is excessive and
the patient has not worn very strong glasses hitherto, as in this case
the sudden change may cause discomfort. Moreover, if the patient is
under the presbyopic age, we try, as far as can be, to make him use
the same glass for distance and near (see page 698, footnote).

3. We undercorrect the total hypermetropia by an amount which
depends upon—

(a) The age of the patient. The younger he is the more we leave
for his accommodation to do.

(b) The amount of manifest hypermetropia. The less this is in
proportion to the total hypermetropia, the more we should undercor-
rect the latter in our prescription. In general, we give a glass some-
where between the manifest and the total hypermetropia.

(c) The patient's requirements. If he uses his eyes excessively for
near work, we correct more of the hypermetropia than if he is leading
an out-of-door life.

(d) The symptoms. In the presence of marked asthenopia, head-
ache apparently due to eye strain, neurasthenia, and general muscular
weakness (particularly the accommodative weakness after exhausting
diseases), and especially in the presence of a tendency to convergence,
we correct more and more or even the whole of the hypermetropia.
When there is an actual tendency to convergent squint or when there
is a spasm of accommodation, we correct the whole of the hypermetropia
and insist upon the continuous use of the glasses combined with
the use of atropine (see pages 625, 631, and 732).—D.]

149. Anisometropia.*—By anisometropia is meant a difference in
the refraction of the two eyes. One eye may be emmetropic and the
other myopic, hypermetropic, or astigmatic, or both eyes may be
ametropic, but in a different way.† In this regard all possible combina-
tions occur.

Anisometropia not infrequently is congenital, and then, at least in
the higher degrees of it, often manifests itself even upon external in-
spection by an asymmetrical formation of the face and of the skull.
Acquired anisometropia most frequently originates from the circum-
stance that the change taking place in the refraction during life—that
is, the decrease in the hypermetropia or the development of a myopia—
does not advance at the same pace in both eyes. Very high degrees of
anisometropia develop when one eye is normal, but the other, in con-
sequence of a cataract operation, has become very hypermetropic.

A correction of anisometropia without the aid of glasses would be
conceivable only as the result of an effort of the accommodation differ-
ing in the two eyes; but this the eyes are incapable of doing, at least
to any noteworthy extent. Accordingly, the anisometrope never sees
distinctly with both eyes at once. This, however, gives him so little
inconvenience that many persons do not become aware of the fact that
they are not seeing equally well with both eyes until the tests of vision
which the physician institutes are made. Moreover, if the difference
in the refraction is not too great, binocular vision is not disturbed by it.
Both images, even though they are of unequal distinctness, are super-
imposed and made to coalesce. In the high degrees of anisometropia,
however, strabismus very frequently sets in. This may be either diver-
gent or convergent, and under these circumstances is very frequently
alternating, particularly when one eye is hypermetropic, the other
myopic (see page 634).

The obvious course to pursue would seem to be to correct the an-
isometropia by ordering different glasses for the two eyes. Nevertheless,
this measure in most cases proves impracticable. If the difference be-
tween the two glasses is somewhat great, the patients complain of an
unpleasant sensation in the eyes, of vertigo, headache, etc., and lay the

* From à, privative, ἐσο, equal, and μετρος, measure.
† [When the two eyes have opposite kinds of refraction, the condition is called
antimetropia.—D.]
ANISOMETROPIA.

Glasses aside. This fact is explained in the following way: Glasses alter not only the distinctness but also the size of objects. This is enlarged by convex and diminished by concave glasses, and the more so the stronger the glass is. With different glasses the retinal image of the same object is altered in size, more in one eye and less in the other; the images then no longer match one another, and can not be perfectly superimposed.* We therefore prefer in anisometropia either to give the same glasses for both eyes, or to correct only one eye and place a plane glass before the other. In doing this we always have regard to the better eye—namely, the one which appears more efficient for the purpose in view (distant or near vision).

* [In many cases the obstacle that opposes our attempts at correction of both eyes is a muscular error. This produces diplopia, which, as long as the image of one eye is indistinct, is not obtrusive and hence can be neglected, but which becomes annoying as soon as both images are made clear by the use of correcting glasses. In cases of anisometropia without muscular error, but in which there is a very considerable difference in refraction, full correction can often be applied to both eyes without causing any serious or continued annoyance.—D.]
CHAPTER VI.

ANOMALIES OF ACCOMMODATION.

150. Paralysis of Accommodation.—Paralysis of accommodation is diagnosed from the diminution of the range of accommodation (A). To make this diagnosis it is necessary that we determine the far point and near point, and from them calculate the range. The range found is compared with that which the patient ought from his age to have in accordance with the values set forth by Donders (Fig. 218), and from this comparison a conclusion is drawn as to whether the range falls below the normal, and, if so, how far.

The disturbance which paralysis of the accommodation causes varies greatly according to the refractive condition of the eyes. If an emmetrope is affected with paralysis of the accommodation, reading and writing become perfectly impossible, or at least, in case of incomplete paralysis (paresis of accommodation), very difficult, and possible for only a few moments at a time. Distant vision, for which the emmetrope does not require to use the accommodation, is not affected. In the hypermetrope paralysis of accommodation makes itself still more noticeable, since without accommodation he sees poorly even at the distance. The reverse is true of the myope, to whom the abolition of accommodation causes little or no inconvenience; and in the higher degrees of myopia a paralysis of accommodation is often discovered only accidentally at the time when a careful examination is being made.

Paralysis of the accommodation arises from a paralysis of the ciliary muscle or of the oculo-motor nerve, which supplies this muscle. It may be simply one of the symptoms of a complete oculo-motor paralysis, in which cases it etiology agrees with that of oculo-motor paralysis in general (see page 601). But in many cases the paralysis of accommodation exists alone, or is at most associated with a coincident paralysis of the sphincter pupillæ. These two intrinsic muscles, which under physiological conditions act in conjunction, are also commonly paralyzed together, so that the paralysis of accommodation is combined with mydriasis paralytica (ophthalmoplegia interna). The causes of paralysis of

— [Also called cycloplegia, from κύκλος, circle, and πλήγα, stroke. Hence cycloplegia, an agent—e. g., atropine—paralyzing the accommodation.—D.]
accommodation (with or without paralysis of the pupil) with which we are acquainted are as follows:

1. Diptheria.—Paralysis of accommodation belongs among the post-diphtheritic paralyses—i.e., those which usually develop in the stage of convalescence. The most common of these, besides the paralysis of accommodation, is paralysis of the soft palate, which manifests itself in the nasal character of the speech and also by frequent attacks of choking during eating and drinking. Paralyses of the sphincter pupillae or of the other eye muscles, of the muscles of the extremities, or of the trunk itself, occur less often. Diphtheritic paralysis of the accommodation affects both eyes, and is usually not associated with paralysis of the sphincter pupillae. It generally passes away of itself in one or two months as the patient gains in strength, and hence affords a good prognosis. Cases of paralysis of accommodation consequent upon influenza, which were analogous in their behavior to post-diphtheritic paralyses, occurred pretty frequently during the last epidemic.

2. Poisoning.—The most complete paralysis of accommodation, combined with paralysis of the pupil, is produced by atropine and the other mydriatics. These act not only when administered internally, but also locally when introduced into the conjunctival sac. The cases in which paralysis of the accommodation, together with symptoms of general poisoning, have been observed after eating spoiled meat, sausages, fish, etc., likewise probably depend upon poisoning by alkaloids, which in this case are the alkaloids of putrefaction (ptomaines).


4. Severe affections of the central nervous system (especially progressive paralysis and tabes).

5. Contusions of the eyeball.

The treatment of paralysis of the accommodation must first of all be regulated according to the lesion which lies at the bottom of it, and seek to effect the cure of this latter by appropriate means. In post-diphtheritic paralysis we institute corroborative measures, giving hearty nourishment, wine, iron, quinine, etc. For local treatment, the miotics, pilocarpine, and eserine, are employed. These, besides contracting the pupil, also produce a spasm of the accommodation by contracting the ciliary muscle. This, however, is not of long duration, any more than the miosis is; after some hours the muscle relaxes again and the paralysis returns. Nevertheless, the contraction of the muscle produced by the miotic appears sometimes to exert a favorable influence upon the paralysis itself, perhaps acting in the same way as faradization does when it produces a good effect in paralyses. In addition, the constant current is employed. As long as the paralysis is still recent the eyes should not be strained in any way, but in older paralyses work may be facilitated by means of the appropriate convex glasses.
In paralysis of the accommodation, whether produced by disease or artificially by a mydriatic, the statement is frequently made that objects appear smaller than usual (microopia).* This phenomenon is explained in the following way: We estimate the size of an object from the size of its image upon the retina taken in connection with the distance at which we judge the object to be situated. An object of certain size seen at a certain distance gives us a retinal image of certain size. If the object is approximated to one half the distance, its retinal image becomes twice as great. If this were not the case, and the retinal image remained of the same size when the object was approximated, we would infer that the object itself had been reduced to one half its former size. It is this mistake that we fall into in case of paralysis of the accommodation. Since in this condition the act of accommodation for any given distance of the object costs us a greater effort than under other circumstances, we estimate the accommodation at too high a figure, and hence believe the object to be nearer than it really is; but as the retinal image is no larger, we think that the object itself has diminished in size. The same phenomenon manifests itself when an emmetrope looks through concave glasses; these make objects look smaller to him; for, to overcome the concave glasses, he must strain his accommodation. Now, without being distinctly aware of this strain, he yet infers from it that objects are nearer than they are, and thus the latter, since their retinal images are not any larger, seem smaller to him. The converse phenomenon, by virtue of which objects appear larger than normal—macroopia—‡ is observed in spasm of the accommodation. This, too, originates in a delusion as to distances, resulting from the disturbance of the accommodation.

To show how a paralysis of accommodation is diagnosed, I will adduce here the following case: In May, 1887, a boy ten years of age, was brought to me by his mother because for some weeks he had been unable to read and write. At the same time the unusual width of his pupils had attracted his mother's attention. I found before me a delicate, pale lad, whose pupils at the time he was brought to me showed once more their normal size and mobility. The boy could read with his naked eye all the lines on Snellen's test card hung up at a distance of 6 metres, hence he had normal vision. From this fact alone it was possible to draw the inference that it could not be a case of opacities of the media, disease of the choroid or retina, or the like, as these the visual acuity would necessarily be diminished for all distances. It could only be an anomaly of refraction or accommodation that was in question. He was not near-sighted, since otherwise he would have been unable to read the smallest letters of Snellen's test card at a distance of 6 metres, but he might perhaps have been hypermetropic. Accordingly, I put a very weak convex glass before his eye; as with these his distant vision at once became indistinct, hypermetropia too was excluded. Hence there was emmetropia, and his incapacity to read could only depend upon a disturbance of accommodation. This was at once confirmed by the fact that the boy with +3 D read the finest print fluently. The print then could be brought to within 13 centimetres of the eye; his near point, therefore, lay at this distance. Expressed in dioptres, \( P = 8\ D \) (100 : 13 = 8) and \( A = P - R = 8\ D\), since the boy was emmetropic, and hence \( R = \infty = 0\ D\). But the range of accommodation of 8 D had been determined with the aid of the +3 D glass which had been placed before the eye, and which, therefore, had to be subtracted in order to ascertain the true range; this accordingly was only 5 D. At the age of ten the range should have been 14 D; the boy's range, therefore, was about 9 D too small. There was paresis of accommodation.

* [From μακρός, small, and ἀπός, appearance.—D.]
‡ [From μακρός, long, and ἀπός, appearance.—D.]
ANOMALIES OF ACCOMMODATION.

To my question as to an antecedent diphtheria, the mother professed to have no knowledge of any such occurrence. It was only after further questioning that she remembered that the boy had had, the Christmas before, an inflammation of the throat, which, however, had not been at all severe, and which the physician had said was not diphtheria. After this attack of inflammation in the throat the boy had been feeble for a remarkably long time, so that since that date he had not been able to go to school; the glands in the neck had become greatly swollen, so as to be visible externally. Later still the boy had become hoarse; he had got a nasal voice, and could not pronounce certain letters and syllables (paralysis of the soft palate). This symptom, like the dilatation of the pupils, had already disappeared when I first saw him.

The boy was given generous nourishment and a tonic (ten drops of a mixture of equal parts of Fowler's solution, and the tinctura ferri ponata, twice a day in a glass of wine); in addition, every second day a warm bath, and finally every morning and evening a drop of one-per-cent solution of pilocarpine in each eye. The effect of pilocarpine during the first few days continued only eight to ten hours after the instillation, but afterward became more and more lasting all the time. After ten days, at which time the boy had had for two days no pilocarpine in his eyes, he could read the finest print with his naked eye up to 18 centimetres—i.e., he had a range of 8 D. The accommodation, therefore, was not yet normal, but he could already do his work without trouble, and later still doublets regained his full power of accommodation. This case is instructive, for it shows that diphtheria need not run a severe course in order to have paralysis of the accommodation follow it—a fact which also holds good for the other post-diphtheritic paralyses. In this instance the diphtheria could not be recognized as such while it was still recent; but that it was a case of true diphtheria was apparent from the long-continued disturbance of the health, the marked swelling of the glands, and the paralysis of the soft palate, of the pupil, and of the accommodation.

After severe diseases there is a weakness of the accommodation which often lasts for quite a long time, but which is no more to be regarded as a paresis than is the muscular weakness of convalescents in general. The range of accommodation in these cases is normal, but its lasting power is defective, so that exhaustion and asthenopic troubles speedily set in. This weakness of accommodation disappears of itself in proportion as the strength of the patient comes back.

A reduction of the accommodation is furthermore found in the prodromal stage of glaucoma and in sympathetic ophthalmia.

It is evident that the accommodation is completely abolished when the lens is luxated, or is removed altogether from the eye, but such cases are not properly designated by the name of paralysis of the accommodation.

SPASM OF THE ACCOMMODATION.—The instillation of atropine, besides causing paralysis of the accommodation, usually results also in a slight change of the refraction, which in fact becomes somewhat lessened. If, for example, there was emmetropia before, the eye after atropinization is slightly hypermetropic. The slight reduction of the refraction produced by atropine corresponds to the tonic contraction (tone) of the ciliary muscle which is constantly present, and which disappears only when the muscle is paralyzed. But if upon the use of atropine the refraction is diminished to a greater extent—i.e., by 1 D or more—the condition then can not be regarded as representing the tone of the ciliary muscle, but must be looked upon as a spasm of the latter. This spasm develops in consequence of continual near work, as the accommodation, when it is strained all the time, at
length gets to be in such a state that it can no longer be relaxed. It is found only in young persons, and most frequently in myopic eyes, which then appear more myopic than they really are. But spasm of the accommodation also occurs not infrequently in emmetropic and hypermetropic eyes, making the former appear myopic; the latter appear less hypermetropic than they are, or even emmetropic or myopic. Spasm of the accommodation disappears spontaneously when, as age advances, the range of accommodation diminishes. But before this occurs it may have given rise to true myopia. It is combated by the instillation of atropine, which must be kept up for quite a long time (four weeks and more). Unfortunately, in most cases when the atropine has been discontinued, the spasm returns after a shorter or longer interval.

An artificial spasm of accommodation of high degree combined with contraction of the pupil develops after the instillation of a miotic.

* [And by precise correction of the refraction, determined under complete atropinization.—D.]
PART IV.

OPERATIONS.

CHAPTER I.

GENERAL REMARKS.

151. The antiseptic method, which represents the greatest progress made in surgery during recent times, has also produced an essential improvement and greater certainty as to results in the special domain of operations upon the eye. It is therefore the first duty of every operator upon the eye to proceed in a perfectly aseptic and antiseptic manner. In operations upon the eye we have less to do with antisepsis than with asepsis; we do not have to disinfect a contaminated wound, but to make a wound that is clean and keep it from contamination.

Contamination of the wound may either be effected by means of the operator and his instruments or it may take its origin from the adnexa of the eyeball. To avoid the former, the hands of the operator must be well cleansed and then disinfected with a four-per-cent solution of carbolic acid or a solution of corrosive sublimate (1:2,000). The delicate instruments which are used for operating upon the eyeball itself are disinfected by boiling in distilled water, or, still better, in a one-per-cent solution of sodium carbonate, in which they are less apt to rust. To prevent infection of the wound by the adjacent parts (lids and conjunctival sac), the vicinity of the eye, and especially the skin of the lids and the edges of the lids, should first be thoroughly washed with soap, and then bathed with sublimate solution (1:2,000) before the operation. For washing out the conjunctival sac we use a weaker (1:4,000) sublimate solution or physiological salt solution (containing 0.6 per cent of common salt) which has been sterilized by boiling; but the conjunctival sac affords special danger of infection only when decomposed secretion is present in it as a result of a lesion of the conjunctiva or lachrymal sac. Hence, before every operation we ought to examine carefully the conjunctiva, and more especially the lachrymal sac, and before proceeding to perform the operation we ought to try first to relieve by appropriate treatment any lesion of these
strictures that may be present. In respect to the special case of blennorrhoea of the lachrymal sac, its perfect cure, unfortunately, requires a very long time. Hence, in order to accomplish my purpose more quickly, I often either extirpate the lachrymal sac some days before the operation, or I split its anterior wall, and, after suitable cleansing, fill it with iodoform powder.

After the operation an aseptic dressing is applied. If the operation was upon the eyeball itself, directly after it has been completed we close the lids and place upon them first a pledget of sterilized gauze, and upon this lay a dressing of cotton, which is held in place by a bandage. After an operation in which the eyeball is freely opened (as in iridectomy or cataract operations), I fix the mass of cotton in place upon the eye by means of a strip of linen four or five centimetres broad, whose two ends are attached to the cheek and forehead respectively by soap plaster. Over this is fastened a light latticed frame of wire (Fig. 233), which prevents the patient from getting at his eye with his finger and doing harm by making the wound burst open. Operation wounds upon the conjunctiva or the lids are disinfected anew before the application of the dressing by flushing with sublimate solution, and are then sprinkled with iodoform powder, and over this the dressing is applied.

Anesthesia for operations upon the eyeball is effected by cocaine, a five-per-cent solution of which is instilled several times into the conjunctival sac at intervals of a few minutes. The solution should be freshly prepared. After instilling it we must take care that the patient keeps the eye shut, because, as a result of the cocaine anesthesia, winking takes place with less frequency, and hence the cornea, if uncovered, is apt to become dry upon its surface. Cocaine anesthesia lasts about ten minutes. It affects only the superficial parts, like the cornea and conjunctiva, while the iris remains sensitive. In iridectomy, for example, the grasping of the eyeball and the incision are not felt,
but the excision of the iris is painful.* In operations upon the lids, several drops of the cocaine solution may be injected beneath the skin of the lids.† Narcosis, with chloroform or ether, is required only for the major operations, such as enucleation, etc., and in children.

152. In regard to operations upon the eyeball itself the following principles hold good:

The separation of the lids is effected by means of lid specula (blepharostats, elevators, or écartereurs). There are some which hold both lids open at once, keeping them apart by the elastic force of a spring (spring specula), the others which are designed for one lid only and must be held with the hand (Desmarre’s lid retractor). The eyeball itself is fixed by grasping a fold of conjunctiva close to the corneal margin with a toothed forceps (Waldau’s fixation forceps) and holding it in place.

In cases where it is important to exert no pressure upon the eyeball (as, for example, when it is desired to avoid escape of vitreous) we have the lids held apart by the finger of an assistant, and, wherever possible, abstain from grasping the eyeball with the fixation forceps.

The incision which lays the eyeball open is made, as a rule, within the limits of the anterior chamber. As this latter is bounded by the cornea and at its periphery by the most anterior portion of the sclera, the section may lie either in the cornea or in the sclera. We therefore distinguish sections with respect to—

(a) Their position, into corneal and scleral. These differ from each other mainly in the following points: 1. In scleral incisions there is more tendency to prolapse of the iris than in those of the cornea (see the remark at the close of the following paragraph). 2. The sclera is covered by conjunctiva, and a wound in the sclera can therefore be provided with a conjunctival flap—a thing which is not possible in corneal sections. 3. Scleral wounds are less apt to become infected than those in the cornea, because of the slighter tendency that the sclera exhibits toward purulent inflammation. Hence, before the introduction of antiseptic methods, scleral incisions gave better results than did those in the cornea. At present, when infection is avoided in every possible way, this distinction is no longer of so very much weight.

(b) In shape, incisions may be linear or curved. The former lie in a great circle of a sphere, and hence form upon the surface of the eyeball a line which is the shortest that can be made to connect the terminal points of the section (e a f, Fig. 234). The curved or flap incisions correspond to a small circle of a sphere. Between the largest curved sec-

* [If, however, the performance of the operation is delayed long enough (ten or fifteen minutes) after the first instillation of cocaine for the drug to pass through the cornea, the iris also may be completely anaesthetized, and iridectomy is then performed absolutely without pain.—D.]

† [Or Schleich’s infiltration anaesthesia may be used.—D.]
tion (e d f, Fig. 234) and the linear section an infinite number of sections (e c f, e b f) may be conceived to exist, constituting the transition forms between the two. These are curved sections of varying altitude; the linear section forms their inferior limit, and may therefore be regarded as a curved section whose altitude = 0. Most of the sections in general use are curved ones, with an arch of greater or less altitude. An example of a pure linear section would be the one devised by Saemisch for laying open an ulcer serpens, in which the latter is divided with a Graefe knife from behind forward (§ 154). A flap incision, having the ends of its section at the same distance apart as a linear incision, will have a longer wound tract than the latter, and is apt to gape more widely, owing to the likelihood of a lifting up of the flap.

In making the section, care must be taken that the knife is withdrawn from the wound slowly, so that the aqueous may escape as gradually as possible. In this way we avoid the evil results which too rapid escape of the aqueous often entails, such as extensive prolapse of the iris, subluxation of the lens, prolapse of the vitreous, and intra-ocular hemorrhage. The slow escape of the aqueous is particularly important if an operation is done when there is increase of tension.

In completing the operation the greatest attention must be paid to having the iris in proper position. Under no circumstances should the iris be left incarcerated in the wound. Prolapse of the iris is manifested by different signs, according to the extent to which the iris is protruded. If the iris has pushed its way through the wound to the outside, it becomes visible as a dark swelling or nodule either in the middle of the section, or, if some of the iris has been excised, at one or both ends of it (i, Fig. 236). The condition when the iris does not protrude from the wound, but is merely jammed in between the internal lips of the latter (Fig. 238), is recognized by the displacement of the pupil. For, after operations of this sort, in which the iris has been excised, the boundary between the pupil and the coloboma is marked by two projecting angles, forming what are called the angles of the sphincter (Fig. 235, a and a). These correspond to the spot where the margin of the pupil passes into the lateral limits ("pillars") of the coloboma. When the iris is free, the angles of the sphincter are directly opposite one another, and, moreover, lie in the circular line which the margin of the pupil would form if still uninjured ("the angles of the sphincter are low down," Fig. 235). But if the iris is incarcerated in the wound, the corresponding pillar of the coloboma is thereby shortened, and the
angle of the sphincter looks as if drawn up ("the angle of the sphincter is higher," Fig. 236, a₁). The angle of the sphincter may be pushed up so far that it is not visible at all.

After operations in which no part of the iris has been excised, there are, of course, no angles in the sphincter; the inclusion of the iris in the wound then manifests itself only by the displacement of the pupil toward the wound, precisely as is seen after perforating ulcers of the cornea with incarceration of the iris (Fig. 237).

Inclusion of the iris in the wound is accompanied by evil consequences of many kinds. The healing of the wound is interfered with by inflammatory irritation, and is protracted. The cicatrix is less solid and regular in its formation, and even when it is formed the inclusion of the iris may afterward give rise to increase of tension, to inflammation, and even to sympathetic disease of the other eye. To avert these results every attempt must be made, after completing the operation, to release the iris from its condition of incarceration, and to put it in the proper position. This is done by entering the wound with a spatula, and with this stroking the iris so as to bring it back again into the anterior chamber. Should this attempt be unsuccessful, or should the iris after replacement again prolapse into the wound, the incarcerated portion of the iris must be grasped and excised.

_Hemorrhage_ into the anterior chamber occurs in those operations that cause injury to vascular tissues like the sclera and iris. If the iris is healthy, it hardly bleeds at all upon being cut through, since its vessels close very rapidly from contraction of their walls. But in those cases in which an operation is done upon a diseased iris (as in iritis, glaucoma, and atrophy of the iris), copious bleeding often takes place from the iris, so that the whole anterior chamber fills with blood. The
bleeding is disagreeable, because it prevents the operator from inspecting the interior of the eye; but in otherwise healthy eyes it generally produces no other disadvantage, as the blood is absorbed again within a few days. But in eyes where the iris is diseased not only is the haemorrhage more extensive, but in addition the blood takes a longer time—sometimes in fact months—to disappear by resorption; for, it is precisely in such cases as these that the whole metabolism of the eye is seriously affected.

Hæmorrhage from divided vessels should not be confounded with those intra-ocular haemorrhages which are caused by the sudden and very great reduction of ocular tension in consequence of the operation—either from escape of the aqueous or removal of the lens—and the resulting increased inflow of blood into the vessels of the uvea and retina. Such hæmorrhages are to be specially apprehended if we operate where there is increase of tension. In fact, small retinal haemorrhages are almost the rule after iridectomy in glaucoma (see page 389). In rare cases the blood escapes in such quantity from the vessels that the contents of the eyeball are expelled by it from the wound, and then the blood itself oozes from the latter. Such an eye, of course, is lost.

153. The after-treatment of an operation in which the eyeball has been opened must be mainly directed to the prevention of anything that might interfere with the rapid and permanent closure of the wound. For this purpose the eye operated upon is bandaged, in order to put a stop to the movements of the lids; and in operations of any magnitude the eye not operated upon should also be kept shut for some days. Furthermore, the patient ought to avoid all physical exertion, as by this the ocular tension is increased, and the recently agglutinated wound might be forced open again. Hence, after major operations (iridectomy or cataract extraction), the patient is made to stay flat on his back in bed for several days, and in the first few days is given only fluid or semifluid nourishment, so as to obviate the exertion of chewing. When these precautions are observed the course of healing regularly takes place as follows: The edges of the wound become agglutinated soon after the operation, and the anterior chamber is restored. It very often happens that the recently agglutinated wound can not at once withstand the pressure of the accumulated aqueous, and in the course of the first day opens once or twice and allows the aqueous to escape before a permanent closure of the wound has taken place. The edges of the wound then heal by indirect union, so that a fine linear cicatrix is formed. If this lies in the cornea, it remains visible always as a narrow gray line, while cicatrices in the sclera are as a usual thing scarcely discoverable after some time has elapsed. It always takes quite a long time for a cicatrix to become sufficiently firm to be able to resist external injuries. Until this has occurred (that is, for several weeks or
months, according to the size of the wound), the patient must refrain
from all severe physical exertion, avoid making any pressure upon the
eye, etc.

Variations from the course of healing just described not infre-
cently occur. The disturbances of healing most frequently observed
are—

1. Irregular Healing.—The closure of the wound may be delayed,
and the anterior chamber remain obliterated for days. Still more fre-
cently it happens that the wound, after it has already
been closed, is burst open
again by an external injury,
such as pressure of the hand
upon the eye, coughing,
sneezing, and the like. This
"bursting of the wound" is
ordinarily followed by ex-
travasation of blood into
the anterior chamber. The
iris also may be swept into
the wound and incarcerated
there, or inflammation
(irito-cyclitis) may set in.
Another way in which the
healing of the wound may
be interfered with consists in
the fact that the edges of
the wound do not adhere to
one another directly, but
are united by an interposed
cicatrical mass of recent
formation. This is most
frequently the case when di-
rect contact of the edges of
the wound is prevented by
the presence of an incarcerated
iris or lens capsule, but
it may also occur when there
is an increase of tension by
means of which the wound
is made to gape and is thus
kept open. In these cases
the cicatrix that is formed is less firm, and in fact a small portion of it
may remain entirely open, so that the aqueous keeps trickling through
it beneath the conjunctiva and makes the latter oedematous (cystoid

---

FIG. 238.—INCLUDE THE LIMP WITH CYSTOID CICATRIZATION TO THE EXTRACT OF A SENSE. CATHARIS BY GRAPEF'S PERSPECTIVE LINE SECTION. ENLARGEMENT 13 X 1. The figure represents a section
that meets the cicatrix made by the extraction, cutting it near its nasal end, where the in-drawing of
the angle of the sphincter had already revealed to
evaluation the presence of an incarcerated of the iris.

The iris, L, extends from its origin in the ciliary body, C,
to the inner orifice of the wound, so that here the
anterior chamber is contracted into a narrow slit.
The iris within the tract of the wound is folded upon
itself, the point of flexion corresponding to the ex-
terior surface of the sclera. The pupillary portion,
F, of the iris extends from the site of the constric-
tion into the anterior chamber, where it lies free.
On its anterior surface may be seen the entrance of a
crypt, near its posterior surface the cross section of
the sphincter pupillae. Besides the iris, the cap-
sule, L, of the lens, is also drawn up to the cicatrix,
and has become adherent to it. The section by which
the extraction was made cuts in two the line of jun-
tion between the sclera, S, and the cornea, H, so that
by its anterior half it lies in the sclera, by its poste-
rrior half in the cornea. On account of the interposi-
tion of the iris, the lips of the wound have not united:
in fact, the tract of the wound extends as an open
cavity, L, even into the tissue of the conjunctiva of
the limbus, L, so that the wound is closed only by a
very thin layer of tissue.
cicatrisation, Fig. 238). Cicatrices which are not sufficiently firm often become ectatic. This has as its immediate consequence an irregular bulging of the adjoining parts of the cornea, so that the results of the operation, as far as vision is concerned, are impaired by the presence of irregular astigmatism. Later on cystoid or ectatic cicatrices may give rise to elevation of tension or to inflammation.

2. Suppuration of the Wound.—This is manifested by the yellowish discoloration which the wound assumes at some point, while at the same time violent inflammatory symptoms (often, however, unassociated with pain) set in. From the wound the suppuration extends either to the uvea alone so that purulent irido-cyclitis develops, or to the cornea as well, which becomes infiltrated with pus and then breaks down. The outcome is atrophy, or, if panophthalmitis is superadded, phthisis of the eyeball. Suppuration of the wound is most apt to set in after cataract extractions, and formerly was the most frequent cause for the development of blindness in an eye which had been operated upon for cataract. We now know that suppuration of the wound is the consequence of infection of the wound; and by the application of antiseptic methods the number of cases in which suppuration takes place can now be reduced to a minimum.

3. Inflammation of the Uvea.—Iritis and irido-cyclitis occur very frequently after operations in which the eyeball has been opened. In most cases there is simply a slight iritis, which does no harm beyond that induced by a few posterior synechiae which remain. But in the severe cases the inflammation leads to occlusion of the pupil, and either necessitates a secondary operation, or actually terminates in incurable blindness due to atrophy of the eyeball. In cases of the latter sort there is also a danger of sympathetic disease of the other eye. Slight inflammations of the iris are generally to be regarded as a purely traumatic affection caused by the way in which the iris has been grasped and pulled upon. In other cases it is possible that either portions of the lens that are left behind, or similar substances, produce mechanical or chemical irritation of the iris. Severe inflammations depend either upon infection or upon a lighting up of old inflammation, as when an operation is done in an eye which was formerly the seat of an irido-cyclitis.

In former times much more importance was attached than now to the shape and position of the section, especially in cataract operations, the hope of a happy result being based solely upon the proper performance of the section. Starting with this view, observers devised a great number of different methods of operating which have already, in part at least, fallen into oblivion. At the present time we know that the rigorous carrying out of antisepsis in the operation and after-treatment is of much greater significance than the choice of a method of operating. Any section that is of the necessary size and is suitable in position gives good results, if in other respects we proceed with the most scrupulous cleanliness. In eye operations this is doubly important, since the result that we seek is attained
only if healing by first intention is secured. When an amputation wound does not heal by first intention, but by suppuration, this accident usually does the patient no harm beyond prolonging his stay in bed; but if suppuration ensues instead of primary union after an iridectomy or cataract operation, the eye is lost, which for an operator upon the eye is the same thing as the death of a patient would be for the surgeon.

The conjunctival sac, even when the conjunctiva appears normal, frequently contains bacteria, among which may be found those of pathogenic character, such as the staphylococci, streptococci, and pneumococci. These, however, do not multiply in the conjunctival sac, a fact which is to be attributed to the action of the tears. Not that we are to think of the tears as having any bactericidal properties, their action being, on the contrary, purely a mechanical one, in that they continually bathe the conjunctiva and after washing it off drain into the nose. Hence, bacteria that have been taken from pure cultures and introduced in great quantity into the conjunctival sac, are no longer to be found in the latter after a short time has elapsed, but are found in the nose, whither they have been carried by the tears. At the same time, the stream of tears prevents the germs from ascending against the current from the nose and into the conjunctival sac. These favorable conditions obtain, of course, only so long as the tear passages are normal, and in disease of the latter the conjunctival sac soon gets to swarm with germs.

Not only the conjunctiva but also the border of the lids is of moment in the production of infection. On the border of the lids the accumulation of masses of dead epidermis and of sebum from the Zeissian and Meibomian glands, as well as the constant moistening of the parts by the tears, favors the aggregation and multiplication of germs. These conditions are found to an increased extent in cases of chronic hyperemia or inflammation of the border of the lids.

In cleansing the eye before the operation, we may employ quite strong antiseptic solutions for the parts surrounding the eye. I wash the lids carefully with a neutral soap or with one containing an excess of fat; but, as one can not prevent some of the soap from getting into the conjunctival sac and irritating it, I limit this procedure to cases in which the border of the lids does not appear quite normal. For the conjunctiva the stronger antiseptic solutions are contra-indicated; obviously so, because they produce a marked irritation, or actually a traumatic conjunctivitis associated with considerable secretion. But if we employ the antiseptics in a degree of concentration that is well borne by the eye, they have, owing to the brief period of their action, no bactericidal effect. All investigators have arrived at the same result, namely, that by these agents we can simply diminish the number of the germs present, but can not annihilate them completely. We get the same result by employing indifferent sterile liquids, particularly if at the same time we remove the adherent mucus from the surface of the conjunctiva mechanically—i. e., by wiping it with moistened pledgets of cotton. Hence, if the conjunctiva is normal, I use simply a physiological salt solution which has been sterilized by boiling, and employ a sublimate solution (1:4000) only in those cases in which the conjunctiva is diseased (catarrh, trachoma).

As the conjunctiva even after careful cleansing often still contains germs, we might think that the infection of recent wounds would necessarily be very frequent. Fortunately, however, at the present time infection of wounds is only of exceptional occurrence, so that evidently the germs of the conjunctival sac are not to be greatly dreaded. The infection of wounds, in fact, occurs, as experiment also has proved, mainly from contaminated instruments; and it is to the sterilization of these that our attention ought, above all, to be directed.

In judging of the size and position of any particular form of section, not only the outer and visible wound but also the internal one must be taken into consid-
eration. That the latter is of a different size, shape, and position from the external wound arises from the fact that in most methods of performing the section the knife divides the tunics of the eye obliquely (Fig. 240, I and P). This is particularly the case with the wounds made by the lance-shaped knife. Even if at first we plunge the lance knife in perpendicularly, we must still, as soon as its point has entered the anterior chamber, change its position so that it shall be pushed along parallel with the iris, as otherwise we should get into the iris and lens. The inner orifice of the section (Fig. 239, i i) therefore lies nearer the center of the cornea than does its outer orifice (Fig. 239, a a). For this reason sections whose outer orifice lies in the sclera, and which hence are usually regarded as scleral sections, nevertheless by their inner segment belong to the cornea (I, Fig. 240). A further fact contributing to this relation between the external and internal sections is that the sclera overlaps the cornea externally, and the latter therefore in its inner layers extends farther toward the periphery than can be seen from the outside. Hence, even sections situated pretty high up, like Von Graefe's peripheral linear section for cataract extraction (Fig. 338), are in great part located in corneal tissue. This fact that the internal wound is less peripherally situated than the external must be taken into account in making the section. If, for example, we desire to excise the iris up to a certain spot, we must not perforate the cornea at a point directly opposite the latter, but must place the corneal section farther toward the periphery, so that the internal wound may lie at the spot at which the iris is to be cut off.

The internal wound is also of less length than the external (Fig. 239, a a and i i). This fact also must be taken into consideration, particularly in cataract operations, in which care must be taken that not only the external but also the internal wound shall be large enough to allow the cataract to pass through.

The oblique course of the wound through the tunics of the eye, furthermore, affects the tendency of the wound to gape. It was said above that flap wounds gape more than linear wounds; but the tendency toward gaping depends still more upon whether the wound traverses the tunics of the eye perpendicularly or obliquely. The former is more particularly the case in sections made with Graefe's knife, in which the knife passes through the cornea or sclera from within outward; the latter is the case in sections made with the lance knife. Sections of the former sort gape, owing to the elastic retraction of the edges of the wound. Wounds, on the other hand, which are made with the lance knife, and pass obliquely through the tunics of the eye, do not gape, because the lips of the wound close upon one another like a valve. The closure is effected by the intra-ocular pressure. This latter is exerted to the same extent on every point of the internal surface of the eyeball. It presses as strongly upon the posterior lip of the wound (a, Fig. 240) as upon the anterior (b), and hence pushes the former against the latter. To this

![Diagram](image-url)
valvelike closure of the wound is to be attributed the fact that the aqueous does not escape after paracentesis of the cornea if the lance knife is withdrawn cautiously, and without pressure or rotation, from the wound. The wound must be made to gape before the aqueous (or, in simple linear extraction, the soft masses of lens matter) can be evacuated. It would be a mistake to try to effect this by pressure either upon the center of the cornea or upon the sclera, as in so doing we should only increase the intra-ocular pressure by that which is exerted from the outside, and thus push the posterior lip of the wound still more strongly against the anterior. Only upon very strong pressure, by which the lips of the wound would be shoved past one another, would the wound gape open. The proper procedure, rather, is to depress the peripheral lip of the wound (e, Fig. 240) with a Daviel’s scoop, and thus open the valve.

The firm closure of the wounds made with a lance knife diminishes the danger of prolapse of the iris. How, then, does prolapse of the iris occur at all? When the cornea has been perforated at any spot, the aqueous flows from every direction toward this point, because here the ocular tension has sunk to nothing (i.e., has become equal to that of the external air). The fluid of the anterior chamber can flow toward the opening without obstruction; but the fluid of the posterior chamber, to get at the opening, must first pass through the pupil. Let us assume that the opening lies at the inner margin of the cornea (I, Fig. 240). In this case the liquid from the outer (more centrally situated) portion of the posterior chamber would flow toward the opening directly through the pupil, because this is its shortest way. The case is otherwise with the inner portion of the chamber, which lies immediately opposite the opening. Here going through the pupil means taking a roundabout way, which is the more circuitous the farther the opening lies toward the periphery. The aqueous will therefore tend to take the shortest way and rush straight forward toward the opening, pushing the iris before it. In the language of physics, the posterior surface of the iris is subjected to the pressure of that portion of the aqueous which has not yet been evacuated (d, Fig. 240). On the other hand, the pressure upon the anterior surface of the iris has become zero, and the iris consequently is pushed against and into the opening. This is the way in which a prolapse of the iris originates, the prolapse being nothing but a sac consisting of iris and filled with the liquid of the posterior chamber.

The danger of a prolapse of the iris occurring is greater—1. The greater the rapidity with which the aqueous is evacuated, because then proportionately less time is allowed the liquid of the posterior chamber to make the circuit by way of the pupil. Hence the rule that in making the section the aqueous should be allowed to flow off as slowly as possible. 2. In proportion as the ocular tension rises, because then the difference between the pressure in the anterior chamber which has been emptied and the posterior chamber which is full becomes so much the greater. When an iridectomy is made in glaucoma, a considerable extent of the iris usually at once protrudes from the wound. 3. In proportion as the wound lies nearer the periphery, for then the route which the aqueous has to take through the pupil is just so much the more circuitous, and there is a proportionate increase in the depth of the posterior chamber at the spot corresponding to the section and

![Diagram of the eye](attachment:image.png)
in the quantity of aqueous that acts to propel the iris forward. 4. According to
the size and shape of the aperture, since these conditions likewise have an effect in
producing prolapse of the iris. It is evident that the opening must be of a certain
size for the iris to enter it at all. Again, if the aperture is circular—as is the case,
for example, after perforation of an ulcer of the cornea has taken place—prolapse
of the iris will assuredly not fail to develop. On the other hand, wounds with a
valvular closure, such as those made with the lance knife, display a comparatively
slight liability to inclusion of the iris. We therefore try to anticipate the occur-
rence of perforation of an ulcer by making paracentesis with the lance knife, in
order to avoid prolapse of the iris and the anterior synechia that results from it.

Prolapse of the iris may occur not only during the operation but afterward
also. We may, for example, have succeeded in avoiding the development of pro-
lapse during the operation, or have removed it if it has developed; and yet on the
next day, when we change the dressing, we may find the iris prolapsed into the
wound. This occurrence is due to the fact that the recently agglutinated wound
has reopened, and at the moment when this took place the same conditions favoring
prolapse of the iris were supplied as at the instant of the operation itself.

Prolapse of the iris and its incarceration in the operation wound must be
avoided at any cost. If we are dealing with wounds in which there is but little
tendency to prolapse, it is sufficient to carefully replace any iris that may have
prolapsed during the operation. But if the section is of such a character that the
iris is apt to be pushed into it (as is the section of the peripheric cataract extrac-
tions), the reposition of the iris affords no security against prolapse; this may, and
very often will, take place subsequently. In these cases the only resource is excision
of the iris. How does this avert prolapse? Is it perhaps because all the iris is
removed that could possibly prolapse into the wound? If that were the case, the
iris would have to be excised through the entire extent of the wound—that is, often
for a considerable width. But this is not by any means necessary. As a matter
of fact, iridectomy prevents prolapse of the iris because it puts the posterior into
direct communication with the anterior chamber at the site of the wound, so that
the fluid which reaccumulates in the posterior chamber can flow directly toward
the opening of the wound without forcing the iris before it. For this purpose a
small opening is all that is necessary. Accordingly, my invariable practice is to
combine a peripheric cataract extraction with simply a narrow iridectomy, and I
find that in this way I am able to avoid incarceration of the iris with no less or
even with more security than by making a broad coloboma.

An escape of aqueous after the cornea has been opened presupposes a propor-
tionate contraction upon the part of the capsule of the eyeball. If the walls of the
eyeball were perfectly rigid, like a metallic capsule, for instance, not a drop of liquid
would escape from the orifice which had been made; a counter-opening would have
to be made in another spot before it could do so. In addition to the elastic con-
traction of the tunics of the eye, the pressure of the external ocular muscles, and
also the pressure of the lids upon the eye, contribute to reduce the volume of the
capsule of the eyeball. Another factor contributing to the same result is added
where the diaphragm formed by the lens and zonula is yielding enough to push
forward after the escape of the aqueous. In old persons, the capsule of whose eye-
ball is rigid and whose eyes lie deep in the socket, so that the lids and muscles have
but little power over them, the cornea after the escape of the aqueous (especially if
the lens is removed at the same time) is often pushed in by the external atmospheric
pressure (colapsus corneae). This occurrence is favored by the diminished thick-
ness of the cornea in old age, and also by the use, during the operation, of cocaine,
which reduces the ocular tension. Collapse of the cornea was formerly looked upon
as an evil event, because it prevents the precise apposition of the lips of the wound.
and it was supposed that suppuration of the wound was thus produced. We now know that the process of healing is in no respect affected by a collapse of the cornea. The collapse disappears as soon as the aqueous reaccumulates, which is generally the case as early as a few minutes after the operation. When the cornea on account of its elasticity tends to resume its shape after collapse has taken place, a negative pressure develops in the anterior chamber precisely as when the rubber ball of a syringe, after being compressed with the hand, is allowed to expand again. Air may be sucked in by means of this negative pressure, so that an air bubble enters the anterior chamber. This does no sort of harm to the eye. A more unpleasant effect of this aspirating action occurs when the blood is sucked out by it from the divided vessels of the iris, so that the chamber is filled with blood. This is particularly apt to take place when the cavity of the chambers is separated from the cavity of the vitreous by a more solid diaphragm than usual (exudation membranes), which is not able to advance properly after the escape of the aqueous. Particularly profuse haemorrhage is thus encountered in those iridectomies and iridotomies which are made in eyes with an old irido-cyclitis. The blood in this case is unpleasant for two reasons: first, because it is very slow in being absorbed; and, second, because it may in part become organized and close the new-made pupil up again. To prevent this haemorrhage ex vacuo, I apply in such cases a pressure bandage to the eye as soon as possible after the pupil has been formed. This bandage by external pressure diminishes the volume of the capsule of the eyeball, and presses the vitreous against the cornea.

If we except the cases mentioned above, the dressing applied after an operation should be a protective, not a pressure bandage. Its functions consist merely in keeping the eye closed. In fact, a bandage that is too tightly applied may become the cause of secondary rupture of the wound.

There is no necessity of darkening the room in which the patient operated upon lies; it is sufficient to protect him by means of some contrivance like a screen from any light that may fall upon him directly. In order to prevent breaking open of the wound, all kinds of physical exertion must be avoided. Under this head belong even such acts as violent mastication, coughing, sneezing, etc. Sneezing can be restrained if the patient, when he feels a tendency to sneeze, presses his finger against the hard palate at the site of the incisive foramen.

In old people, especially if they are drinkers, delirium not infrequently occurs, particularly when both eyes are bandaged. In this case the eye that has not been operated upon must be opened at once. Old people suffering from emaciation are apt, if they lie quiet upon their backs for several days after an operation, to get hypostases in the lungs, which may cause the patient's death. Hence, persons that are weak from old age ought to be taken out of bed very soon—if necessary, directly after the operation. There are other accidents, too, by which the course of the healing may be interfered with. As these can not usually be foreseen, it is advisable never to operate upon both eyes at one sitting; for from the operation and after treatment in the case of one eye, we learn what we are to expect when operating upon the second.

In small children quietude of behavior after the operation is not to be expected, and hence the larger sections, such as those made for iridectomy or cataract extraction have their healing interfered with. Accordingly, for small children we ought to choose only those methods of operating, such as discussion, which produce very small wounds.

(For striate opacity of the cornea after operations, see page 198.)
CHAPTER II.

OPERATIONS UPON THE EYEBALL.

I. PARACENTESIS OF THE CORNEA.

154. Paracentesis, or puncture of the cornea, may be made either with the lance knife or with Von Graefe's linear knife.

In making paracentesis with the lance knife the latter is plunged in perpendicularly close to the outer and lower margin of the cornea. As soon as its point has entered the anterior chamber the handle of the knife is depressed until the blade is parallel with the plane of the iris; then the lance knife is pushed a little farther forward, so that the wound gets to be 2 or 3 millimetres long, when the knife is withdrawn very slowly from the wound. Then, to make the aqueous flow off, we need only depress the peripheral edge of the wound (c, Fig. 240) gently with a Daviel's scoop. The evacuation of the aqueous should be gradual, and preferably intermittent.

Paracentesis with the lance knife is made—1. In progressive ulcers of the cornea whose advance either along the surface or into the depth of the tissues can not be arrested by medicinal treatment. In the case of corneal ulcers which threaten rupture we anticipate the occurrence of the latter by performing paracentesis. We thus avoid having the perforation take place too suddenly, and also avoid the occurrence of a prolapse of the iris. When the floor of the ulcer is greatly thinned and is bulging, we select this as the site of our puncture. 2. In ectasia of the cornea of various kinds, and also in markedly bulging prolapses of the iris, or in the staphylomata that develop from the latter. In these cases paracentesis must be followed by the use of a pressure bandage. 3. In obstinate inflammations of the cornea or uvea, and also in opacities of the vitreous, in order to exert a favorable effect upon the nutrition of the eyeball by altering the conditions of tissue metamorphosis. 4. In elevation of tension when this is likely to be transient, as, for example, in irido-cyclitis or in swelling of the lens. 5. After discission when the process of resorption is arrested in spite of the swelling up of the lens, since, as experience has shown, resorption then takes a fresh start owing to the removal of the aqueous. 6. In hypopyon, for removing it when it extends high up.

In all these cases it is not infrequently necessary to repeat the paracentesis one or more times.
Paracentesis with Von Graefe's linear knife is made according to the method proposed by Saemisch in ulcus serpens (see page 167). The Graefe knife, whose cutting edge is directed straight forward, is entered to the outside of the external border of the ulcer, in the healthy portion of the cornea; then it is pushed in the anterior chamber toward the nasal side until its point is brought out again through the cornea to the inside of the inner margin of the ulcer. We then may be said to have the ulcer lying upon the edge of the knife, which latter, therefore, has only to be pushed farther to the front in order to split the ulcer from behind forward. The section should have both its terminal points lying in sound tissue, and, if possible, should be so made that the most intensely yellow, progressive portion of the ulcer is bisected by it. After the section has been completed the hypopyon is removed. The section must be reopened daily (with a Weber's knife or with a Daviel's scoop), until the ulcer begins to grow clean.

Paracentesis of the Sclera (Sclerotomy).—This may be performed in the most anterior portion of the sclera, belonging to the anterior chamber, or in the posterior and larger division of it (sclerotomy anterior and posterior).

Sclerotomy anterior by De Wecker's method is made as follows: The Graefe knife is entered one millimetre outside of the external margin of the cornea, and brought out again at an equal distance to the inside of the internal margin of the cornea. The points of entrance and emergence are therefore symmetrically situated, and are selected as though the intention was to form a flap two millimetres high out of the upper part of the cornea. And, in fact, after the counter-puncture has been made, the incision is carried upward by sawing cuts just as if this flap was to be separated, but the knife is withdrawn before the section is completed. Thus, at the upper margin of the cornea there remains a bridge formed of sclera, which connects the flap with the parts below it and prevents the gaping of the wound. Hence, by this operation two sections at once are made in the seleral margin separated from each other by a narrow bridge (e and s, Fig. 297). Sclerotomy may be made downward as well as upward.

Sclerotomy, on account of the peripheral position of the wound, is very prone to be attended with prolapse of the iris. We should therefore endeavor to produce a marked degree of miosis by ecerine before the operation; the spasmodically contracted sphincter then keeps the iris in the anterior chamber. Should the iris in spite of this become wedged in the wound, and should it be impossible to replace it satisfactorily, it would have to be drawn out and cut off.

Sclerotomy is performed in glaucoma, but its results are not as certain, and, more particularly, not as lasting as those of iridectomy. Sclerotomy, accordingly, is performed by most operators, not as the ordinary operation, but only in exceptional cases. Under the latter belong the following: 1. Glaucoma simplex, with a deep anterior chamber and without distinct elevation of tension. 2. Inflammatory glaucoma, when the iris through atrophy has become so narrow that one can not hope to perform an excision of the iris that would be according to rule. 3. Hemorrhagic glaucoma. 4. Hydrophthalmus. 5. Instead of a second iridectomy in those cases of glaucoma in which the increase of tension returns in spite of an iridectomy performed according to rule.

In sclerotomy posterior the opening of the sclera is made in the posterior division of the latter. The section should be meridional—i.e., run from behind forward, since this is the direction of most of the seleral fibers, and hence such
sections gape the least. The position of the section must be chosen, so that neither an ocular muscle nor the ciliary body is injured. For the latter reason the section should not extend farther forward than at most to a point six millimetres from the margin of the cornea. The indications for sclerotomy posterior are:

1. Detachment of the retina. A broad Graefe knife is thrust into that spot of the sclera which corresponds to the most prominent part of the detachment. As soon as the knife has penetrated the sclera it is turned a little, so that the wound is thus made to gape. We then observe that the conjunctiva is lifted up by the subretinal fluid which escapes from the wound, so as to form a yellowish vesicle. As soon as the fluid ceases to be discharged the knife is withdrawn again.

2. Glaucoma, when the anterior chamber is obliterated, and hence iridectomy has become technically impossible (cases of glaucoma malignum and glaucoma absolutum). The operation is performed in the same way as in detachment of the retina, except that instead of subretinal fluid some vitreous is evacuated. Owing to the greater consistence of the vitreous it is usually necessary to make the section somewhat longer. After sclerotomy the anterior chamber is usually restored, so that an iridectomy can be performed later on.

3. A meridional section of pretty great extent is made when extraction of a foreign body, or of a cysticercus from the vitreous, is in question.

II. IRIDECTOMY.

155. Iridectomy by Beer's method is performed as follows: The incision is made with the lance knife in the vicinity of the margin of the cornea, being sometimes a little to the outside, sometimes a little to the inside of the latter, according as the point at which it is desired to excise the iris is more or less close to its ciliary margin. The lance knife is entered perpendicularly until its point is in the anterior chamber; then the handle is depressed, until the blade lies parallel with the plane of the iris. The lance knife is next pushed forward until the wound is of the desired length (four to eight millimetres, according to the breadth of the portion of the iris that it is proposed to cut out); in doing this the lance knife must be so held that the section is concentric with the margin of the cornea. The withdrawal of the lance is performed slowly, and with the instrument pressed against the posterior surface of the cornea, so as not to injure the iris or lens, which push forward as the aqueous flows off. After completing the section, the iris forceps with its branches closed is introduced into the anterior chamber and pushed on up to the border of the pupil. At this point the branches are allowed to separate and a fold of the iris is grasped, gentle pressure being at the same time made upon the latter. The iris is now drawn from the wound, and at the moment when it is most upon the stretch it is cut off close to the wound with the curved scissors or with the scissors forceps (pinces ciseaux of De Wecker). This ends the operation, and it only remains by introducing a spatula into the wound to put back into the anterior chamber any iris that may have been wedged into the wound, so that at the completion of the operation the pupil and the coloboma have their proper shape.
The indications for iridectomy are:

1. The presence of optical obstructions. These consist in opacities of the refractive media, occupying the area of the pupil. Among these belong: (a) opacities of the cornea; (b) a membrane in the pupil (occlusio pupillæ); (c) opacities of the lens, such as lamellar cataract, nuclear cataract, or an anterior polar cataract of particularly large diameter, and mostly shrunken cataracts which do not extend far toward the periphery; (d) subluxation of the lens when the attempt is made to place the pupil in front of the part that contains no lens.

For any good to be gained from the performance of an iridectomy for optical purposes, the following conditions must be present:

(a) The opacity must be so dense that it prevents the formation of distinct images upon the retina, and does not simply interfere with vision by giving rise to dazzling. In the latter event the dazzling would actually be increased by the iridectomy. A mistake that we frequently meet with is that of making an iridectomy when there are comparatively slight opacities of the cornea; by such an operation the sight is made worse instead of better. To avoid this mistake we first make an accurate determination of the visual acuity, then dilate the pupil with atropine, and once more test the sight. If the latter then proves to be considerably better than before the pupil was dilated, iridectomy is indicated; otherwise not.

(b) The opacity must be stationary. In the case of opacities of the cornea the inflammatory process should have already run its course; in opacities of the lens it must be stationary forms of cataract that are in question. Otherwise we run the risk of having the very spot become opaque which we have selected for making the artificial pupil in.

(c) The parts concerned with the perception of light—the retina and optic nerve—must be capable of performing their functions. This fact is determined by testing the vision. The latter must correspond approximately to the amount of dioptric obstruction that is visible. When the opacity is so dense that only quantitative vision is present, the latter is to be tested with a candle flame. We darken the room and station ourselves with a lighted candle opposite the patient. Now, by alternately holding the hand in front of the light and then withdrawing it, we test whether the patient can tell aright the change from light to darkness. We first make this test near by, and then withdraw farther and farther from the patient, so as to find the greatest distance at which he is still able to distinguish between the alternation of light and darkness. The degree of direct perception of light is thus determined. In order to test the extent of the visual field, the candle is gradually carried from one side of the patient to a position in front of the eye, which all the time must be looking straight forward; at the same time we ask when the light is perceived and upon what side it is situated. In this way the limits of the visual field in every direction can be determined.
The quantitative perception of light in the center and at the periphery is not abrogated by even the densest opacity. If the retina and optic nerve are sound, the glimmer of the candle must be recognized in a darkened room at a distance of at least six metres, and it should also be seen by the patient on all sides of him and its place be correctly given. If this is not the case, the periphereal portions of the eye are not normal. Upon the degree to which the perception of light is retained will depend the question whether an iridectomy for optical purposes is undertaken at all or not. These remarks regarding the perception of light hold good, moreover, not only for iridectomy, but also for all operations undertaken for the restoration of sight, and particularly for the operation of cataract.

The following conditions must be regarded as contra-indications to iridectomy for optical purposes: 1. Deficiency or total absence of the perception of light. 2. Strabismus of the eye which is affected with the opacity. In this case, even if the operation was technically a perfect success, not much gain in sight would be got, owing to the amblyopia ex anopsea which exists in such eyes. 3. Flattening of the cornea. For, where planatatio corneae has developed, it is always a sign that there has been in conjunction with the keratitis an irido-cyclitis which has left thick membranous exudates behind the iris. Hence, even if we actually succeed in excising the iris, a free aperture is not produced, and we have before us a hull of exudation which it is impossible to penetrate. 4. Incarceration of the iris in a cicatrix of the cornea, the iris being atrophied and pushed up against the posterior surface of the cornea. In this case iridectomy fails because the friable iris is too firmly agglutinated to the cornea (page 220).

A coloboma which is made for optical purposes must be so fashioned as to cause as little disturbance from dazzling as possible. This result is secured when the coloboma is narrow and does not reach to the margin of the cornea (O, Fig. 241). An excision extending up to the root of the iris would expose the margin of the lens and also the interspace between it and the ciliary processes, and thus admit a great quantity of irregularly refracted rays into the eye. In order to make the coloboma narrow and not too peripheral, the incision must be short, and lie at or even inside of the limbus. Those cases constitute an exception to this rule, in which only the most exterior marginal portion of the cornea has remained transparent, so that the iridectomy must, for obvious reasons, be quite peripheral.

That spot is chosen as the site of the coloboma at which the media are the most transparent. Wherever possible, we avoid making the coloboma above, as in that case it would be partly covered by the lid. If the media are everywhere equally transparent (as when there is a cicatrix situated exactly in the center of the cornea, a pupillary membrane, or a perinuclear cataract), the iridectomy is performed down-
ward and inward (Fig. 241), because in most eyes the visual axis cuts the cornea a little to the inner side of the apex (page 635).

156. [Other indications for iridectomy are:] 2. Increase of tension. Iridectomy is hence indicated in primary glaucoma, and also in secondary glaucoma resulting from ectasia of the cornea or sclera, from scleclusio pupillae, from irido-chorioiditis, etc. In hemorrhagic glaucoma iridectomy is often a failure. In general, the success of the operation is better the earlier it is performed. Nevertheless, an operation is some-

![Fig. 241.—Optical Iridectomy. Magnified 2 x 1.](image1)

![Fig. 242.—Iridectomy in Increase of Tension. Magnified 12 x 1.—a a, external; b b, internal wound. Cf. Fig. 241.](image2)

times done in cases of increased tension even when the perception of light has been already abolished, in which case there can be no idea of restoring sight. Then it is simply a case of relieving pain or of avoiding further degeneration (and especially further ectasis) of the eyeball.

When iridectomy is made for increase of tension, the coloboma, in contradistinction to an iridectomy made for optical purposes, must be broad and must extend to the ciliary margin of the iris. Hence the section must be situated as far back as possible in the sclera and must be made quite long (a a, Fig. 242). If there are not at the same time any optical conditions, to which regard must be paid in making the iridectomy, the latter must be directed upward so that the coloboma may be partially covered by the upper lid, and thus the confusion due to dazzling may be lessened.

3. Ectatic cicatrices of the cornea (partial staphylomata), in order to cause their flattening. This is the more apt to succeed, the more recent and the thinner walled the staphyloma is—that is, the closer akin it is to a prolapse of the iris.

4. Recurrent iritis, in which case the iridectomy is designed to prevent the recurrences—an object, however, which is not always attained. The operation is to be done during an interval in which there is no inflammation.

5. Fistula of the cornea. Iridectomy here serves the purpose of securing the formation of a firm cicatrix. We must wait to perform the operation until at least some trace of the anterior chamber has been restored, as otherwise the operation is impracticable on technical grounds.
6. *Foreign bodies* imbedded in the iris, which sometimes can only be removed by excising the portions of iris in which they occur. The like is true of cysts and small tumors of the iris.

7. *As a preliminary to the operation for cataract.* Iridectomy is done under these circumstances: (a) When we are dealing with complicated cataracts (e. g., those complicated with posterior synechiae, increase of tension, etc.). Many operators also perform this sort of "preparatory" iridectomy before operating upon uncomplicated cataracts, since they believe that the cataract operation itself is made less disturbing in its effects, and consequently less dangerous. (b) In unripe cataracts in order to mature them. This procedure, devised by Förster, consists in rubbing the cornea in a circular direction with a blunt instrument (Davel's scoop or a squint hook) after excising the iris. Since the cornea is so thin that it dimples on being rubbed, this procedure acts upon the lens also, the anterior cortical layers of which are thus compressed and partly crushed. It is a necessary requisite for the accomplishment of this that there should be a hard nucleus present, against which the soft cortex can be pressed. The result of this massage of the lens is that the latter becomes completely opaque in the course of a few weeks or even a few days. The extraction of the lens should follow the iridectomy at an interval of not less than four weeks.

In cases where iridectomy is made as a preliminary to a cataract extraction the excision of the iris must be made upward, so that the coloboma may also be utilized for the extraction of the cataract, which as a general thing is made upward.

The success of an iridectomy for optical purposes, as far as the amount of vision obtained is concerned, very often falls behind the expectations which both physician and patient have entertained in regard to it. This is especially the case with iridectomy in cicatrices of the cornea. In this case there are various reasons for the vision being often so defective, even when the operation itself has been a complete success. The chief one is that normally a considerable degree of astigmatism is present in the peripheral part of the cornea which has been used for the iridectomy. This astigmatism is increased partly by the effect of the adjoining cicatrix, partly by the operation itself. To this is added the astigmatic refraction of those rays which in the peripheral portion of the coloboma pass through the margin of the lens. This astigmatism, which is for the most part irregular, has a greater effect than usual, inasmuch as the new pupil is large and is almost or quite immovable, and hence can not lessen the size of the diffusion circles (see page 676). Moreover, the cornea over the coloboma is often less transparent than was supposed before the iridectomy, for slight opacities are scarcely visible when a light-colored iris is behind them, while they at once become obvious when after iridectomy a black coloboma forms the background. Still greater is the disappointment in store for the operator when after a successful iridectomy he finds the coloboma white instead of black, because the lens has already become opaque in that very spot.

It is obvious that the degree of sight that is regained depends also upon the condition of the percipient parts—a condition which should be ascertained before the operation by testing the perception of light. With regard to this point special
stress must be laid upon the fact that in testing the periphery of the visual field we should ask not only if the light is seen when held to one side, but also where it is. If necessary, we make the patient point to it or grasp at it. It not infrequently happens that the patient recognizes the glimmer of the light as soon as the candle flame appears in the periphery of the visual field, but that he tells its place wrong. He says every time, for instance, that it is on the right hand, even when it is held in some quite different spot. This is accounted for as follows: When an eye with transparent media is tested with a candle flame in a dark room, there is formed upon the retina, at a point opposite to the flame, an image of the latter, while the rest of the retina is not illuminated and has a sensation of darkness. If that part of the retina which is situated directly opposite the light were insensitive, no light would be seen at all. The case is different with an eye whose media are cloudy. In this the rays emanating from the light are so dispersed by the cloudy media that the whole retina is illuminated no matter where

---

**Fig. 243.—Path of Rays in the Case of an Excentrically Situated Pupil.**

the light is placed. To be sure, the illumination of the retina is not perfectly uniform. There are always more rays falling upon that part of the retina which lies opposite the light than upon the other regions of the retina, and thus the patient is able to tell where the light is; but he would also see the light if the portion of the retina lying opposite the latter were insensitive, since the rest of the retina likewise receives light upon it. Let us assume that the whole retina has become insensitive, with the exception of a region situated on the temporal side. This latter region, no matter where the light may be, will receive diffused light and will perceive it, too. The patient will locate the source of this sensation in the portion of the external world lying opposite to this region of the retina, and will therefore believe always that what he sees is on his nasal side. Hence the mere statement that a light is seen is not sufficient proof of the possession of functional capacity by all parts of the retina. For this it is requisite that the situation of the light be told correctly every time.

How must a man adjust his eye in order to see with an excentrically situated pupil? Let us assume that the eye is affected with a central cicatrix of the cornea (n, Fig. 248), so that it can see only with the assistance of a coloboma which
has been made upward. Must this eye, in order to fix an object, c, be turned downward so that the coloboma may lie opposite the object? By no means. The refraction of the rays in such an eye takes place in precisely the same way as in a sound one. The only difference is, that the portions of the beam emanating from c which enter the eye are not those situated in the center, but those situated above and corresponding to the coloboma. These latter throw the image upon the fovea, f, provided the object lies in the line of vision. An object, o, which is situated opposite the coloboma would form its image at b, below the fovea, and would therefore not be seen by central vision. Hence an eye with an eccentrically placed pupil performs fixation in the same way as does a normal eye. It is not superfluous to lay particular stress upon this point, inasmuch as many erroneous ideas prevail with respect to it. In a very learned treatise on retinitis pigmentosa, one can read how in this disease an iridectomy does no good if central opacities of lens are present, because in that case the images of objects would fall upon the peripheral portions of the retina which are insensitive! As a matter of fact, this would only be so if the objects themselves were situated in the periphery of the visual field.

The considerations just adduced also furnish an answer to the question whether a man would seem double who has colobomata in both eyes which extend in different directions—e.g., upward in the right eye and inward in the left. In this case there will be binocular single vision, since the object of fixation forms its image at the same spot in both eyes—namely, the fovea—no matter where the coloboma is situated.

It is difficult to perform iridectomy when the anterior chamber is shallow. This happens in gibbonous protrusion of the iris, in incarceration of the iris by the cornea, in glaucoma, in fistula of the cornea, etc. In these cases the lance knife can be pushed forward but a little distance, as otherwise we should get into the iris or the lens. We must then widen the section to the proper length by making a lateral cut with the lance while withdrawing it from the wound. In such cases we may also use a Graefe knife for making the section, but only when we have one to do that is at the upper or lower margin of the cornea. We can not make vertical sections with a Graefe knife, because we are then prevented by the margin of the orbit from carrying the knife where it should go.

The mishaps which may occur in the course of an iridectomy are: 1. Injury of the iris or lens with the lance, either through the clumsiness of the operator or through the restlessness of the patient. Injury done to the lens capsule entails a traumatic cataract, which not only produces a new obstacle to vision but also endangers the eye by giving rise to inflammation or increase of tension. 2. Iridodialysis. By this the excision of the iris is rendered difficult, great bleeding is set up, and often, too, a double pupil is produced (see page 325). 3. The last-named result may also occur from the fact that the sphincter pupil is at the site of the iridectomy is left behind, so that it separates the pupil from the coloboma like a bridge. This accident occurs either because the margin of the pupil is firmly adherent to the lens capsule, so that it does not follow the rest of the iris when the latter is drawn out, or because the iris is excised before it has been drawn far enough out of the wound. We shall not have to complain of this disagreeable occurrence if we observe the two following rules: The first is, not to grasp the iris with the forceps until we have pushed the instrument forward as far as the margin of the pupil, so as to get this latter between its branches. The second rule is, to cut off the iris only when it has been drawn out far enough for its black posterior surface to be visible. If, however, the sphincter should remain behind, we enter the anterior chamber again with a blunt hook and draw up the bridge of sphincter in order to cut it off. 4. When we operate in a case of total posterior synechia it often happens that the retinal pigment of the iris within the area of the coloboma remains
upon the lens capsule, with which it is intimately united by exudation. In that case, immediately after the iridectomy is completed, we may suppose that we have made a fine black coloboma, and it is only upon lateral illumination that we become convinced that the coloboma is not black, but dark brown—i.e., is filled with pigment. The optical result of the operation is then nil. It happens not less frequently in total posterior synechia that it is absolutely impossible to bring the iris out of the wound for the purpose of cutting it off. The iris, on the one hand, is so rotten, and, on the other hand, is so firmly attached to the lens, that the forceps, instead of drawing the iris out, only tears small fragments out of it. Both in this case and in the one in which the pigment layer remains behind, there is nothing left to do but to remove the lens also, even when the lens is still transparent, by an extraction. 5. Prolapse of the vitreous is particularly apt to occur in iridectomy when the zonula is diseased, as, for example, in subluxation of the lens or in hydrophthalmus.

III. IRIDOTOMY.

157. Iridotomy consists in simply dividing the iris without excising a piece of it, and in this respect differs from iridectomy. It serves the purpose of making a new aperture in the iris when the pupil is closed and of thus producing a new pupil. As the incision in the iris would also affect the lens which lies behind it and would thus produce traumatic cataract, this operation is only adapted to those cases in which no lens is present. In most cases the operation has to do with eyes which have been operated upon for cataract but which have lost their sight again through a subsequent irido-cyclitis. In these cases the iris is united with the exudation membrane and with the secondary cataract to form a firm diaphragm, which separates the cavity of the chambers and the cavity of the vitreous. To restore sight the diaphragm must be perforated. This can be accomplished by a simple incision, if this is so directed as to divide the diaphragm along a line perpendicular to that of greatest tension; then the incision gapes from retraction of the edges of the wound and leaves a slitlike pupil (cat's-eye pupil).

The operation may be performed with—

(a) The Graefe knife. This is plunged through the cornea and the diaphragm, and the latter is divided in a direction perpendicular to that of greatest tension. This method is only applicable when the diaphragm is not too thick. If the latter was the case, the diaphragm would offer great resistance to the knife, and in the endeavor to divide it the ciliary body would be pulled upon, and this might start up a new attack of irido-cyclitis.

(b) The scissors forceps (pinces ciseaux) by De Wecker's method. With the lance knife an incision is made along the margin of the cornea, and through this the scissors forceps is introduced closed into the chamber. Here the instrument is opened, and its posterior sharp branch is plunged through the diaphragm while the anterior branch remains in the anterior chamber; then, by closing the scissors forceps, the diaphragm is divided perpendicularly to the direction of greatest
tension. This is a severer operation than the former, and is also usually associated with loss of vitreous. On the other hand, it does not cause any pulling, as in it the diaphragm is divided just as a sheet of paper is cut in two by a pair of scissors.

Iridotomy often fails of accomplishment owing to the too great firmness of the diaphragm, which may actually be ossified; but even an excellent immediate result may be nullified because the old iridocyclitis is lighted up again by the operation, and the pupil which has been made is closed again by a renewal of the exudation. Hence we put off the performance of iridotomy as long as possible until all inflammatory symptoms have disappeared, unless we are compelled to operate speedily by special circumstances, such as protrusion of the iris, increase of tension, or beginning atrophy of the eyeball.

In order to be able to perform an iridotomy without danger to the lens, in case this is present, we may do an extra-ocular iridotomy. We make a puncture in the limbus with the lance knife, as for an iridectomy, draw out the iris, incise it in a radial direction (from the pupillary to the ciliary border), and then return it to the anterior chamber. In this way a V-shaped gap is made in the iris, and accordingly we use this method of operating in place of an optical iridectomy, when we wish to get a very narrow coloboma.

Another case in which it is possible to perform iridotomy when the lens is present, without injuring the latter, is found in humplike protrusion of the iris such as results from secusio pupillae; for here a considerable interspace—namely, the enlarged posterior chamber—separates the iris from the lens. Iridotomy in this case may be done by transfizion of the iris. A Graefe's knife is entered about one millimetre to the inner side of the temporal margin of the cornea, passed through the anterior chamber, and made to emerge at a spot near the inner margin of the cornea and symmetrically situated with respect to the point of entry. The points of entry and exit lie in the horizontal meridian of the cornea, and the knife is held so that its blade is parallel to the base of the cornea. Since the iris is driven forward, the knife as it is being carried through the anterior chamber pierces the most protruding portion of the iris both temporarily and nasally and makes holes in it. These holes remain permanently open and restore the communication between the anterior and posterior chambers; the iris returns to its former position, and the intra-ocular pressure becomes normal. In cases of hump-shaped protrusion of the iris, this operation may consequently be made instead of an iridectomy; and in cases of this sort it may be done as a preliminary operation to an iridectomy, so that the latter can be done later under more favorable conditions.

IV. DISCISSIO CATARACTÆ.

(a) Discission of Soft Cataracts.

158. Discission * of soft cataracts has for its object the opening of the anterior capsule of the lens in order to effect the resorption of the latter. Discission is performed with the discission needle, which is passed in through the cornea (keratomyxia †). The site of the puncture

* From discindere, to split (sc., the lens capsule).
† From κόρας, horn, and στερεύω, to prick.
is the center of the lower and outer quadrant of the cornea, at which spot the needle is passed through the cornea and perpendicular to the latter, and is then pushed forward in the anterior chamber as far as the anterior capsule of the lens. The latter is then laid open by one or more incisions in the area of the pupil (which has previously been dilated with atropine). The needle must be handled very lightly, no pressure being made with it, but simply sweeping movements; moreover, the incisions should not penetrate deep into the lens. The needle is then withdrawn from the eyeball, this being done quickly so that the aqueous may not escape.

After the operation the aqueous enters the lens through the wound in the capsule, and the lens swells up and is gradually absorbed in the manner described at length under the head of traumatic cataract (see page 418). In fact, discussion is nothing but an imitation of the kind of injury of the capsule that accident so frequently produces.

Discussion is adapted for all soft cataracts—i.e., for those which are capable of complete resorption because they have as yet no hard nucleus. This is the case in children and young persons. Discussion may also be made in those cataracts that still contain transparent portions of lens substance, since these become opaque under the influence of the aqueous. The form of cataract most frequently requiring this treatment is perinuclear cataract. Lastly, discussion may also be employed for removing perfectly transparent lenses, when it is a question of doing away with a high degree of myopia by operation.

The main advantage of discussion consists in the freedom from danger of the operation itself and in the simplicity of the after treatment. Since the small puncture in the cornea closes again directly, the patient is not compelled to keep to his bed after the operation and the bandage may be dispensed with in a few days. If the course is favorable, no further treatment is required than to keep the pupil dilated with atropine until the resorption of the lens is complete. Discussion, therefore, is the only cataract operation which can be employed with very small children who do not keep quiet after the operation.

During the after treatment various accidents may occur necessitating interference on the part of the physician. These are sometimes produced by the fact that the process of swelling takes place with too great violence; sometimes, on the contrary, by the fact that the swelling and absorption of the lens are brought to a standstill.

The violent swelling of the lens may be caused by too extensive a splitting of the capsule, owing to which the lens is exposed to the action of the aqueous over an excessively large area. In other cases, again, there exists in the lens a peculiar tendency to swell, which makes itself apparent even with small incisions of the capsule. As one can not form in advance a judgment of the tendency that the lens has for becoming tumesced, it is advisable at the first discussion to make only a
short and shallow section. The results of a rapid swelling of the lens may be either increase of tension or irido-cyclitis. The former manifests itself by the dull appearance of the cornea, by an increase of tension perceptible to palpation, and by the contraction of the field of vision; and these symptoms, if they were allowed to persist, would lead to amaurosis due to excavation of the optic nerve. The iritis is caused either by the mechanical injury (pressure) or the chemical irritation which the swelling masses of lens substance produce in the iris. Both increase of tension and iritis are particularly to be apprehended in elderly persons, because these bear swelling of the lens worse than others do. To avoid these accidents the pupil must be kept well dilated with atropine, so that the swelling masses of lens substance may come into contact with the iris as little as possible. Excessive swelling is most effectively combated by iced compresses, which, moreover, have an antiphlogistic action. If in spite of this treatment increase of tension sets in, we make an incision in the cornea, as is done for linear extraction (§ 160), and, as far as may be, evacuate the swelling masses of lens substance through it.

In contradistinction to the cases just mentioned, there are others in which from the outset the processes of swelling and resorption of the lens take place to an insufficient degree. In this event we are often dealing with the kind of lenses which are especially apt to occur in aged persons, and which are capable of swelling but little. In other cases everything goes well at first, but after a part of the lens has been absorbed the swelling and resorption come to a standstill. The cause of this commonly lies in a union of the capsular wound, which takes place to such an extent that the aqueous no longer comes into contact with the lens fibers. In either case the indication is to repeat the incision, in doing which one may proceed more boldly than in the first discission and make an extensive opening in the capsule.

The time required for complete resorption of the lens after a discission amounts generally to several months, and during this time the discission not infrequently has to be repeated. To shorten the period of treatment we generally do not wait for resorption of the lens to take place spontaneously, but remove the lens by linear extraction as soon as it is sufficiently swollen. Discission, therefore, is done as a preliminary operation, which, by breaking up the lens and making it opaque and swollen, serves to get it ready for a linear extraction. The latter is put off until some days or some weeks after the discission.

Discission is contra-indicated—1. In elderly persons whose lenses already have a nucleus, and whose eyes, moreover, do not bear well the swelling of the lens. 2. In subluxation of the lens, a condition which is recognized by the tremulousness of the latter. In this case discission is impracticable on technical grounds, since the lens being insufficiently fixed in its place would recede before the discission needle. 3.
When there is considerable thickening of the capsule of the lens, as in this case the discission needle would cause luxation of the lens before it could tear through the capsule. 4. In the presence of posterior synechiae, which render the dilatation of the pupil by atropine impossible. In such a case an iridectomy would have to precede the discission.

(b) Discission of Membranous Cataracts (Dilaceration).

159. The discission of membranous cataracts is not made with the view of effecting their resorption, since shrunken cataracts no longer contain much or any matter capable of being absorbed. On the contrary, their object is to make a free opening in the cataractous membrane by tearing it apart, and for this reason it had better be called dilaceratio cataractae.* The operation may be performed either through the cornea or through the sclera.

In the operation through the cornea (keratomyxis) the puncture is made in the center of the outer and lower quadrant of the cornea, as in the discission of a soft cataract. The needle is then pushed forward and plunged through the cataract, and then the attempt is made by means of sweeping movements to tear the cataract in all directions, so that as large a gap as possible may be formed in it.

In the operation through the sclera (scleromyxis†) the needle is plunged in perpendicularly through the sclera, six millimetres behind the external margin of the cornea, and somewhat below the horizontal meridian, and is then pushed forward so that its point passes through the cataractous membrane into the anterior chamber close to the external margin of the pupil. Then the attempt is made to tear the cataract to the greatest possible extent by means of sweeping movements in which the point of the needle travels from before backward. The difference between discission through the cornea and that through the sclera consists in the possibility of exerting in the latter method a greater force upon the cataract with the needle—a thing which is especially desirable when the cataractous membranes are rather thick.

Discussion is adapted for all membranous cataracts, provided they are not too thick, and that there are no extensive adhesions of the cataract to the iris. Discussion is frequently done as a secondary operation after the extraction of cataract to remove a secondary cataract.

Scleromyxis is adapted only to those cases in which there are but few, if any, portions of the lens left which are able to swell up. In soft, non-shrunken cataracts, which it is designed to subject to the processes of swelling and resorption, one

* [This name, however, is scarcely applicable to the operation as performed in several places in this country, and notably at the New York Ophthalmic and Aural Institute. In this the cataractous membrane is not torn but cut, the discission needle being replaced by a knife needle, or a needle with a short, and very fine and sharp cutting edge at its extremity.—D.]
† [From sclera and sērēōs, to prick.]
should not make discussion through the sclera, for in that case, in order to split the anterior capsule, we would have to pass the needle through the entire lens and break the latter all to pieces—a procedure which, apart from the fact that we might easily luxate the whole lens in doing it, would give rise to excessive and violent swelling.

Dilaceration of a membranous cataract is an operation productive of but little disturbance as long as there are no adhesions between the cataract and the iris. In the latter case there is danger of undue traction being made upon the iris, with consequent irido-cyclitis. Simple discission should be made only when the cataractous membrane is thin enough to be torn apart without being pulled upon. In the case of rather thicker membranes the operation can be done according to the method proposed by Bowman. In this two needles are passed through the cornea at the same time, one near the inner, the other close to the outer corneal margin. Then the points of the needles are plunged into the center of the membrane and drawn apart by sweeping movements. Thus the membrane is torn in such a way that the part pulled upon lies between the two needle-points—i.e., in the center of the cataract—while the iris remains free from tension of any kind. If the adhesions are very numerous, the discission is preceded by an iridotomy or is replaced by an iridectomy.

V. Extractio Cataractae.

160. The object of cataract extraction is to remove the lens from the eye immediately, and that, too, as completely as possible. It consists essentially of three steps: 1. The making of a section whose dimensions vary in accordance with the size and consistence of the cataract. This section may lie in the cornea or in the sclera. 2. Opening of the anterior capsule in order to allow the lens to escape from it. 3. Expulsion (delivery) of the lens by pressure exerted upon the eye. In many cases a fourth step is added to the operation—namely, the excision of a portion of the iris. This iridectomy is regularly performed directly after the completion of the section.

The most usual methods of extraction are:

(a) Linear Extraction.

Linear extraction, like discission, is performed both in soft and in membranous cataracts, and consequently is done in two different ways, which are modifications of each other:

1. In operating upon a soft cataract the lance knife is introduced at the limbus in the lower margin of the cornea, the blade being held parallel to the corneal margin. The lance is first passed perpendicularly through the cornea, and then, as soon as its point appears in the anterior chamber, is turned until its blade is parallel with the plane of the iris. The lance is then pushed forward until the wound in the lower margin of the cornea has a length of four to seven millimetres (S S', Fig. 244). Then the lens capsule must be very thoroughly torn up in the area of the pupil, which has been previously dilated by means of atropine. For opening the capsule we may use either a discission
needle or a capsule forceps. After this the lens masses are evacuated by depressing the peripheral lip of the wound with a DaViel's scoop. By this means the contents of the eyeball are subjected to quite a great pressure, and the wound is caused to gape open. This manoeuvre is repeated until all parts of the lens have been removed from the eye.

If linear extraction is done to remove a lens that has been swollen up by a preliminary dissection, the opening of the capsule is omitted, since the capsule has already been torn open by the dissection.

2. When a membranous cataract is to be operated upon, the section is made in the same way. Then a sharp hook or a forceps is introduced through the section, and with these instruments the cataractous membrane is grasped and drawn out through the wound.

The advantages of linear extraction consist in the fact that the section is short and passes through the cornea obliquely, for which reason it closes readily, does not necessitate an iridectomy, and does not require any very strict after treatment. But owing to this very fact that the section is so short, this method is adapted only to membranous or to soft cataracts—i.e., to those that have no hard nucleus, since the latter could only be removed through such a wound with difficulty, or could not be removed at all.

(b) Flap Extraction.

161. This operation produces in the margin of the cornea a curved section of an extent requisite for the removal of large, hard cataracts. The operation consists of four steps:

First step: Performance of the section. This is done with the Graefe linear knife, which is introduced in the limbus at S (Fig. 245), in such a way that the cutting edge looks upward, and the point is directed toward the center of the pupil. As soon as the point has passed this latter, it is raised by depressing the handle until it arrives at the site of the counter-puncture, \( S' \), at the upper and inner margin of the cornea. The counter-puncture should lie exactly opposite the site of the puncture, the two being so situated that a straight line connecting them represents the boundary line between the upper third and the lower two thirds of the cornea. After the transfixion has been
made, the section is completed by sawing cuts, so that through its whole extent it divides the cornea just in the limbus. As soon as the knife has cut through the cornea and lies behind the conjunctiva, it is carried rapidly upward so as to cut through the conjunctiva somewhat farther back. In this way a conjunctival flap is formed about two millimetres broad.

**Second step: Iridectomy.** After the conjunctiva flap has been turned down upon the cornea, so that the wound may be exposed to view, the latter is entered with the iris forceps, the iris is grasped close to the pupillary margin, drawn out, and cut off with a single sweep of the scissors.

**Third step: Opening of the capsule.** This is performed with the capsule-forceps, the delicate teeth of which are directed backward (Förster, Schweigger). The forceps, closed, is introduced and passed on in the anterior chamber until the center of the pupil has been reached. Here the forceps are allowed to open, and by the exertion of light pressure the capsule is grasped over as large an extent as possible, and is drawn out of the wound.

**Fourth step: Expulsion of the lens.** The Daviel’s scoop is placed parallel to the wound against the lowermost part of the cornea, and light pressure is exerted with it upon the latter upward and backward. Instead of the scoop, we may use the finger, pressing with this through the lower lid upon the region of the lower margin of the cornea. The pressure must be intermitted the instant the greatest diameter of the lens has passed through the wound.

After the operation is finished, the “toilet” of the eye is next in order. The portions of the cataract which are still left in the eye, and also any extravasated blood, are removed by stroking with the lower lid,* the iris is replaced from the wound into the anterior chamber by the introduction of the spatula, until the pillars of the coloboma have the proper position (see page 736), then the conjunctival flap is stroked out smooth, and the eye is bandaged.

Of the four steps of the operation the second may be omitted, and the operation done without iridectomy. In the latter case the iris must be carefully replaced after the operation is finished, and then eserine must be instilled in order to prevent by the contraction of the pupil any subsequent prolapse of the iris.†

The _indication_ for the performance of flap extraction is furnished by all cataracts which have a hard nucleus, and hence are not adapted either for discussion or for linear extraction. The section is made upward, so that in case iridectomy is performed the coloboma, too,

---

* [Or with a spatula.—D.]
† [Extraction without iridectomy is called _simple extraction_, in contradistinction to _combined extraction_ (or the operation with iridectomy). The use of eserine in simple extraction has fallen into disuse with some operators.—D.]
may be situated above and be covered by the upper lid. The section performed as above described is long enough for the largest-sized cataracts. If we have a cataract to operate upon whose nucleus is probably small, we may make a section of correspondingly smaller size.

With regard to the way of making the section, different operators differ, some making it in the transparent cornea, in which case no conjunctival flap is formed, while others carry the section through the marginal portions of the conjunctiva covered by the limbus, or even through the adjoining sclera, so that after making the division they bring the knife up under the conjunctiva, and form a flap out of it. This conjunctival flap has the advantage of becoming very quickly agglutinated to the subjacent parts, and so closes the wound externally even when the edges of the incision in the cornea or sclera have not yet united. It thus protects the wound from subsequent infection.

Opinions differ not only with regard to the way of making the section, but also as to whether the extraction should be made with or without iridectomy. The omission of iridectomy has the advantage of keeping the patient's pupil round and mobile, but it also entails many disadvantages, which limit the number of cases in which extraction without iridectomy is indicated. Thus: 1. The delivery of the lens is more difficult without iridectomy, because the lens has to be expelled through the narrow pupil, and to accomplish this pretty strong pressure is required. Hence, this method is not adapted to those cases in which a very easy delivery of the lens is desirable, as, for instance, in cases of tremulousness of the lens in which any kind of strong pressure would produce rupture of the zonula and hyaloid membrane, and consequently prolapse of the iris. 2. Extraction without iridectomy is not adapted to cases in which there is a complicated cataract connected with the iris by synechiae. 3. In spite of the use of eserine, prolapse of the iris may take place in the days following the operation. In this case we are obliged to make a secondary excision of the prolapsed iris. Accordingly, extraction without iridectomy is not adapted to cases which show a great tendency toward prolapse of the iris, nor to those in which we can not count upon the patient's remaining quiet after the operation. It may also happen that an operator may, after taking all these facts into consideration, have decided upon an extraction without iridectomy, and yet in the course of the operation may find himself compelled to excise the iris. This is the case, for instance, when the pupillary portion of the iris is so unyielding (as it often is in old people) that it does not allow the cataract to pass through the pupil, and the latter has to be widened by an iridectomy before the passage can take place. In other cases the delivery of the lens goes on well, but the iris shows a tendency, in spite of careful reposition, to fall again into the wound. In this event it is better to cut it off at once than to run the risk of a subsequent prolapse of the
iris. We may therefore say: Flap extraction without iridectomy gives under favorable circumstances the most perfect result, but is not adapted to all cases, and in many cases it can not be done at all; moreover, owing to the danger of a subsequent prolapse of the iris, it does not attain to the almost absolute certainty of success that belongs to flap extraction without iridectomy.

Accidents occurring in the Operation for Cataract.—The extraction may be made difficult or fail altogether, owing to accidents of various nature. Many of these are the fault of the operator. If the section proves to be too short, or if the capsule is insufficiently opened, the delivery of the lens is difficult or impossible. In this case the section must be enlarged, or the capsule must be again ruptured, and this time more thoroughly. If the operator exerts too strong a pressure with his instruments upon the eyeball as a whole, or upon the iris or lens, the zonula ruptures and the vitreous gushes out. The greater the operator's skill grows with practice, the less frequently do these unlucky accidents happen to him. But there are other accidents which are caused by the abnormal condition of the eye that is operated upon, and in that case it generally does not lie in the power of the operator to prevent them. The most frequent of these accidents is prolapse of the vitreous. This takes place when the zonula ruptures. Such rupture not infrequently happens, because the patient screws his lids tightly together and thus presses upon the eyeball. It also occurs when the zonula was defective before the operation, and hence especially in hypermature and in complicated cataract. The significance of prolapse of the vitreous for the subsequent course of the operation varies according as it takes place before or after the delivery of the lens. In the former case the lens can not be evacuated in the usual manner by pressure exerted upon the eye; for then the larger part of the vitreous would escape before the lens itself came away. Hence, the lens must be drawn out of the eye with instruments—i.e., extracted in the true sense of the word. For this purpose the proper instruments are Weber's loop or Reisinger's double hook, which are introduced behind the lens and lift it out by force of traction.

Prolapse of the vitreous is much less to be dreaded when it takes place after delivery of the lens. The most serious harm that prolapse then does is that it hinders the accurate replacement of the iris, and also that the prolapsed vitreous lies between the lips of the wound and prevents their accurate coaptation. The vitreous may also give rise to suppuration of the wound, since it is very prone to become infected.

A rare but unpleasant accident is that in which the lens, before being delivered, becomes luxated, and disappears into the vitreous from which ordinarily it can not be extracted.

162. Result of the Cataract Extraction.—An eye whose lens has been removed is aphakic. It presents the following appearance when
the operation and the healing of the wound have pursued a normal course: The cicatrix left by the operation, if situated in the cornea, appears as a narrow gray line; if the section has been made in the limbus or in the sclera, the resulting cicatrix becomes later on almost unrecognizable. The anterior chamber is abnormally deep, the iris is tremulous and, when the operation has been done with iridectomy, presents a coloboma above. The pupil is of a pure black, but on lateral illumination presents to view a membrane of silky luster, which not infrequently is thrown into folds. This is the lens capsule which was left in the eye when the lens was removed. The capsule is left, first because it would be impossible to remove a normal, non-thickened capsule intact from the eye, as, if an attempt were made to do this, the capsule would tear apart; second, because it is not desirable to remove the capsule anyhow, since it along with the zonula forms a diaphragm which, being stretched between the ciliary processes, keeps the vitreous in the eye, so that, in removing the capsule, we would always run the risk of having prolapse of the vitreous. It is, however, only the posterior capsule of the lens (h, Fig. 246) that is intact throughout. The anterior capsule (v v₁), where it occupies the area of the pupil, is lacerated and in part deficient; the remains of it are applied directly to the posterior capsule. Since both capsules are transparent, the pupil appears round and black. Behind the iris the anterior capsule, where it was protected from the instrument used for making the opening, is preserved intact, and in conjunction with the posterior capsule incloses remains of the lens, which correspond to what was once the equator of the latter (Fig. 246, k).

As the anterior and posterior capsules become agglutinated together to the pupillary area, these remains of the lens are shut off from the aqueous, and can not therefore be absorbed; in fact, they usually increase in amount, owing to proliferation of the cells of the capsule. They then form an annular swelling lying behind the iris (Soemmering's crystalline swelling). The lumen of the ring, which corresponds
to the pupil, is closed by a thin, transparent membrane consisting of
the two apposed layers of the capsule. As the opaque and swollen
mass is concealed completely behind the iris, it in no way interferes
with vision. If the operation has been made with an iridectomy, the
mass is wanting in the course of the coloboma, because the anterior
capsule was opened there likewise.

Without glasses the sight of persons who have been operated upon
for cataract is just sufficient to allow them to go about alone or to do
very coarse work. Distinct vision is possible only with the aid of con-
 vex glasses, since by the removal of the lens the refractive power of
the eye has become too small, and hence there is a high degree of hy-
permetropia. If the eye was emmetropic before the operation, the hy-
permetropia afterward amounts on an average to from 10 to 12 D. It is
otherwise in cases in which an error of refraction already existed be-
forehand. If a hypermetropia was present previously, it is added to
that which is acquired by the operation, and makes it proportionately
greater. If, on the other hand, the eye was myopic before the opera-
tion, the subsequent hypermetropia is so much the less; extremely my-
opic eyes may actually become emmetropic after a cataract operation,
or even remain a little myopic. The aphasis eye, moreover, is desti-
tute of accommodation. The eye is incapable of altering its refractive
state. Hence, it follows that by any single glass the latter is corrected
for a single distance only. Accordingly, an eye operated upon for
cataract needs at least two glasses—one for distance, the other for near.

It often happens, even in cases in which the operation has been well
performed, that the result of the operation is impaired by the retentio
don of portions of the cataract. This happens particularly when the opera-
tion is done on immature cataracts, but by no means fails to occur also
in those that are mature and hypermature. If the anterior capsule is
thoroughly opened, the portions of lens left behind (if they were not
already opaque previously) grow opaque, swell up, and become absorbed.
In this case, therefore, a pure black pupil is ultimately obtained. But
if the layers of the capsule become agglutinated early and shut off the
remains of lens substance from the aqueous, these remains are not abs-
sorbed but persist as a white membranous opacity. This is called after-
cataract (cataracta secundaria). If this is present in only one part of
the pupil while another part of it is quite clear, the sight may be per-
flect. But if the whole pupil is filled by the secondary cataract, the
sight is diminished in proportion to the density of the opacity. It may
also happen that the after-catarract does not develop until later on; the
epithelium of the anterior capsule which has been left behind prolifer-
ating and inducing a secondary thickening and opacity in the latter.
Similarly the capsule, even without becoming opaque, may induce di-
munition in sight, if in the course of time it becomes more and more
wrinkled and thus causes irregular refraction of the rays of light.
After-cataract, when it interferes with sight, requires a secondary operation—namely, discission, or linear extraction. The secondary operation should not be performed until the eye ceases to show any trace of irritation, and in no case sooner than two weeks after the cataract extraction.

The result of a cataract operation may furthermore be impaired by *inflammation* (see page 740). If suppuration of the wound sets in, the eye is almost always lost. If irido-cyclitis develops, the secondary cataract is united by the exudate which is formed to the iris and even to the ciliary processes (cataracta secundaria accreta). It depends upon the condition of the light perception whether the sight in such a case can be restored or not by a secondary operation (iridectomy or iridotomy).

**Historical**—In the preceding lines it has been shown that there are various ways open to us for removing cataract. We may either subject it to resorption by means of discission, we may tear a hole in it by dilaceration, or we may remove it altogether from the eye. But not even by this list are all the methods of restoring the sight of an eye blind with cataract exhausted. We might also, instead of removing the opaque lens, push it away from its place behind the pupil so that the latter becomes free again. This artificial luxation is not only practicable, but as a matter of fact it has been practiced for a thousand years; it is the oldest method of operating for cataract. This method, called *depression of cataract* (depressio cataractae), was made in the following way: A needle was passed into the sclera on the outer side of the margin of the cornea and about four millimetres behind it, and it was pushed forward until at length it lay against the upper border of the lens. Then the point of the needle was lowered by a sweeping movement, and the lens was thus depressed into the vitreous. At the instant when this was done the pupil became black and the patient regained his sight. This was the only method of operating upon cataract practiced in ancient times and throughout the middle ages. As time went on it was modified in various ways. The last and most important modification consisted in turning the lens over instead of depressing it. The needle in this case was passed by the margin of the pupil and into the anterior chamber, and with it pressure was made upon the upper part of the anterior surface of the lens. The latter was thus turned over in such a way that its anterior surface looked upward, its posterior surface downward. This procedure was called *redinatio cataractae*.

The operation above mentioned, or "cataract pricking," was, as a rule, practiced by special physicians. In the middle ages these went from one annual fair to another, and there operated upon those who were blind with cataract. When the operation had been successfully performed and the honorarium had been paid, the "cataract pricker" traveled to another place. He did not see his patient again after the operation, and it was a good thing for him that he did not, for the later consequences of the operation were as melancholy as the immediate result was brilliant. This was founded upon the nature of the operation itself.

The lens that has been depressed into the vitreous lies in the region of the ciliary body, with which indeed it may even be in contact. In this situation it acts like a foreign body, and excites inflammation. In a favorable case this inflammation is only just great enough to fix the lens in place by means of an exudate and to

* [Also couching or displacement of cataract.—D.]
encapsulate it. Hence, years afterward the lens, diminished in size by absorption and inclosed in a hull of connective tissue, is found in the spot to which it is carried by the operation. Very frequently, however, the inflammation passes the desired limit. A severe irido-cyclitis develops, which annihilates the sight by closure of the pupil and the formation of cyclitic membranes, produces atrophy of the eyeball, and even threatens the other eye with sympathetic inflammation. This unfortunate outcome may occur even years after a successful depression.

It may also happen that, while no inflammation occurs, the lens fails to remain in its place in the vitreous, particularly when the latter is liquefied. It then rises either immediately after the operation or not till later, in some cases not till years afterward, and places itself in its old position behind the pupil; it may even pass through the pupil into the anterior chamber. In either case the vision is again interfered with, and the eye is often destroyed by elevation of tension or by irido-cyclitis.

The cases in which the lens became prolapsed into the anterior chamber after the operation of depression occasioned the first performance of extraction of cataract. This method of operating, if we are to believe some authors, was perhaps practiced now and then even in ancient times, but at any rate it had in the middle ages fallen completely into oblivion. The first information that we have in regard to it we get from the seventeenth century, when there are several instances in which the lens was removed from the anterior chamber into which it had got after the operation of depression. The Frenchman Daviel had already done this in several cases, when in the year 1745 he first dared to undertake this operation upon a cataract which was situated in its normal position. In so doing Daviel inaugurated a new era in the history of cataract operations, since from that time the extraction of cataract began more and more to take the place of depression.

The original method of Daviel was naturally very much in need of improvement. Of the many modifications which it underwent, the last and best was that of Beer. The latter made the section with a knife invented by himself, which broadens out from point to handle so as to have a wedge shape. With Beer's cataract knife it is possible to complete the section by simply pushing the knife forward after it has been entered, and owing to this fact the section acquires a high degree of regularity. The section ran somewhat inside of the limbus, and separated exactly the lower half of the cornea from the sclera. Then, after opening the capsule, the lens was delivered, but no part of the iris was excised.

Beer's procedure was soon generally adopted, and was for a long time the prevailing method. In successful cases it gave ideal results. The pupil was black, round, and perfectly movable, and it was only upon close examination of the eye that it could be discovered that an operation for cataract had been performed at all. Unfortunately, it always happened that a considerable number of eyes were lost after this operation, especially by suppuration of the cornea. As at that time it was not known that this was caused by infection of the wound, the method of operating, and particularly the way in which the section was made, were regarded as accountable for it. Hence, other better methods were sought after, and this time Von Graefe was the one to take the most important step forward and create a revolution in the methods of performing extraction by the invention of his process.

Von Graefe considered that the cause of the suppuration of the cornea in Beer's method lay in the shape of the section which was made with a flap. This gives rise to great gaping of the incision, in consequence of which the lips of the wounds are not properly applied to one another, and this fact was supposed to furnish the cause of the suppuration. Von Graefe accordingly believed that the linear incisions were preferable, as he had become convinced of the promptness with which they healed
in the case of simple linear extraction, an operation which had already been practiced by him. Accordingly he, as well as others, attempted to apply the linear section which was made with the lance knife, and which originally was employed only for soft or shrunked cataracts, to large cataracts with a hard nucleus. With this object in view these experimenters tried to make the linear incision as large as possible by placing it in the upper part of the cornea, and by combining it with iridectomy. Others tried to diminish the size of the lens first by crushing it so as to be able to extract it through the section. But these attempts were all unsuccessful. The section always remained too small for the cataract, which in its passage confused the lips of the wound, so that inflammation frequently ensued. Jacobson, who sought the remedy in another way, obtained better results. He placed the section in the sclera. He gave up the linear character of the section, and made a flap incision, skirting the lower margin of the cornea, but situated still in the sclera. With this he combined iridectomy. This method gave better results, and particularly a less frequent suppuration of the wound. The cause of this was regarded as consisting in the fact that the sclera, as being a vascular tissue, is less disposed to suppuration than the non-vascular and hence more poorly nourished cornea.

Von Graefe now attempted to combine in a new method both advantages—namely, the linear character of the section, which ensures a good coaptation of the edges of the wound, and the position in the sclera, which affords protection against suppuration of the wound. It soon became apparent to him that a linear section, which should be of the necessary length and situated in the sclera, could not be performed with the lance-shaped knife. The lance knife must be pushed forward parallel with the plane of the iris, and therefore, as soon as it is desired to make a wound of any length at all, produces a section which is nearly concentric with the margin of the cornea, and hence has the character of a flap (as a, Fig. 242). Von Graefe accordingly devised the narrow or linear knife, which soon proved to be one of the most useful instruments in ophthalmology. With this knife he performed the section in such a way that at its center it was in contact with the summit of the cornea, but at its ends was removed a considerable distance from the corneal margin. The point of entry is determined by means of a tangent (t, t, Fig. 247), which is conceived to be drawn through the external margin of the cornea; the puncture (s) is situated in this and at that point of it where it is at a distance of one to one and a half millimeters from the margin of the cornea. The point of emergence, s1, lies directly opposite the point of entry. While the section is being performed, the edge of the knife, which at first was directed straight upward, is turned a little forward, so that the center of the section gets to lie behind the limbus. The new way of making the section had the conjunctival flap and iridectomy as its necessary concomitants. The iridectomy had to be performed as a regular thing, since otherwise the iris, owing to the peripheral situation of the wound, would certainly have become incarcerated in it. (In the old methods of extraction iridectomy was done only when there was some necessity for it.) As cataract operations combined with iridectomy were called "modified" operations (so named in contradistinction to those that are "simple," i.e., performed without iridectomy), Von Graefe called his new method "modified linear extraction." Later on one made a virtue of necessity, and laid special stress upon the advantages of the iridectomy that was combined with the extraction. It prevented, they said, the incarceration of the iris, made it possible
to open the capsule more thoroughly, facilitated the removal of the remains of the cataract, and afforded a protection from subsequent inflammation of the iris. Hence, people soon got to regard the excision of the iris as one of the additional advantages of the new method.

The results of Von Graefe's linear section were, in fact, much better than those which the earlier methods had given. Suppuration of the wound, in particular, had become less frequent. But yet the method had its dark side, too. Its performance required more operative skill, and the delivery of the lens was made more difficult, owing to the slight tendency to gape that the wound possessed. Other disadvantages arose from the peripheral situation of the section, which brought the latter, especially at its extremities, close to the zonula and the ciliary body. Prolapse of the vitreous was frequently met with, and also inclusion of the pillars of the coloboma in the wound. While suppuration of the wound proved to be less frequent, iritis and irido-cyclitis became proportionately more common, and in consequence sympathetic diseuse of the other eye was observed more frequently than before. These facts induced operators to depart more and more from this section, which was felt to be too peripheral in its situation, and in particular led them to place the extremities of the latter nearer the cornea. If Von Graefe's original section, as Von Graefe himself gave it, was itself not a pure linear incision, this is still more the case with the section as it was subsequently performed. It had become a curved section, forming an arc of small altitude. Under this somewhat modified form, scleral extraction soon became the method that was generally employed.

Since with the introduction of the antiseptic method the danger of suppuration of the wound has been reduced to a minimum, operators no longer hesitated to make the section in the limbus or in the transparent cornea itself—as, for example, is done in the corneal flap extraction above described. Other improvements that have been made have had regard to the excision of the iris. Operators had already learned by careful reposition of the iris to avoid the dangers arising from its incarceration. When this is done there is no need of making a large coloboma such as Von Graefe had described—indeed, it is much better to make the excision of the iris as slender as possible (Fig. 235). With this object in view, we draw the iris from the wound only far enough for its pupillary margin to become visible, and then, holding the scissors forceps perpendicular to the direction of the wound, snap off simply the apex of the tag of iris. A small coloboma averts prolapse of the iris as certainly as does a large one (see page 744), and causes less confusion from dazzling.

When at length surgeons again adopted the section in the cornea, they took the last step and operated entirely without iridectomy, as Daviel and Beer had done in former times.

The opening of the capsule was made by Von Graefe with a cystitome—i.e., with a triangular-cutting lancet, and by others was made with the discission needle or with a sharp hook. An important improvement has been the introduction of the capsule forceps for opening the capsule. With this the anterior capsule is not only split, but also has a piece taken out of it. Thus, the capsular wound is prevented from closing quickly again, and in this way from interfering with the resorption of the fragments of the lens that remain. Since the employment of the capsule forceps, secondary cataract has become much less frequent, although at present unripe cataracts are operated upon much more often than formerly.

In recent times many operators have followed the extraction with irrigation of the anterior chamber with weak antiseptic solutions, partly in order to wash out the fragments of lens which remain behind, and partly to disinfect the interior of the eye (MacKeown, Wicherkiewicz). I have employed irrigation pretty often, but without seeing any essential advantages accruing from it.
OPERATIONS UPON THE EYEBALL.

Besides the methods of extraction which have been described, there are an innumerable number of others, distinguished by differences in the form and position of the section, in the way of excising the iris, in the method of opening the capsule, etc. Many operators placed the incision farther in the cornea (Lebrun, Liebrich)—in fact, even in its center (Küchler). Others performed the section with hollow-ground knives—e.g., Weber with a concave lance, Eduard Jäger with a concave knife. In Wenzel's method of extraction a flap section is made downward, and in such a way that the knife is carried not only through the cornea, but also through the iris and the anterior capsule of the lens. This method is suitable for those cases in which, owing to irido-cyclitis, there is an adhesion between the surfaces of the iris and the lens, and the anterior chamber is shallow. For cataracts with thickened capsule Pagenstecher’s advice is to refrain at the outset from any attempts at opening the capsule, and to extract the lens in its unopened capsule. With this object in view the operator, after completing the section and excising the iris, passes a specially devised scoop behind the lens, and, pressing at the same time upon the cornea, lifts the lens out of the eye. There are many other methods besides these, all of which can not be given here. We know now that the success of the operation depends far less upon the way in which the section is made than upon the cleanliness of the operator.

In many persons that have been operated upon for cataract the symptom of erythropsia (= red-sight, from ἐρυθρός, red) is observed. It generally first shows itself after the patients have been discharged as cured and allowed to go home and are no longer protected by dark glasses against glaring light. If they are exposed for some time to a strong light in the open air (particularly in winter when there is snow on the ground) and then return to their room they see all objects of a vivid, purplish-red color. This phenomenon lasts for a period varying from a few minutes to several entire days, and is apt to recur quite frequently, especially upon getting up in the morning. The cause of this phenomenon probably is that the visual purple in the retina is bleached out by the bright light, a thing which with the large pupil produced by the iridectomy and with the lens absent can readily occur. When then, upon the patient’s going into a dark room, the regeneration of the purple pigment begins to take place, this pigment gets to be perceptible. In rare cases erythropsia is produced as an effect of dazzling in eyes that still contain a lens (e.g., after iridectomy), and it may be set up in any healthy eye if, after atropinization, the latter is exposed for some time to the dazzling light from the snow.
CHAPTER III.

OPERATIONS UPON THE ADNEXA BULBI.

I. SQUINT OPERATIONS.

(a) Relaxation of an Ocular Muscle (Tenotomy).

163. Tenotomy is performed upon the internal or external rectus; very rarely, indeed, upon the other ocular muscles.

Tenotomy of the internal rectus by Arlt's method is performed as follows: The conjunctiva on the inner side of the cornea is lifted up with a fixation-forceps so as to form a horizontal fold in which a vertical cut, situated about four millimetres from the margin of the cornea, is made with a single snip of the scissors. The incision is then enlarged upward and downward, and the conjunctiva to the nasal side of it is undermined. Starting from the wound, the fixation forceps is passed inward till it reaches the tendon, which is grasped, drawn somewhat away from the eyeball, and divided close to its insertion in the sclera. For this purpose a small pair of curved scissors is used, the blades of which should have blunt points, so as not to stick into the sclera. After dividing the tendon the next thing to do is to see whether there are not some strands of tendon still remaining at its upper or lower border. A squint hook is accordingly passed in beneath the tendon and is carried upward and downward so as to explore all parts, the intention being to catch up upon the hook any fibers that may chance to be intact and then to divide them.

After the division of the tendon has been completed, a test must be made of effect of the operation, which should be neither excessive nor insufficient. We first (1) make the eye that has been operated upon turn toward the side of the divided muscle. If the tendon has been cut through completely, there must be a considerable diminution of the motility inward. If the eye can be turned inward as well as it could before the operation, this proves that some strands of the tendon have remained undivided. As in this case the result of the operation would be nil, these fibers must be sought out with the hook and divided. (2) We make the patient fix his gaze upon the finger held in front of him, and then keep bringing the latter nearer and nearer to his eyes. After a properly performed tenotomy of the internus, a convergence to at least twelve centimetres should be still possible. If the eye that has been
operated upon halts in its movement of convergence before it reaches this point, this argues an excessive effect of the operation. The working capacity of the internus is then so greatly weakened that we should have to fear the subsequent development of a divergent strabismus. In this case the effect of the operation would have to be restricted once more. The extent to which the strabismic deflection is corrected by the operation is to be regarded as of only secondary importance. In fact, when the deflection is great, the correction can not possibly be secured by a single tenotomy.*

When, by testing in the manner given, the effect of the operation is discovered to be satisfactory, the operation is finished by uniting the conjunctival wound with a suture.

The operation can be rendered nearly painless by means of cocaine; but for this purpose it is requisite that cocaine should be instilled not only before but also repeatedly during the operation. Some cocaine solution may also be injected beneath the conjunctiva at the spot where the tendon is divided.

Tenotomy of the external rectus is performed in an analogous fashion. We must simply keep in mind the fact that the insertion of the external rectus lies farther from the cornea than does that of the internus.

Tenotomy acts by displacing the insertion of the divided muscle to a spot situated farther back. The divided tendon glides back upon the sclera and forms a new attachment to the latter. Owing to the fact that the insertion of the muscle now lies farther back, the effect of the latter upon the eyeball is permanently impaired.

The immediate result of the operation is greater than it is found to be afterward. The more solid the union which the divided tendon forms again with the sclera, the stronger is the action which it can exert, and thus the effect of the operation diminishes in the succeeding four or six weeks.

(b) Advancement of an Ocular Muscle.

Advancement consists in a displacement of the insertion forward, and consequently is an operation that is the opposite of tenotomy. It

* [A third and more delicate way of testing the effect of the operation is by the prismatic tests, which are frequently employed, especially in the graduated or “partial” tenotomies done for the correction of heterophoria. In the latter class of cases the amount of insufficiency is accurately measured by the prismatic tests before the operation, a certain amount of correction is made by tenotomy (or advancement), the test repeated, and the operation continued according to the indications furnished by this second test. It not infrequently happens that three or four such successive tests are made during the performance of the operation, the effect of which can thus be gauged with such nicety that in hyperphoria, for example, a deflection of only a fraction of 1° is corrected with almost absolute accuracy.—D.]
is performed upon the antagonists of the shortened muscle, and generally in conjunction with tenotomy of the latter. Suppose, for example, that the case is one of strabismus divergens. In this case the internus would be advanced in the following way: A tenotomy of the externus is first performed in the regular way; then the conjunctiva over the tendon of the internus is divided just as for tenotomy of this muscle. The exposed tendon is caught up upon a squint hook that is pushed beneath it, and then two threads are passed through the tendon as far as possible behind the line of insertion. These are passed through from behind forward, one near the upper, the other near the lower border of the tendon, Tenon’s capsule and the conjunctiva being included at the same time. The tendon, which now being held fast by the threads, can not slip back into the orbit, is next divided close to the sclera. The upper of the two threads is now carried forward from the conjunctival wound along beneath the conjunctiva and through the episcleral tissue as far as the upper margin of the cornea, where it is brought out again. In like manner the lower thread is carried beneath the conjunctiva to the lower margin of the cornea; then the upper and lower threads are tied separately. The tighter the threads are drawn, the farther is the tendon carried forward. In this way the effect of the operation can be regulated.

By advancement the insertion of the muscle is brought nearer the cornea, and thus there is given to it more power over the eye. The farther forward the extremity of the tendon is attached, the greater is the effect of the operation. Later on, however, the effect diminishes, for which reason the operation is regulated in such a way that at first an over-correction is obtained.

164. Indications for the Squint Operations.—1. Concomitant strabismus is the most important and most frequent indication for performing the squint operations. In convergent strabismus the operation is indicated in all cases which can not be cured by non-surgical means. A simple tenotomy corrects a squint of about three or four millimetres. If the strabismic deflection is considerably greater than this amount, a second tenotomy must be performed in addition upon the other eye. This should be done not sooner than fourteen days, and later if possible, after the first tenotomy, in order that we may judge of the final result of the first operation and gauge the second accordingly. The effect of the squint operation depends mainly upon the state of the antagonist of the contracted muscle, whose task it is to bring the eye back into its proper position after the tenotomy. When, after a squint has lasted a long time, the antagonist has lost a great part of its strength, the effect of a simple tenotomy is very slight. For such cases advancement of the antagonists is indicated to increase this strength.

In convergent strabismus it sometimes happens that divergence of
the eyes sets in quite a long time after a successful operation. To avert this danger, the strabismic deflection should never be completely corrected, but the tenotomy should rather be so gauged that a slight degree of inward squint, such as shall not be perceptible to the laity, remains. After the operation that convex glass is prescribed which is demanded by the hypermetropia that is usually present. If the eye which has formerly squinted is not too amblyopic, we also institute exercises in the practice of binocular vision (by means of the stereoscope), partly to prevent the return of the squint, partly to remove the slight degree of convergence which has been left.

In divergent strabismus the effect of tenotomy is much slighter. The correction here amounts to not more than two millimetres on an average, and, moreover, is afterward considerably reduced. Hence, in order to obtain the desired result, the attempt must be made to produce a considerable over-correction of the squint. A single tenotomy is hardly ever sufficient for this purpose; we must at least perform a tenotomy in both eyes, and generally an advancement in addition.

That form of strabismus divergens which develops from strabismus convergens, after too extensive a tenotomy, is associated with considerable enfeeblement of the divided internus, and hence always requires the advancement of the latter.

2. Latent divergence [exophoria]. In exophoria tenotomy is done: (a) When it causes the symptoms of a muscular asthenopia. (b) When it threatens to pass into strabismus. The performance of tenotomy, however, should not be resolved upon until all non-operative measures have proved to be fruitless. Furthermore, the latent divergence must be so considerable that it will not by any chance be transformed into its opposite by tenotomy; we should then have to deplore the development of a convergent strabismus with a distressing diplopia as a result of the operation. On the whole, the performance of tenotomy for latent divergence is comparatively rare at the present time.*

3. Paralytic strabismus. In this the squint operation is indicated only when we are dealing with an old paralysis, the spontaneous cure of which is no longer to be counted upon. The operation is most

*[In this country, however, tenotomy and advancement are pretty frequently performed for the relief of heterophoria. Moreover, the operations are done not only for latent divergence (exophoria), but also for latent convergence (esophoria); and tenotomy or advancement of the inferior or superior rectus for vertical insufficiency (hyperphoria) is also quite common. Indeed, as far as the relief of muscular asthenopia is concerned, the results of the operation in vertical insufficiency are both more satisfactory in their immediate effects, and also more permanent than is the case with tenotomy of the lateral recti. As hyperphoria is a pretty frequent and a very troublesome condition, it seems likely that some of the previous failures in the treatment of muscular asthenopia by operation have been due to the failure to appreciate the presence of this important factor, the operator confining himself simply to a correction of the lateral deviation.—D.]
successful when the muscle, although enfeebled, is still capable of performing its functions, and the strabismic deflection is caused mainly by the contracture of the antagonist. It is only in the slightest cases that we can attain our object by making a tenotomy of the contracted muscle; as a rule, we must combine this with advancement of the paralyzed muscle. If the paralysis is incomplete, so that the paralyzed muscle is no longer able to exert any action whatever upon the eyeball, it is only from a very extensive advancement that we can expect to get any effect, and even then the result of the operation is not always certain. In many cases we operate not upon the paralyzed but upon the sound eye. Suppose, for example, that the inferior rectus of the right eye has been left permanently enfeebled by a paralysis, so that troublesome double images are formed upon looking downward. In this case we may, by tenotomy of the inferior rectus of the left eye, also limit its capacity for making excursions downward, and thus remove the troublesome symptom—namely, the diplopia. In paralysis of the superior oblique, we tenotomize the inferior rectus of the other eye, because, as a result of the division of this muscle, the same limitation of mobility is produced in the eye operated upon that exists in the other eye as the result of the paralysis.*

Tenotomy of an ocular muscle was first tried by Strome yer upon the cadaver and some years later (1839) was also performed by Dieffenbach upon the living subject. Dieffenbach did not divide the tendon, but the belly of the muscle. Hence, it not infrequently happened that the posterior half of the muscle retracted so far that it could never again become attached to the eyeball. The divided muscle was then completely paralyzed, and when the operation had been performed upon a convergent strabismus, the latter was transformed into a marked divergent squint. Owing to such bad results, the operation gradually

* [Suppose, for example, that the right superior oblique is paralyzed. This muscle normally moves the right eye down, abducts it (carries it to the right), and rotates its vertical meridian inward (to the left); and if it is paralyzed, the movements of the right eye are restricted in all these senses. Diplopia therefore results, which we can prevent if we can restrict the movement of the left eye in the same sense and to the same extent. This we can do by tenotomy of the left inferior rectus, which moves the left eye down, adducts it (moves it to the left), and rotates its vertical meridian outward (to the left). Moreover, as this parallelism of action of the superior oblique of one eye and the inferior rectus of the other holds good for all directions of the gaze, the operation affords complete compensation for the paralysis.

A paralysis of the right inferior oblique would similarly be compensated for by a tenotomy of the left superior rectus. In paresis of the superior and inferior recti the reverse operation (tenotomy of the obliques) is inapplicable, and we have to rely upon advancement of the paretic muscle itself. In paresis of the right externus, advancement of this muscle, combined with tenotomy of the left internus, is indicated, and will usually have to be supplemented by tenotomy of the right internus also. So in paresis of an internus, its advancement combined with tenotomy of both interni is usually required.—D.]
fell into such dispute that surgeons were on the point of giving it up again. Then Böhm proposed a new and improved method, namely—the division of the tendon as we practice it now. Von Graefe added to this the method of regulating the operation with precision, showing how its result could be increased or diminished. Von Graefe performed the operation, and most other operators still perform it, somewhat differently from the way described above. He did not grasp the tendon with the forceps, but with a hook, upon which he made his cut dividing the tendon, and then used a second smaller hook for the purpose of exploring after undivided strands of tendon.

Advancement was first performed by Guérin and soon after by Von Graefe. The latter proposed the procedure known as the thread operation. This is distinguished from the method above described only in the following particular; the contracted muscle is not divided directly at its insertion, but somewhat behind it, so that a short portion of the tendon remains upon the sclera. Through this portion a thread is passed by means of which the eyeball can be drawn as far as desired toward the opposite side. After the operation has been finished, the ends of the thread are fastened in the vicinity of the eye by means of adhesive plaster, so as to keep the eyeball in the position desired. In this way both the effect of the operation is increased and the tension upon the muscle that had been advanced is lessened.

Instead of advancement, shortening of a muscle is performed by some by excising a piece of the tendon and uniting the cut ends with a suture (tenectomy).

How does tenotomy of a muscle weaken the latter? Let us assume that a tenotomy has been performed upon the right internus for right convergent strabismus. The right external rectus, which was stretched and elongated as a result of the convergent squint, now tends to return to its normal length. Hence, after the division of the tendon of the internus, the externus draws the eye outward, and thus diminishes the strabismic deviation. In proportion as the eye thus rolls outward, the tendon of the internus glides backward over the sclera. This retraction is increased by the elastic contraction which every divided muscle shows: hence, the tendon of the internus lies farther back upon the sclera, and becomes attached there anew. The insertion of the muscle is thus approximated to its point of origin at the optic foramen, and the muscle is shortened. Before being divided, the muscle in its relaxed state had a certain length, from which by its contractile force it was able to shorten down to a certain minimum. After the division this minimum remains the same, but the length of the muscle in the state of relaxation is less; hence, the difference between the state of rest and of maximum contraction is diminished. But this difference corresponds to the power of adduction of the eye, which, accordingly, is permanently reduced after the tenotomy. We can readily convince ourselves that after an operation, the eye can not be brought inward as far as it could before; indeed, it is from this fact that we determine whether the operation has been successful.

It is hence clear that the correction of the faulty position due to the squint is purchased at the expense of the adduction. In fact, the loss in the motility inward is always greater than the gain in the position of the eye. The former loss, however, is ordinarily of no importance, since in convergent strabismus the adductive power is abnormally great. Hence, even if it is reduced by the operation to a point somewhat below its mean value, this reduction would still fail to become noticeable except when the eyes were in the extreme lateral position. But the case is different when the attempt is made to correct a marked strabismic deflection by a very thoroughgoing tenotomy of the internus, with which there would necessarily be associated a considerable diminution of the power of adduction. We would then, it is true, have the eyes in a correct position while the gaze is directed straight forward; but
as soon as the patient wishes to look toward the side upon which the tenotomy has been performed (e. g., in the case of right convergent strabismus, to the left), the eye that has been operated upon would not be able to follow the movement properly. When the eyes are cast in this direction, divergent strabismus would appear just as in the case of a paralysis of the internus. Hence, we ought not to try to compensate for a marked strabismic deflection by a unilateral operation, but must distribute the operation between the two eyes. A tenotomy is first made upon the squinting eye, and some weeks later upon the sound eye. Thus, by adding the effects of the two operations we obtain the desired effect, while at the same time we get only an inconsiderable reduction of the adducting power in each eye. The performance of a tenotomy upon the sound eye is the more justified in that this eye also shows a pathological increase of adducting power, because patients with inward squint always innervate both interni too strongly (see page 637).

We can form beforehand an approximate estimate of the effect of a simple tenotomy. This effect depends essentially upon the condition of the antagonist of the contracted muscle. The more powerful this is the greater will be its ability to bring the eye into the correct position after the division of the contracted muscle. But for the force of the muscles we have a sure gauge in the amount of the lateral excursion (abduction and adduction) which we can determine (see page 637). This measurement, therefore, should be performed before every squint operation; then, when the desired effect has been secured by the operation, this effect can be still further increased or be diminished by appropriate means (regulation of the effect).

The methods of increasing the effect of the operation are:

1. Relaxation of the lateral invagination of the tendon. By this latter term is meant the connection which, at the spot where the tendon passes through Tenon’s capsule, exists between these two structures. This connection still persists after tenotomy, since the tendon is divided inside of Tenon’s capsule. In this way is explained the fact that the muscle, although separated from the eyeball, has not yet lost all action upon the latter, since it still moves Tenon’s capsule, and thus indirectly the eye as well. By the lateral invagination, too, the tendon is kept after its division in the vicinity of the sclera, so that it can become reattached to it. The more this connection is interfered with, the more will the tendon retract and the farther back will be the point at which it becomes reattached to the eyeball. Accordingly, we can heighten the effect of the operation by dividing the connec
tive tissue on both sides of the tendon and setting the tendon itself free. We should not, however, proceed so far as to separate the tendon completely from Tenon’s capsule, since in that case it would retract altogether into the orbit and would not again form an adhesion with the eyeball. We should then, as in the case of Diefenbach’s operation, have to deplore an excessive result.

2. Insertion of a suture which re-enforces the action of the antagonist (Von Graefe, Knapp). In tenotomy of the internus the suture is applied to the outer side of the eyeball. The thread is introduced close to the external margin of the cornea and parallel with it. One end of the thread is afterward passed from within outward through the external commissure of the lids, and is then tied to the other end. The tighter the thread is drawn while being tied the more will the eye be rolled outward. In tenotomy of the externus the suture must be inserted on the inner side of the eyeball and the thread then carried out of the palpebral fissure, and attached by adhesive plaster to the bridge of the nose.°

* The effect of a tenotomy may also be increased, if during the first few days after the operation the eye is exercised with prisms to produce divergence or convergence as the case may be. The adhesions being still loose at this time, the tendon yields readily and reattaches a little farther back when thus stretched by
The increasing of the effect of a tenotomy by the methods given is always purchased at the cost of a still more pronounced diminution of motility in the sense of the tenotomized muscle. Hence, where simple tenotomy (on one or both eyes) proves insufficient, it is more proper, although more troublesome, to heighten its effect by combining it with advancement of the antagonist. Thus the latter is strengthened without the tenotomized muscle suffering too much impairment of its strength.

To diminish the effect of the operation the following means are at our command:

1. When the suture is applied that is designed to close the wound in the conjunctiva, a wide and deep grasp is taken upon the conjunctiva, so that the needle is passed through Tenon's capsule as well. Then, when the knot is drawn tight, the tendon is drawn forward a little along with the conjunctiva.

2. If it is apparent that the divided muscle has suffered too great impairment of its action, its end must be grasped and attached again farther forward by means of threads. This event occurs when the connection of the muscle with Tenon's capsule has been loosened to too great an extent, or when the operation has been done for a very slight strabismic deviation. It is, in fact, better to leave very slight cases of squint unoperated upon. It is true that the attempt has been made to modify the tenotomy, so that its action shall be very slight, the aim being to effect this by leaving some fibers of the tendon undivided (Von Graefe and Abadie*). Such a partial tenotomy has, however, had no permanent result whatever. We can convince ourselves of this fact in those cases in which some fibers of the tendon are unintentionally left. In such cases the effect of the operation disappears completely after some length of time. The fibers that remain in place prevent the tendon from retracting, so that it becomes reattached to the sclera at the same spot as before.

As regards the final result, cases behave differently. The most frequent outcome is that the effect of the operation increases somewhat in the first few days, then diminishing again, and ultimately becoming less than at first. Sometimes the diminution proceeds so far that the effect of the operation almost completely disappears and the operation has to be repeated. This is particularly apt to be the case in divergent strabismus. In convergent strabismus, on the contrary, it sometimes happens that the effect slowly but steadily increases until finally divergent strabismus supervenes. This may take place even years afterward. Unfortunately, it is impossible, either before or directly after the operation, to foresee with certainty which of these occurrences is going to ensue, so that we can not at once take measures to combat them.

Among the unpleasant results that sometimes accompany tenotomy is sinking in of the caruncle, which looks as if it had been drawn far back. This condition develops only after tenotomy of the internus, and is due to the fact that the muscle as it retracts draws the conjunctiva of the inner half of the eyeball after it. This can be prevented if the conjunctival wound is closed with a suture and the conjunctiva thus kept in its proper place.

Impairment of the cosmetic result may also be produced by exophthalmus. This originates from the fact that after division of one of the recti the eye is not

* [And in this country, G. T. Stevens, of New York.]
retracted into the orbit with as much force as formerly. For the same reason a slight degree of exophthalmus is observed not infrequently in paralyses of the recti. The exophthalmus cannot be removed, but when it has a disfiguring effect it can be concealed, for in exophthalmus of such a slight degree as is here the case the conspicuous thing is not so much the protrusion of the eyeball as the increase in size of the palpebral fissure which is caused by the protrusion, and this latter defect can be corrected by shortening the palpebral fissure at the outer angle of the eye (tarsorrhaphy).

During the after treatment of a squint operation there is not infrequently formed a nodule of granulation, growing out of the sclera at the site of the conjunctival wound. Subsequently this becomes constricted at its base and ultimately falls off. It may also be snipped off readily with the scissors.

Serious accidents, such as suppuration of the wound, exudation into Tenon's space, with protrusion of the eyeball, and actual panophthalmitis, can only occur when the wound has been infected during the operation. At the present time these accidents are among the greatest of rarities. If we should perform the operation with a sharp pair of scissors, and at the same time are dealing with an unruly patient, it may happen to us to perforate the sclera. If the operation has been performed aseptically, this accident will, as a rule, pass over without producing any bad results. In general, tenotomy, if carefully performed, may be said to be perfectly free from danger; and it is one of the operations for which patients (especially those of the female sex) are most grateful.

An indication for tenotomy, although, to be sure, a rare one, is found in those cases in which we are compelled to make a coloboma upward for optical purposes. Such a coloboma, when the palpebral fissure is open only to the ordinary extent, is covered by the upper lid. Most patients soon learn to expose the coloboma by raising the lid strongly; but, if they should be unable to do this, a tenotomy would have to be performed upon the superior rectus, so that the inferior rectus may depress the eye and bring the coloboma into the palpebral fissure. Obviously this should only be done when the other eye is blind, as otherwise diplopia would develop just as in the case of paralysis.

II. ENucleATIOh OF THE EYEBALL.

165. Enucleation consists in shelling the eyeball out of Tenon's capsule, the conjunctiva and all the tissues adjoining the eyeball being left behind. Bonnet has the credit of having been the first to introduce this operation, which he did upon the basis of his studies upon Tenon's capsule (which hence is also called Bonnet's capsule). Before this, operators were in the habit of cutting the eyeball, together with the neighboring soft parts, out with a knife in a way not very different from that in which a butcher is accustomed to do it. This much more radical operation, which is called extirpation bulbi, is at the present time performed only in those cases in which malignant neoplasms have grown out from the eyeball into the tissues of the orbit so that a simple enucleation of the eyeball is no longer practicable. By extirpation of the orbit (exenteratio orbitæ) is meant a scooping out of the contents of the entire orbit, so that nothing but the bony walls of the latter are left. This operation, too, is performed only for malignant new growths.
Enucleation, as done by Arlt, is performed as follows: The patient is anaesthetized, and the lids are separated by Desmarre’s retractors. For the operation itself a fixation forceps and a pair of straight scissors, which should have one blade blunt and the other sharp pointed, are employed. If the operation is performed on the left eye, the conjunctiva close to the external margin of the cornea is first picked up and incised. From this wound as a starting point the conjunctiva is divided all round the cornea, and then it is loosened from its connections still farther back. Then the external rectus is grasped with the forceps and divided behind the latter, so that a stump of tendon remains attached to the sclera. This serves to hold the eye with, during the subsequent course of the operation, which consists in the division of the rest of the ocular muscles and of the optic nerve. The blunt-pointed blade of the scissors is passed beneath the tendon of the superior rectus, and the latter is taken up upon the scissors and is divided close to the sclera by a single snip. The same is done with the inferior rectus. Then the scissors, closed, are passed from the outer side in behind the eyeball to feel for the optic nerve, which when, the eyeball is drawn forward is put upon the stretch so as to form a hard cord. When the optic nerve is felt, the scissors are opened and the nerve is cut off as close as possible to the eyeball. As soon as this is done the eye can be pulled out of the orbit (luxated) in front of the lids. Then the remaining structures attached to the eyeball (the internal rectus and the two oblique muscles) are divided as close as can be to the eyeball. With this act the enucleation of the eyeball is complete. A wound cavity is now presented, which is bounded behind by Tenon’s capsule, in front by the detached conjunctiva of the eyeball. Through the margin of the latter, which corresponds to the limbus of the conjunctiva, a thread is passed alternately in and out, so that a suture is formed like the string of a tobacco bag, and when this is drawn tight the conjunctiva is completely closed. Then by the use of a pressure bandage we take care that the conjunctiva shall be pressed against Tenon’s capsule, so that it may become united with it.

In the right eye the operation is performed in the same way, except that the detachment of the conjunctiva is begun at the inside of the cornea, and the internal rectus is the first thing to be divided. This slight difference between the operation upon the right eye and that upon the left is explained by the fact that we try always to cut from right to left with the scissors, as this is the more handy way of doing.

Healing takes place after enucleation without suppuration and by primary union. The cavity which remains after the removal of the eyeball is lined by Tenon’s capsule, the raw, inner surface of which is presented to our view. Upon it can be recognized the divided ends of the ocular muscles, and at its most posterior part the cross section of
the optic nerve surrounded by some orbital fat. This raw surface is
covered by the bulbar conjunctiva, which after being detached from
the eyeball hangs down so as to form the anterior wall of the wound
cavity, and is then carried into the latter, so that its posterior, raw
surface gets to lie against the anterior, raw surface of Tenon's capsule.
The aperture which the conjunctiva has in its center corresponding to
the cornea has been already closed by the tobacco-bag suture. Hence,
there is no raw spot remaining uncovered.

Enucleation, if performed in an aseptic manner, is an operation
perfectly devoid of danger. The hemorrhage ordinarily is slight, so
as to require no other measures for its arrest than the application of
a pressure bandage upon the closed lids. In case the bleeding is more
profuse, a tampon of iodoform gauze must be introduced into the orbit
itself. Under normal conditions the operation wound heals within
less than a week. Purulent inflammation (phlegmon) of the orbital
tissue occurs after enucleation only when the wound has been infected.
When enucleation is performed upon an eye in which panophthalmitis
is present, purulent meningitis with a fatal issue sometimes sets in after
the operation. Panophthalmitis, therefore, is a contra-indication against
enucleation (see page 349).

The prothesis (artificial eye) should not be inserted sooner than
fourteen days at earliest after the operation. It consists of a shell of
glass, which is made in imitation of the anterior division of the eyeball,
and which is retained in place behind the lids. After an enucleation
which has healed in the normal way there is found a cavity clothed
with conjunctiva, which, behind the upper and lower lid, is converted
into a deep furrow corresponding to the fornix conjunctivæ. It is into
this furrow that the upper and lower rims of the artificial eye are
inserted. The deeper the furrow is the better will it keep the artificial
eye in place. For this reason we take care in operating to preserve the
bulbar conjunctiva as much as possible. In cases in which we are com-
pelled to remove part of the conjunctiva, the portion which remains
may be drawn into the cavity by cicatization, so that the fornix is made
proportionately shallower. In this way it may become impossible for an
artificial eye to be worn. The artificial eye moves conjointly with the
other eye, although its excursions are smaller; for the ocular muscles,
although detached from the eyeball, still retain their connection with
Tenon's capsule. They move the latter in the same direction that the
other eye is moving in, and with Tenon's capsule they move both the
conjunctiva which lines it and the artificial eye which rests upon the
conjunctiva.

166. The indications for enucleation are:

1. Malignant tumors upon or in the eyeball, provided they can not
be removed by a less radical operation with retention of the eyeball.
In tumors which develop in the posterior section of the eyeball (glio-
mata of the optic nerve and sarcomata of the choroid) there is a possibility that the new growth is in process of transmission backward along the optic nerve. In such cases, therefore, the optic nerve is not divided close to the eye, but as far back as possible. After the enucleation has been performed, the cross section of the piece of nerve attached to the eyeball is examined. If it should prove to be attacked by the new growth, the portion of the optic nerve which has been left in the orbit must also be sought for and excised.

2. Injuries. Enucleation is performed at once (primary enucleation), when such a considerable injury is present that the eye is lost beyond peradventure. This is the case in extensive laceration of the anterior portion of the eyeball, with evacuation of a part of the contents of the globe. By enucleation in such a case we spare the patient the panophthalmitis that otherwise awaits him, or the tedious and painful process of shrinking of the eye.

If the injury is of such a character that the preservation of the eye, at least as far as its form is concerned, is not altogether out of the question, we try first to save the eye by initiating that form of treatment which is indicated by the nature of the injury. If, nevertheless, inflammation develops, and the vision of the eye is absolutely abolished, the indication then is to perform enucleation (secondary enucleation) in order to prevent sympathetic inflammation of the other eye. Enucleation should also be performed upon those eyes which have been blinded by inflammation in consequence of an unsuccessful cataract operation.

3. Irido-cyclitis, atrophy of the eyeball, and phthisis bulbi furnish an indication for enucleation whenever sympathetic ophthalmia threatens to occur, or has already broken out. And even a condition of painfulness in the eye which can not be relieved in any other way demands the performance of enucleation. This is upon the supposition that all hope for retaining or restoring a serviceable degree of vision has disappeared.

4. Glaucoma absolutum, when it is associated with continual pain, and when other less radical operations have either been already performed without success or are impracticable.

5. Ectasia of the eyeball. When the eyeball is very much increased in size either by large staphylomata of the cornea or sclera or by hydrophthalmus, it torments the patient by giving rise to continual attacks of irritation, by preventing the closure of the lids, and by producing disfigurement. Enucleation is then indicated provided the eyeball can not be diminished in size in any other way (e. g., by a staphyloma operation).

6. Hemorrhage which comes from an eye that has been operated upon or that has been ruptured, and which can be arrested in no other way.
7. Cosmetic considerations sometimes furnish the indication for the removal of a blinded and very disfiguring eye, so as to allow an artificial eye to be worn in its stead.

Many operators use the squint hook for performing enucleation. The tendons that are to be detached are grasped with this, drawn out, and divided upon the hook. This method is easier, but also more elaborate and more tedious, than the method which Arlt devised of picking up and dividing the tendons with the scissors directly.

It sometimes happens that we have to enucleate an eyeball which itself is not diseased—e.g., in the removal of large tumors from the orbit when the eyeball is so much in the way as to prevent the radical extirpation of the new growth. In many of these cases we may, in order to preserve the eyeball, employ the device of a temporary resection of the external wall of the orbit (Wagner). Sometimes the eye is deprived of all its supporting structures by extensive operations in its vicinity, and would thus be left quite denuded. In this case, too, it is better to remove it at the same time that we do the operation, rather than to allow it to be destroyed by panophthalmitis.

The artificial eye should be taken from the orbit every night and be well cleaned. In time it loses its luster, and must then be replaced by a new one. It not infrequently happens that the conjunctiva is thrown into a state of catarrhal inflammation by the mechanical irritation which the artificial eye sets up. Then the wearing of the latter must be restricted to a few hours each day, or given up altogether for a while, and the conjunctival catarrh must receive appropriate treatment. But the opposite of this state of things also occurs—namely, that, through wearing an artificial eye, troubles that were formerly present are made to disappear. This is the case when, after an enucleation, the lids sink back and an entropion develops, in consequence of which the cilia, which are directed inward, irritate the conjunctiva. By the insertion of an artificial eye the lids receive support; the entropion disappears, and with it vanishes the condition of irritation in the conjunctiva.

The artificial eye may be worn not only in an empty orbit but also over the eyeball. The only prerequisite is that the eyeball shall be diminished in size, either as a whole through atrophy or phthisis, or at least in its anterior division through applanatio cornes, or as a consequence of ablation of a staphyloma of the cornea. An artificial eye when resting upon the natural eyeball has a particularly deceptive and natural appearance, and also moves quite perfectly with the eye which lies beneath it; while an artificial eye which rests in an empty orbit always appears a little too small and too deeply seated, and, moreover, does not move as well. Hence, for cosmetic reasons, enucleation should be performed only when it is absolutely required, and in other cases methods of operating—such as staphyloma operations—should be preferred which preserve the eyeball, although in a diminished form. Unfortunately, the stump of an eye does not always bear an artificial eye over it. It may become irritated by the latter so as to get inflamed and painful; and, indeed, cases of sympathetic inflammation of the other eye have been actually known to result from the irritation of the stump produced by the artificial eye. In such cases either the artificial eye must be laid aside or the too painful stump must be enucleated.

Inasmuch as the artificial eye acquires such a cosmetic advantage from being placed upon the shrunken eyeball, the attempt has been made to replace enucleation by an operation which does leave a stump in the orbit. This operation is exenteratio bulbi. According to Alfred Graefe’s method, it is performed in the following way: In the first place, the cornea together with an adjacent zone of the
sclera is removed by first incising the sclera near the limbus with a knife, and then detaching it by a circular cut with the scissors. Then the contents of the eyeball which has thus been opened are scooped cleanly out with a sharp spoon, so that the inner surface of the sclera lies exposed. Lastly, the opening is closed again by means of sutures passing through the conjunctiva and the cut edges of the sclera. In this way a stump is obtained which, however, shrivels up so much in the course of time, that it scarcely has any value as a support for the artificial eye. Hence, the attempt has been made to get a stump that shall remain large permanently, by introducing into the empty scleral cavity a sphere of glass (Mules) or of gilded silver, and sewing the sclera up over it. The results have been excellent, but pretty often the complaint has been made that the foreign body thus introduced was afterward expelled.

In the endeavor to be as conservative as possible, observers have also tried to replace enucleation by the division of the nerves going to the eye. This operation is optico-ciliary neurotomy (Boucheron, Schöller). First the conjunctiva over the internal rectus and then the muscle itself are divided. From the wound thus made the scissors are passed backward to the optic nerve, which is divided as far back as possible. It is then possible to rotate the eyeball so far outward that its posterior segment together with the stump of the optic nerve shall appear in the wound. The portion of the optic nerve still attached to the sclera is then removed close to the latter, so that, supposing the nerve was divided well back the first time, a long piece of it is resected. Next, the posterior section of the eyeball as far forward as the equator is freed from all tissues attached to it, in doing which most of the ciliary nerves are divided. Then the eyeball is returned to its place in Tenon’s capsule, and fixed there by uniting the divided ends of the internal rectus and the divided conjunctiva with sutures. After the operation is completed a pressure bandage is applied.

Obviously neither enucleation of the eyeball nor neurotomy can replace enucleation when there are malignant neoplasms present in the eye. On the other hand, they might be substituted for this operation when we are dealing with eyes which are to be removed because of being painful, or on account of a threatening sympathetic inflammation. Neither method of operation, however, has proved to be perfectly reliable. The pain not infrequently returns, and sympathetic ophthalmia, too, has been observed after both methods of operation. Added to this is the fact that these operations are more difficult to perform than enucleation, and require a considerably longer time for healing. They will therefore probably never displace enucleation, although they may sometimes be indicated in special cases.

Exenteration of the orbit is performed as follows: After the patient is anesthetized, the external commissure of the lids is split to a point over the external margin of the orbit. By this procedure the lids are made freely movable, and can be turned back, the one up the other down, so as to admit as free access as possible to the orbit. Then the soft parts behind the everted lids are divided with the scalpel down to the bony margin of the orbit. From this as a starting point the periosteum is detached from the bone all round down to the apex of the orbit. The entire contents of the orbit now form a wedge which lies free in the latter, and is attached only at the optic foramen by means of the optic nerve and the ophthalmic artery. This pedicle is best divided by some blunt instrument, so as to avoid hemorrhage from the artery. Should the latter bleed in spite of this, it must be cauterized with Pauquelin’s thermo-cauter or with the galvano-cauter, since ligation of this artery is impossible for technical reasons. Next, all shreds of tissue still attached to the bone are removed, so that the latter is completely denuded. Then the orbit, after suitable irrigation with a disinfected fluid, is packed with tampons of iodoform gauze, and a light pressure bandage is applied over it.
III. Operations for Trichiasis.

167. The number of operative methods proposed for the relief of trichiasis (and distichiasis) is extremely large. Many of the procedures advocated are, however, distinguished only by trifling details from each other, so that it is sufficient to describe at length only some few of the methods which may be regarded as constituting the main types of operation.

Of any good trichiasis operation it must be demanded that it relieve the faulty position of the cilia and prevent a return to this position (a relapse). Circumstances being the same, preference will be given to that method which attains this result with the least amount of disfigurement. The obvious procedure for surgeons first to hit upon consisted in simply removing that part of the lid which bears the cilia (ablation of the zone of hair follicles). But since the results of this method of operating leave much to be desired, it was so modified that the zone of hair follicles was not removed, but simply displaced in such a way that the cilia took on the direction desired (transplantation of the zone of hair follicles). By these methods the trouble is removed, but without its cause—namely, the distortion of the tarsus—being done away with. Hence, still others conceived the idea of curing trichiasis by giving the distorted tarsus its normal shape again (straightening of the tarsus). Upon some one of these principles depend most of the known operations for trichiasis.

1. Ablation of the Zone of Hair Follicles by Flarer’s Method. During the operation some firm support upon which the cutting can be done must be placed beneath the lid. For this purpose a lamina of horn is employed, which is pushed beneath the lid, the lamina being either in the simple form of Jäger’s horn plate or in the complicated form of Knapp’s blepharostat [lid clamp], in which the lid is kept pressed against a horn plate by means of a metal ring.* The lid must be similarly fixed in the other methods of operating for trichiasis. After inserting the horn plate an incision is made with the lance knife (or with a scalpel) in the intermarginal space, and in fact in that gray line which separates the orifices of the Meibomian glands from the roots of the cilia (i, Fig. 161). When we make the incision here we get into the loose connective tissue which lies between the tarsus and the muscular fibers of the orbicularis, and which is readily divided. We thus split the lid into two laminae, the anterior of which contains the skin with the cilia, and the posterior the tarsus with the conjunctiva. This process of cleavage must run along the whole length of the edge of the lid

* [This has the advantage of preventing bleeding during the operation. The clamp is also used in any operation upon the lids, such as the removal of small tumors, in which deep incisions and much pressure are employed.—D.]
and be carried inward to a point over the roots of the cilia—i.e., to a distance of about three millimetres from the free edge of the lid. When the zone of hair follicles is thus detached from the tissues beneath it, we now need only separate it from its connection with the skin of the lid. This is done by an incision carried through the skin parallel with the edge of the lid and situated at the limits of the zone of hair follicles. This latter is then connected with the skin of the lid only at its two extremities. This connection being now divided with the scissors, the zone of hair follicles (the portion a, bounded by the dotted line in Fig. 248) is detached. A raw surface now remains along the border of the lids, the floor of which is formed by the anterior surface of the denuded tarsus. This wound heals by granulation within a few days.

Ablation of the region of hair follicles has the advantage of simplicity, and, moreover, when nothing has been left, makes all relapses impossible; but it produces a permanent disfigurement due to the removal of the cilia, and deprives the eye of the protection which the cilia afford. This is of particular importance in the upper lid, where the cilia are more numerous and are larger. Moreover, the hard cicatrix which is formed at the site of the ablated zone of hair follicles is often a cause of renewed irritation of the eye. Hence, ablation of the zone of hair follicles is at present but rarely performed. It is employed upon the lower lid, where the cilia in any case are small and scanty, and particularly in cases of partial trichiasis in which ablation need be done only over a short extent of surface.

2. Displacement (Transplantation) of the Zone of Hair Follicles by Jaesche-Arlt’s Method. In the upper lid the operation is performed by beginning with an incision in the intermarginal space, which divides the lid into laminae as far as the upper limit of the bed of hair follicles (m, Fig. 249 A). In this way the bed of hair follicles is detached from the underlying tissue and is made movable. In order now to draw this zone up and attach it at a higher point, the skin of the lid is shortened in the vertical direction by the excision of a fold. The fold to be exsected is bounded by two incisions. One runs three or four millimetres above the free border of the lid and parallel with it; the other is carried above the first along a curved line, so that at its center it is farthest (six to eight millimetres) from the first incision, but at its extremities coincides with it (Fig. 249 C). In this way an elliptical piece of skin is circumscribed, which then is dissected from the underlying tissues with the scissors, care being taken to preserve the subjacent muscular fibers. The two lips of the wound being then united by a number of sutures, which are applied in a vertical direction (s,
Fig. 249 B), the lower lip of the wound, together with the zone of hair follicles, is drawn well up, and the cilia are in this way directed straight. At the same time the incision in the intermarginal space gapes open and displays at its bottom the raw anterior surface of the tarsus. In order that the bed of hair follicles may not be drawn down again by the cicatrization of this wound, the piece that has been excised from the skin of the lid is inserted into the wound so as to be implanted there. This piece must be trimmed down so as to fit well into the wound (h, Fig. 249 B). If care is taken

![Diagram of Transplantation of the Bed of Hair Follicles by Jänsch-Ahrnt's Method]

A. cutaneous incision and incision in the intermarginal line, m. Magnified 2 x 1.
B. operation after tying the cutaneous sutures, s, and implanting the piece of skin, A. Magnified 2 x 1.
C. front view after the excision of the skin has been made and with the horn plate inserted. Natural size.

by proper bandaging of the eye to keep the transplanted strip of skin pressed against the raw surface forming the bed of the wound, it almost always becomes well attached to the latter in healing.

In performing this operation the mistake is frequently made of excising too broad a piece of skin from the cutaneous surface of the lid, which thus becomes so much shortened that ectropion or lagophthalmus develops. We should therefore, before the operation, determine the size of the piece to be excised, by pinching up a fold of skin with the finger and seeing how large this must be in order to effect its object without shortening too greatly the skin of the lids.

In the lower lid the operation is performed in the same way, except that here, in order not to get ectropion, the piece of skin to be excised must be made still narrower.

3. Drawing up the Bed of Hair Follicles by Hotz’s Method. When this operation is made upon the upper lid, an incision is first carried through the skin of the latter, passing along the upper border of the
tarsus from one end of it to the other. Then the lips of the wound are separated, and the bundles of fibers of the orbicularis (Fig. 250, o) which are visible at its bottom are excised. The wound is next closed and at the same time its lower lip is stitched to the upper border of the tarsus. For this purpose the needle is passed first through the upper lip of the cutaneous wound, then through the upper border of the tarsus, and lastly from within outward through the lower lip of the cutaneous wound (s, Fig. 250). As many of these sutures are applied as necessary. The idea underlying this operation is to raise the bed of hair follicles, not by shortening the skin of the lids, as in Jaeschke-Arlt's method, but by attaching the skin to a fixed point—namely, the upper border of the tarsus. The excision of the fibers of the orbicularis is done with the intention of diminishing the power of this muscle which tends to force the lid backward. This operation dispenses with the step of detaching the bed of hair follicles by an incision in the intermarginal space; but it may, if necessary, be combined with such an incision.

In the lower lid the method of operating is the same, but the cutaneous incision, in accordance with the smaller height of the tarsus, runs closer to the free border of the lid.

4. Straightening of the Tarsus by Snellen's Method. This object is sought to be obtained by the excision of a prismatic piece from the tarsus. The skin is incised about two millimetres above the border of the lid, and in a direction parallel to the latter along the entire length of the lid (i, Fig. 251 A). Then the lowermost bundles of fibers of the orbicularis which lie exposed in the wound are excised, so that the tarsus is presented to view. A prismatic piece is now excised from this latter along its entire length, and in such a way that the base of the wedge corresponds to the anterior, the apex of the wedge to the posterior surface of the tarsus (e, Fig. 251 A). The next thing to do is to bring the two cut surfaces of the tarsus into contact. This is accomplished by sutures applied under the form of loops by means of threads armed with needles at both ends. One needle is first passed through the upper border of the tarsus (a, Fig. 251 B), and is then carried down in front of the wound in the cartilage and between the tarsus and the skin as far as the free border of the lid, above which it
is brought out again. A similar manœuvre is performed with the other needle. The loop then lies upon the upper extremity of the tarsus, while the two ends of the thread come to view above the border of the lid. These ends are then tied upon a bead (p), and are afterward carried up to the forehead, where they are attached with plaster above the eyebrow. In this way the lid is kept drawn up, and coaptation of the cutaneous wound is rendered superfluous, as this then closes of itself.*

Ablation of the bed of hair follicles is among the oldest of the methods for operating upon trichiasis. At the present time it has been almost entirely replaced by the methods for transplantation of the zone of hair follicles.

The most important step in the way of improving the operations of trichiasis was made by Arlt, who devised the plan of detaching the bed of hair follicles from the tarsus. In this way one was enabled to do an extensive transplantation without having to fear a necrosis of the bed of hair follicles, as in the original method of Jaeschke, who released the bed of hair follicles, along with the subjacent tarsus, from end to end, and separated both completely from the underlying tissues. Even Arlt’s method, however, is not free from disadvantages. One of these consists in the difficulty of gauging accurately the size of the piece to be excised; another, in the possibility of a relapse. As regards the first point, no fixed breadth can be assigned for the strip of skin to be removed, because this breadth varies according to the character (i.e., the elasticity or laxity) of the skin of the lids. If too little is excised, the zone of hair follicles is not drawn up sufficiently and the trichiasis returns; if too much skin has been removed, we get entropion or lagophthalmus, which could only be got rid of by subsequent operations. For this reason methods have been devised which are intended to effect the elevation of the zone of hair follicles without excising any skin. Hotz’s operation belongs in this category. A somewhat different method is that of Oettigens. He carries the incision in the intermarginal space to a point above the upper border of the tarsus, so that all the skin which covers the tarsus can be displaced upward. This portion of skin is then, by means of sutures, attached near its free border, which carries the cilia, to the upper border of the tarsus (Fig. 292). Below the free border of the lid, which has been thus elevated, there remains quite a large wound, formed by the anterior surface of the tarsus. Upon the same principle depend the methods of Kostomyris, De Wecker, Warlomont.

Snellen’s operation for stretching the tarsus has been modified by Panos in the following manner: He divides the skin of the lid two or three millimetres above the free border of the lid and parallel to the latter (i, Fig. 233 A), the incision running the whole length of the lid. Then, beginning at this incision, he dissected up the skin as far down as the free border of the lid and as far up as the upper border of the tarsus. Next, after introducing the horn plate beneath the lids, he makes an incision which runs in the same way as the incision in the skin, and divides the tarsus through its entire thickness, including the conjunctiva tarsi. By this incision the lower half of the tarsus, together with the free border of the lid, is

* The account here given of the method of operating, which differs from the ordinary descriptions of it, I owe to a communication conveyed by letter from Prof. Snellen himself.
made freely movable, and can readily be rotated forward by means of sutures far
enough for the cilia to be properly directed. The sutures are formed into loops
and passed above through the edge of the tarsus and the tarso-orbital fascia, and
the free ends of the loop are brought out behind
the skin of the lid along the intermarginal line,
and here are tied over a glass bead (Fig. 233 B).

The relapses which are of frequent occurrence
after Arlt’s operation, as well as after many other
methods, have the following causes: 1. If the trachomatous process has not completely run its course,
the shrinking of the conjunctiva and of the tarsus
continues to progress after the operation, and once
more throws the cilia into a faulty position. 2. The shortening of the skin produced by the excision
of a strip of it often fails to be permanent,
because the skin, especially in old persons, gradu-
ally stretches out again. 3. The wound in the Inter-
marginal space, which remains uncovered, heals
by granulation and the formation of cicatrices. By
the gradual contraction of the cicatrical tissue the free border of the lid may be
drawn down again and the position of the cilia be made worse. The first point
has its basis in the nature of trachoma, and can not be charged to the account
of the method of operating; but the second and third points constitute defects in the
operation, which it has been sought to remedy. In order to make the contraction
of the skin permanent, the latter has been attached to a fixed point—namely, the
convex border of the tarsus (Hotz). The main cause of relapses—i.e., the depre-
sion of the bed of the hair follicles due to the cicatrization of the wound—it has
been attempted to get rid of by covering the wound with skin. In Arlt’s method
this object may be attained, as has been described above, by transplanting the
excised portion of skin upon the wound (Waldhauer). But as this piece of skin is
covered with fine lanugo hairs, which may cause
renewed irritation of the eye, Van Millingen prefers to cover the wound with mucous membrane
which he takes from the lips of the patient, or
from the conjunctiva of a rabbit. Since flaps of
skin or mucous membrane, when destitute of a
pedicle, are exposed to the danger of mortifica-
tion, and in any case shrink very greatly, others
have chosen pediculate skin flaps for covering the
wound. In Spencer Watson’s method this flap is
formed in the following way: An incision is made
in the intermarginal space, and a second one is
made parallel to the border of the lids and above
the row of cilia, as is done for their ablation (Fig.
234, in the outer half of the upper lid). Then, in-
stead of detaching the strip of skin, thus marked
out, at both ends, as in the operation of ablation, it is separated at one extremity
only. The bed of hair follicles is thus transformed into a long, slender flap which
is free at one extremity, but at the other is connected with the skin of the lids
(a, Fig. 234). Then a second flap of skin similar in shape is fashioned by making
a second incision about three millimetres above the first and parallel to it, and thus
marking out a narrow strip of skin, which is likewise left in connection with the
skin of the lid by one extremity only (Fig. 233, b). The base of this flap must lie
at the outer end of the lid, provided the base of the lower flap, which bears the cilia, is situated at the inner end, and vice versa. Then the two flaps are interchanged, so that the one which carries the cilia gets to lie above, and the one that was above gets to lie below, along the free border of the lid (Fig. 253, a, and b). The flaps are kept in their place by sutures. Spencer Watson's operation has the disadvantage that, if performed along the whole length of the lid, the flaps have a very great length in proportion to their slender base, and are hence apt to die. Accordingly, I ordinarily employ this operation only in those cases in which the trichiasis is present simply at one or the other extremity of the row of cilia, and in which, therefore, a short flap is sufficient (Fig. 254). Other methods which likewise employ flaps with a pedicle are those of Gayet, Jacobson, and Dianoux.

Each of the methods named has certain advantages and disadvantages. The experienced operator will not employ any one of them exclusively, but will select the method to suit the case in hand, and when necessary will even combine two different methods. Thus Hotz's method may be combined with the excision of a strip of skin, with the detachment of the bed of hair follicles by an intermarginal incision, or, if the distortion of the tarsus is a very conspicuous feature, by the excision of a wedge from the latter. In cases in which the trichiasis is greatest in the center, Arlt's method is very suitable, since in this method the excised piece of skin is broadest in the center, and hence it is in this place that the greatest displacement is produced in the bed of hair follicles. The methods of Hotz, Snellen, and Panas also exert their greatest effect in the center of the lid. Again, for trichiasis at one end of the row of cilia implantation of a skin flap with a pedicle—e.g., by Spencer Watson's method—is the most suitable procedure.

IV. CANTHOPLASTY.

168. Canthoplasty (Von Ammon) has for its object the dilatation of the palpebral fissure by the division of the external angle of the eye. The two lids are separated widely with the fingers, so that the external commissure is put upon the stretch, and the blunt-pointed blade of a straight pair of scissors is introduced behind it as far as possible; then, with one snip the skin lying between the blades of the scissors is divided in a horizontal direction; then, upon drawing the lids apart, a rhomboidal wound is exposed to view. The two outer sides of this wound lie in the skin, the two inner sides in the conjunctiva. The inner sides are next stitched to the outer by grasping the conjunctiva at the spot where the two borders of the wound come together, and attaching this point to the external angle of the wound by a suture. Then an additional suture is passed through the upper and the lower portions of the wound respectively.

If the wound in the external angle of the eye were not covered with the conjunctiva thus stitched to it, it would reunite within a short time. Hence, if all that we need is a temporary dilatation of the palpebral fissure, we satisfy ourselves with splitting the external commissure without applying any subsequent suture—provisional canthoplasty.

The indications for canthoplasty are: 1. Blepharophimosis and ankyloblepharon. In this case a permanent effect is desired from the operation, and this is therefore made with a conjunctival suture.
2. Blepharospasm, especially if it gives rise to spastic entropion. Here provisional canthoplasty is sufficient. The success of the operation in these cases is attributable not only to the lengthening of the palpebral fissure, but also and mainly to the division of the fibers of the orbicularis, in consequence of which the latter suffer a considerable impairment of strength. If, as is so frequently the case, the spastic entropion is combined with blepharophimosis, the canthoplasty must be combined with suture.

3. Acute blepharorrhcea, when the lids are extremely swollen and exert a considerable pressure upon the eye. In this case provisional canthoplasty is sufficient. The same thing is true when the enlargement of the palpebral fissure serves as—

4. A preliminary step to enable us to remove through the palpebral fissure an eyeball which is very much increased in size, or an orbital tumor.

V. TARSORRHAPHY.

189. Tarsorrhaphy consists in shortening the palpebral fissure by uniting the edges of the lids; it is accordingly the direct opposite of canthoplasty. The union of the edges of the palpebral fissure may be effected either at the outer or at the inner angle of the eye (tarsorrhaphia lateralis and mediais).

1. Lateral tarsorrhaphy. In Von Walther’s method this is performed by paring the upper and lower borders of the lids by ablation of the bed of hair follicles over the space adjoining the external angle of the eye, and then stitching the borders of the lids to each other along the denuded area. As in this way it is only a very narrow raw surface—i.e., the raw edges of the lids—over which union is effected, the wound is apt to tear apart under any considerable amount of strain. Hence I perform the operation in a different way. First, the extent to which it is desired to join the lids together is marked out; then the lower lid is split into its two laminae by an inter-marginal incision of a length equal to that thus indicated. From the inner extremity of the section a short incision is carried downward through the skin, thus converting the anterior lamina of the bisected portion of the lid into a flap (a, Fig. 255). The upper and inner
borders of this flap are free, while the lower and outer borders are connected with the skin of the lid. Then the upper lid is denuded by first making the intermarginal section in the same way as upon the lower lid and then ablating the bed of hair follicles thus detached, as in Flarer’s operation. There is thus produced a raw surface (b, Fig. 255), to which it is intended that the skin flap of the lower lid shall adhere by its raw surface. In order that adhesion of the raw surfaces themselves, and not simply of their edges, shall take place, the suture is applied as follows: Both ends of a thread armed with a needle at each end are carried through the upper lid near its free border, the needles being passed from behind forward. In this way the loop of the thread gets to lie upon the conjunctival side of the lid, while the free ends come out upon the raw anterior surface. These ends are then passed through the base of the skin flap below and are tied upon its anterior aspect over a glass bead. By this suture the base of the flap is kept pressed against the raw surface of the tarsus of the upper lid; then, as an additional precaution, the edges of the skin flap are accurately united to the edge of the wound in the upper lid by means of a few fine sutures. The adhesion of the lids obtained by this method is firm enough to withstand even a powerful strain.

2. Median tarsorrhaphy, as devised by Arlt, is performed by excising with the forceps and scissors a narrow strip of skin from both the lower and the upper lid close to their inner angles. The long and slender wounds thus produced should meet in an acute angle at a point on the inside of the inner commissure (m, Fig. 255). They are then united to each other through their entire extent by means of interrupted sutures. If a firmer adhesion is desired, this operation, too, like external tarsorrhaphy, may be made with the formation of a small skin flap.

Tarsorrhaphy is indicated—

1. In ectropion. In this the lower lid is raised by attaching it to the upper. Tarsorrhaphy is most effective in senile and paralytic ectropion, and also in slight cases of cicatricial ectropion. Tarsorrhaphy is very often performed, in conjunction with blepharoplasty, in order to insure the lids remaining in the proper position.

2. In lagophthalmus, because the closure of the palpebral fissure is facilitated by shortening the latter. It is more particularly that form of lagophthalmus that develops in Basedow’s disease in consequence of the exophthalmus that furnishes the occasion for the performance of tarsorrhaphy, inasmuch as we have no other means of relieving this condition.

As a rule, lateral tarsorrhaphy is the operation which is done. Median tarsorrhaphy is scarcely ever employed except in paralytic ectropion, and is done then only because in this condition the lower lid generally droops more in its inner than in its outer half.
When the lower lid has been in a condition of ectropion for a pretty long time, it is ordinarily found to have become elongated by the stretching it has undergone. In order to make the lid short again, a procedure by which it is at the same time put upon the stretch and pressed against the eyeball, the lower lid, in the performance of tarsorrhaphy, is pared to a greater extent than is the upper. When the elongation is particularly marked, the lid is shortened by excising a triangular piece at its center extremity. The apex of the triangle is directed downward, and its base corresponds to the free border of the lid. The two sides of the triangular notch are united by means of sutures.

The operation of uniting the lids by means of tarsorrhaphy is sometimes done under great tension—e.g., when the attempt is made to bring closer together lids that have become shortened, or when the operation is done in a case of exophthalmus. In the latter event it is the enlarged eyeball that tends to push the lids apart. To diminish the tension, that portion of the palpebral fissure which is to remain open may also be closed by means of sutures, this being done without paring the edges of the lids, so that the union shall be only a provisional one. The sutures are left in until they cut their way through, or until the healing of the wound made by the tarsorrhaphy has become sufficiently firm.

VI. Operations for Entropion.

170. Spastic entropion develops only when the skin of the lids is abundant and relaxed (see page 540). If then the skin is put upon the stretch by pinching up a horizontal fold of it in the fingers, the entropion disappears. Upon this observation depend those methods of operating for entropion which produce contraction of the skin of the lid in a vertical direction. Other methods, on the contrary, attempt to cure the entropion by weakening the obicularis, the contraction of which causes the entropion. The methods of operating that are most in use are:

1. Gaillard's Suture. This operation as modified by Arlt is performed as follows: One needle of a thread which is armed with needles at both ends is entered at the junction of the middle and inner thirds of the lower lid. The point of entry lies close to the border of the lid (c, Fig. 256 A), the point of exit at a distance below it upon the cheek equal to about the breadth of the thumb (d). The second needle is passed in a similar fashion and near the first, so that the loop end of the thread lies upon the skin near the border of the lid (c, Fig. 255), and the two threads run downward beneath the skin of the lids in a parallel direction. A similar loop of thread is applied at the junction of the middle and outer thirds of the lid. If the two ends of each thread are tied over a small roll of adhesive plaster or of iodoform gauze and drawn tight, a horizontal fold of skin is pinched up upon the lower lid (a, Fig. 256 B), and thus the entropion is made to disappear. In order to produce a sufficient effect, the threads are drawn tight enough to produce a slight degree of ectropion, which subsequently disappears. The threads should be left in until cicatricial bands, which shall produce the same effect that the threads did, form
along the channels made by the threads. The entropion is apt to set
in again subsequently in spite of the operation. The latter, accord-
ingly, is only adapted to those cases in which we are dealing with an
entropion of presumably short duration, as, for example, that form
which develops beneath a bandage.

2. Excision of a Horizontal Strip of Skin. A horizontal fold of
skin is pinched up between two fingers, its size being so gauged that
the entropion shall be relieved by it without, however, an entropion or

![Diagram](image)

**Fig. 236.—Methods of Operating upon Entropion. Magnified 2 x 1.**

A, suture in Gaillard-Aris's method: mode of applying the loop of thread. B, the same after
the loop has been drawn tight. C, suture in Sneeley's method.

a lagophthalmus being produced; then this fold is snipped off with
one stroke of the scissors, and the two edges of the wound are next
united by means of some sutures. If the operation is to be effectual,
the upper edge of the wound must lie pretty close to the free border of
the lid. The result of this operation is ordinarily permanent, although
here, too, recurrences of the entropion sometimes take place through
subsequent stretching of the skin. Hence the much more complicated
Hotz's operation (see page 788), which fastens the skin of the lids to
a fixed point, the attached border of the tarsus, is also employed in
entropion.

3. Excision of a Vertical Strip of Skin. If we push backward
upon the entropionized lid in the region of the orbital margin, the lid
goes back into place. We make use of this fact in order to keep the
lid in the proper position by means of an appropriately placed bandage
(page 541); but we can also secure a permanent effect of this kind by
shortening the skin of the lid in a horizontal direction, so that it be-
comes tense and presses the lid backward. We excise from the skin of
the lower lid a piece in the shape of a triangle, whose base is horizontal
and runs along the lower border of the tarsus, while its apex, directed
downward, about corresponds to the lower margin of the orbit. We
then unite the two lateral edges of the incision after loosening up their
connections horizontally to a sufficient extent (Von Graefe). The
scars resulting from this operation are rather more visible than those resulting from the excision of a horizontal strip of skin, because they run perpendicular to the direction of the cutaneous folds; but, on the other hand, this operation affords more security against relapses.

4. *Canthoplasty*, since it relieves blepharospasm, may also be employed for the abrogation of spastic entropion. In those cases in which blepharophimosis is present with the entropion, the former condition must be removed permanently by the canthoplasty.

In *cicatricial entropion*, due to shrinking of the conjunctiva and the tarsus, those methods of operating are indicated which are employed for trichiasis, since cicatricial entropion may, as far as its origin is concerned, be regarded as nothing but a trichiasis that has become far advanced.

Instead of Gaillard's suture we may also employ one of Snellen's (not to be confounded with Snellen's suture for ectropion). This was modified by Stellwag in the following way: "One or two stout threads armed with curved needles at both ends are passed through the entire thickness of the lid, starting from the deepest portion of the retoptarsal fold of the conjunctiva (a, Fig. 256 C), so that they form at the fundus of the conjunctival sac one or two loops four to five millimetres in length and placed parallel to the free border of the lid. The separate needles are next carried back through their points of exit in the external covering of the lid (b), then are passed vertically between the latter and the fibro-cartilage to a point just at the external lip of the lid, there (c) are brought out again, and the two ends of each thread are drawn as tight as necessary over a roll of adhesive plaster and tied."

**VII. Operations for Ectropion.**

171. In *spastic ectropion*, which does not yield to reposition and the application of a bandage, *Snellen's suture* gives the best service. Like Gaillard's suture in entropion, it consists of two loops of thread, one of which is situated at the junction of the external and middle thirds, the other at the junction of the middle and inner thirds, and which are passed downward (or in the upper lid upward) beneath the skin of the lid. The point of entry, however, is different. In Snellen's suture this lies at the summit of the ectropionized conjunctiva—that is, under ordinary circumstances close to the posterior margin of the tarsus (a, Fig. 257 A). From this point the needle is passed down beneath the skin of the lid to a point about at the summit of the lower margin of the orbit, and there is brought out again (b). The second needle with the other end of the thread is carried down close to the first and parallel with it. The two extremities of the thread which thus come to view upon the cheek are tied over a roll of adhesive plaster or iodoform gauze and drawn tight until a slight degree of entropion (Fig. 257 B) is produced. The same thing is done with the second loop. The mode of action of the operation depends upon the fact
that the protruding portion of the conjunctiva, which is caught in the loop, is drawn downward and forward in the direction of the skin. This suture can also be employed in senile ectropion, although in this case it usually has no permanent effect.

Paralytic ectropion indicates the performance of tarsorrhaphy. The latter is also frequently performed in senile ectropion, although in the latter Kuhnt's operation gives much better results. This is nothing but a modification of the old method of Antyllus. It depends upon the fact that the lid when ectropionized is elongated, and that, when it has been made stiffer by being shortened, it becomes applied to the eyeball. The shortening is accomplished by cutting out a triangular piece, the base of which must lie at the border of the lid, since here the elongation is most considerable. In order that a coloboma of the lid may not be produced, the excision should not affect the entire thickness of the lid, but only its inner layers—namely, the conjunctiva and tarsus. The operation as modified by Müller is performed as follows: The lid is split along the intermarginal line into two laminae, the operator beginning his section in the center of the lid, where afterward the piece is excised from the tarsus, and then continuing the process of fission toward the outer and inner ends, respectively, of the lid. Now the triangular piece is excised from the tarsus, and then the two cut edges of the tarsus are united by sutures, while the skin along the intermarginal line is likewise attached by sutures to the free edge of the tarsus, and in such a way—by applying the sutures obliquely—that the excess of skin present at the spot where the tarsus was excised is compensated for.

With respect to cicatricial ectropion, the least serious cases are those in which not much skin has been lost and the contraction of the lid is caused simply by a few cicatricial bands, especially if those draw the lid in against the bone and attach it to the latter—a condition which so frequently remains after caries of the margin of the orbit. In such cases the cicatricial bands may either be divided subcutaneously or be cut out altogether, according to their situation, and the cutaneous wound be closed again by sutures. The effect of such an operation is made more thorough and also more lasting by a tarsorrhaphy performed at the same time. If, however, much of the skin of the lid has been lost, we will have no success with this simple operation, but must proceed to the performance of blepharoplasty, the object of which is to replace the skin that has been lost. In this operation the cicatricial
portion of the lid is first divided by an incision parallel to the free border of the lid, and then the more deeply situated cicatricial bands are also cut through until the lid is freely movable and can be brought into its normal position without any strain being put upon it. Those portions of the cicatricial skin which appear to have but little vitality are excised, in doing which, however, the free border of the lid, wherever it has been preserved, is spared as far as possible; then the lid is brought into the proper position and retained there by being united to the other lid. The union of the two lids should be made a permanent one for about the outer third of the palpebral fissure—i.e., should be combined with paring of the borders of the lids as in the method of tarsorrhaphy—but the inner two thirds of the palpebral fissure are united simply by means of a temporary suture. After the lid has been thus put in place, the incision which was made for the purpose of releasing it gapes widely so as to form quite a large raw surface. As the ectropion would recur when this surface cicatrizes, the latter must be covered with skin either by means of pediculate skin flaps taken from the vicinity of the wound, or by means of pieces of skin which have no pedicle.

For the formation of flaps with a pedicle a great number of methods have been proposed, according to the size and shape of the loss of substance. The methods most employed are those of Fricke and Dieffenbach.

Fricke's method is especially adapted for elongated losses of substance, whether upon the upper or the lower lid. To cover these losses of substance a tongue-shaped flap (L, Fig. 258) is fashioned, the base of which adjoins one end of the loss of substance (S). The flap is most commonly taken from the skin of the temple and the cheek, and in size and shape must be made to fit the loss of substance. In doing this it must be borne in mind that the flap shrinks not only immediately after it has been detached, but also subsequently. It must therefore be made about one third larger in all its dimensions than the loss of substance. In order that its nourishment may be satisfactory, its base must be made broad enough, and, moreover, should not be twisted too much in the act of transplanting the flap into the wound. For the same reason, the skin should not be dissected off clean, but the subcutaneous fat, together with the vessels
running in it, should be taken with the flap. The flap thus dissected off is placed upon the loss of substance, and is attached by sutures to its edges, which have previously been rendered movable by undermining. The raw surface which remains at the spot where the flap has been dissected off can usually be diminished considerably in size by means of sutures; the remaining surface is allowed to heal by granulation. At the base of the flap there is formed by the torsion to which it has been subjected a swelling which is larger in proportion to the amount of twisting that the flap has undergone. This swelling flattens out afterward so as to become less perceptible; should it, however, cause disfigurement, it may be excised later on.

Dieffenbach's method becomes applicable whenever the loss of substance either has the form of a triangle (the base of which looks toward the border of the lid), or can be readily brought into the triangular form (s, Fig. 258). It is better adapted to the lower than to the upper lid. The flap (l) is ordinarily taken from the temporal side of the loss of substance—i.e., from the cheek. An incision is made toward the temporal side along the prolongation of the base of the triangle. It should be somewhat longer than the latter, in consideration of the shrinking which the flap will undergo. From the outer extremity of this section (a) a second incision is made downward parallel to the outer side of the triangle. In this way a quadrangular flap is circumscribed, the base of which is situated below. This flap is now detached by dissection, and is turned slightly toward the nasal side so as finally to lie upon the loss of substance, to which it is then attached by sutures. The loss of substance which remains at the spot from which the flap was taken is made as small as possible by means of sutures, and the remainder of it is allowed to heal by granulation.

The raw surface which is presented to view after the ectropionized lid has been put into place may also be covered by portions of skin destitute of pedicles—an operation which is called skin-grafting. This was first introduced into surgery as a well-established procedure by Reverdin, although isolated experiments had been made with it before. Two different methods are distinguished, according to the thickness of the piece of skin that is grafted. In one method very thin pieces are taken which contain only the most superficial layers of the skin—namely, the epidermis, the rete Malpighii, and the apices of the papillae (epidermic graft). In the other method portions of skin are used which include the entire thickness of the cutis, and which are transferred to the loss of substance either cut up into small pieces, or under the form of flaps of some size (dermic graft). In dissecting off the skin that is to be transplanted, all subcutaneous fat must be carefully removed from it; and, furthermore, it should be taken from those parts of the body which have a thin skin, such as the lids have. For this purpose the inner side of the upper arm is commonly selected. The
skin may also be taken from other persons or from amputated limbs with sound skin. A position midway between the epidermic and the dermic method of making grafts is occupied by Thiersch's method, in which comparatively large-sized pieces of skin are taken, but which besides epithelium contain only the most superficial layers of the cutis.

With the pieces of skin, which are trimmed to fit the freshly made raw surface, the latter is carefully covered over in such a way that they are everywhere in intimate contact with the subjacent parts, against which they are then kept applied by means of a light-pressure bandage.

The method of grafting has the advantage over the formation of skin flaps with a pedicle, that the face is not disfigured by any additional cicatrices. On the other hand, it affords less certainty of success, since the pieces of skin often become gangrenous. But even when they do become attached they afterward shrink very much, so that the success of the operation is diminished, or is even entirely nullified. This is especially true of transplanted pieces of epithelium; larger grafts that are taken from the whole thickness of the cut is shrinkless, and are hence much preferable to the former for blepharoplasty. The operation of grafting is especially adapted to those cases in which we are dealing with only small losses of substance and the operation is performed mainly for cosmetic purposes. It is further indicated in these cases in which the skin surrounding the lids can not be employed for making flaps with pedicles, owing, for example, to its cicatrical character. In the other cases, in which large losses of substance are to be covered, and especially where the object is to relieve a lagophthalmus, the method of pediculate flaps is to be preferred, because, although causing more disturbance of the parts, it nevertheless gives more certainty of success.

VIII. Operations for Ptosis.

172. An operation is indicated both in congenital ptosis and in old cases of acquired ptosis which can not be cured in any other way. A whole series of methods of operating for ptosis has been proposed, a circumstance which proves that no one of them gives perfectly satisfactory results. This can be readily understood, since, in fact, the physiological action of a muscle can not be perfectly replaced by any surgical operation whatever.

The oldest method consisted in shortening the lid by excising a fold of skin, a procedure which Von Graefe combined with excision of the subjacent bundles of fibers of the orbicularis (the antagonist of the levator palpebrae). This method has been abandoned, because a sufficiently great shortening of the lid always results in a considerable degree of lagophthalmus; and if only a little skin is excised the operation is unsuccessful. It is true that the new methods also are not free
from the objection that they cause a certain degree of lagophthalmus, but, in comparison with the effect produced, this is slight and not injurious. These new methods start from the idea that the action of the levator can be replaced only by a muscular action. If there is a levator which, though weakened, can still contract, we attempt to increase its effect upon the lid; if the levator is entirely absent, we endeavor to invoke the aid of other muscles, above all the frontalis, for lifting the lid.

1. An increase in the action of the levator is effected by shortening the latter. This idea lies at the foundation of the operation for advancement of the levator proposed by Eversbusch. A cutaneous incision is made about midway between the border of the lid and the eyebrow, and passing in a horizontal direction from one end of the lid to the other. Starting from this incision, the skin and the fibers of the orbicularis are loosened from their attachments, so that they can be pushed to one side, and the upper border of the tarsus together with the levator can be exposed to view. A loop of thread is then passed through the tendon as high up as possible, the two ends of the loop being carried down between the tarsus and the skin of the lids and brought out in the intermarginal space. If these ends are tied there and drawn taut, the tendon of the levator is drawn down by means of the loop which has been passed through it. Three such loops should be applied—one in the middle and one on either side.

This method gives good results, which, however, are not always permanent, as the tendon which has been drawn down by the loops of thread subsequently retracts. Better and more permanent results are obtained if we perform the operation of shortening the tendon by excising a portion of it. The skin of the lid is incised along the convex border of the tarsus, and from this point dissected up as far as the eyebrow. The fascia tarsor-orbitalis and, after this has been divided, the tendon of the levator now lies exposed to view. Of the tendon a portion is excised whose length must be regulated by the degree of ptosis. Then the anterior extremity of the shortened muscle is sewed again to the convex border of the tarsus.

2. If the levator is completely inactive, shortening of it would be without result. We then endeavor to replace its action by that of the frontalis; starting from the fact that persons with ptosis are able to lift the lid a little by wrinkling the forehead. By this means the eyebrows are lifted and thus indirectly the lid is lifted too. But the skin of the lid must be entirely smoothed out before the edge of the lid can be elevated at all, and hence the greatest part of the effect that the contraction of the frontalis is able to exert is lost. Hence, the idea arose of making the elevation of the lid more extensive by connecting it directly with the fibers of the frontalis. This may be effected by means of a subcutaneous suture (Dransart, Pagenstecher).
One needle of a thread armed with needles at both ends is entered above the free border of the lid, and is carried up beneath the skin of the lid to the arch of the eyebrows, above which it is brought out again. The second needle is passed alongside the first. There is thus a loop of thread lying within the lid, the middle of the loop being situated above the free border of the lid and its two ends emerging above the eyebrows. These ends are tied over a roll of adhesive plaster or iodoform gauze and drawn tight. The threads are not removed until firm cicatricial bands are formed along the suture tracks—bands which extend from the lid to the surface of the frontalis muscle and connect these two structures together (give the muscle what may be called a tendon for the upper lid).

The same, only in a more thoroughgoing way, is secured by the operation of Panas. This tries to secure the connection between the lid and the frontalis muscle by the formation of a pedicle from the skin of the former, which pedicle is attached to the skin of the forehead and to the surface of the muscle. The appended figure (Fig. 259) shows how the pedicle is cut out of the skin of the lid. The pedicle, s, after being defined by incision, is dissected from its bed until it is freely movable; then a horizontal incision, a, is made through the skin directly above the eyebrow. Starting both from this incision and from the wound already made below, the skin of the eyebrow is undermined so that a bridge of tissue is formed, beneath which the pedicle, s, is slipped so that its upper margin is in contact with the upper lip of the incision, a. Its attachment to the latter is effected by means of a loop of thread, the center of which lies on the cutaneous side of the pedicle, while its extremities, b b, are passed through the upper lip of the wound. By drawing the loop tight the pedicle is lifted up and is attached to the upper border of the wound. If necessary, a second loop may be applied, and also some interrupted sutures, to secure exact adaptation of the edges.

Panas's operation has given me the best results of any in complete ptosis. Its description as here given varies in some unimportant details from that which Panas himself gives. It may happen that upon drawing up the pedicle ectropion is produced. In this case an additional loop of thread must be applied on either side, which passes above through the upper margin of the wound, as the other loops do, but below does not take in the skin of the flap but only the deeper parts (fascia
tarso-orbitalis). When these additional loops are drawn up, ectropion will not occur. In this operation there is no skin lost. Hence, if it should be apparent that the lid has been shortened too much, all that we need to do is to draw the pedicle less high up—i.e., attach it farther down.

In order to avoid doing an operation for ptosis, different kinds of fine wire clamps have been devised, which, applied either alone or in conjunction with a nose piece, serve to grasp the skin of the lid and lift it up. Also an ordinary monocle jammed into the eye may serve the same purpose.
APPENDIX.

Fig. 260.—Instruments for opening the Eye and keeping it in place.

a, b, c, d, e, various forms of spring specula for holding the eye open in operations (page 735).

f, Desmarre's elevator or lid retractor, for holding the lids apart in examinations of the eye and in operations. (See pages 2 and 735.)

g, fixation forceps for holding the eyeball steady in operations (page 735).

h, Sédillot's double hook for fixing the eyeball, especially in strabismus operations.

805
Fig. 261.—Instruments for Operations upon the Lids.

a, Jäger's horn plate lid holder; b, Knapp's blepharostat (entropion forceps, lid clamp); c, Desmarre's entropion forceps. a, b, c are inserted beneath the lid, thus affording a resisting surface upon which to cut in all operations upon the lids (operations for entropion, ectropion, trichiasis, ptosis, chalazion, etc.). (See pages 534, 736, 795, and 797.) b and c, which have a ring that can be screwed down upon the lid, also act as clamps, holding the lid firmly in place and preventing hemorrhage during the operation. d, epilating forceps (cilium forceps). (See pages 530 and 538.) Other instruments used in lid operations are ordinary scalpels, bistouries, and dressing forceps.
Fig. 262.—Instruments for Strabismus and Enucleation.

a, b, c, squint hooks for picking up the tendon and putting it upon the stretch. b is Stevens's slender tenotomy-hook, used especially in performing partial tenotomies. d, strabismus forceps, which may be used for the same purpose, and is also employed for taking up the conjunctiva before the incision is made in the latter. e, Stevens's tenotomy scissors, with cutting edges near the end for doing partial tenotomies. For the ordinary strabismus operation, and also for enucleation, any curved, blunt-pointed scissors may be used. Other instruments used are a spring speculum or Desmarre's retractor, for holding the lids open, and a fixation forceps or Sédillot's hooks. (See Fig. 260.) A needle holder and curved needles are also required for stitching the conjunctiva, and, in the case of advancement, for suturing the tendon. (See pages 772, 773, 778, 781, and 784.)
Fig. 333.—Instruments for Lachrymal Stricture.

a, Bowman’s sounds (page 567).  b, Bowman’s director.

c, Anel’s probe.  d, Theobald’s probe.

e, Weber’s thick sound for graduated dilatation (page 574).

f, Weber’s curved canaliculus knife for slitting the canaliculus (page 567).

g, Stilling’s knife, for division of lachrymal strictures (page 574).
h, Anel’s syringe (page 567).
FIG. 264.—INSTRUMENTS FOR REMOVING FOREIGN BODIES.

a, foreign-body needle and spud (page 199).
b, Knapp's foreign-body hook.
c, Bradford's electro-magnet. (See page 243.)

FIG. 265.—TATTOOING NEEDLES FOR CORNEAL OPACTITIES.

a, single, grooved tattooing needle.
b, bundle of tattooing needles (page 207).
Fig. 266.—Instruments for Iridectomy and Iridotomy.

a, straight lance-knife. b, angular lance-knife. Used in iridectomy (page 748), paracentesis (page 746), simple linear extraction of cataract (page 760). c, d, e, iris forceps for passing into the wound made by the lance-knife and grasping the iris. (See page 748.) f, curved scissors for excising the iris. (See page 748.) g, De Wecker's iridotomy scissors (pince ciseaux). (See page 755.) Other instruments required are a spring speculum or Desmarre's retractor, to keep the lids apart, and a fixation forceps to hold the eyeball. (See Fig. 260.)
Fig. 267.—Instruments for Paracentesis and Dissection.
(See pages 756 and 758.)

a, broad needle for paracentesis.  
b, Bowman's stop needle.  
c, Beer's cataract needle.  
d, couching needle.  (See page 767.)  
e, Knapp's knife needle, for dissection of membranous cataract.  (See page 750.)
FIG. 269.—OPHTHALMOSCOPES.

a, b, and c show the back view of three varieties of the ordinary form of ophthalmoscope. This latter consists essentially of two parts, an anterior and upper part, the mirror, and posterior to this a revolving disk bearing the lenses. The mirror may be circular and fixed, as in the examples here presented (see d, which shows the mirror of c), or quadrangular and slightly movable about a vertical axis (tilting mirror). In either case it contains a central aperture through which the observer looks from behind the mirror, and before which each of the lenses in the rotating disk passes as the latter revolves. The disk is revolved by the pressure of the finger on its milled edge. It consists either of a single piece bearing convex and concave glasses (distinguished by the signs + and −), as in b; or of two superimposed disks, as in c; or of a disk with a superimposed quadrant (a). In other forms a chain of lenses is used (Morton ophthalmoscope) or a slide containing lenses running up and down in the handle of the instrument. In the compound instruments (a and c) any glass in the superimposed disk or quadrant may be brought before the central aperture simultaneously with any glass in the anterior disk, and consequently a great variety of combinations can be made. The disks are usually covered, as shown in b and c, by a removable metal cap having a perforation corresponding to the aperture in the mirror.
INSTRUMENTS FOR SKIASCOPY. (See page 23.)

FIG. 270.—LAMBERT’S REFRACTOMETER.

This instrument consists of two superimposed metal disks, eleven inches in diameter, one of which contains nine convex lenses ranging from +1 D. to +9 D., and ten concave lenses from —1 D. to —10 D., while the other carries both the convex and concave fractional and 10 D. lenses. On the reverse side of the instrument is an arm, carrying an eyepiece, which can be swung to either side of the disk, according to which eye is to be tested. Attached to this arm is a graduated cell in which the cylindrical trial lenses can be placed at any desired angle. The combination of all foci is obtained in the same manner as in the Loring ophthalmoscope, and the graduated cell permits the rotation of the cylinders to all axes. Attached to the eyepiece is an extra cell which will hold either a solid disk to cover the other eye in retinoscopy or a trial lens in testing both eyes for refraction.

Both disks can be revolved either independently or together, with one hand, at the will of the operator, when at a distance of one metre from the patient, by means of a gear movement operated by a rod and hollow tube. The rod, which turns within the hollow tube, operates the main disk; the auxiliary disk is rotated by means of the tube. A quarter turn brings a lens, by consecutive increase or decrease, before the eyepiece.

The elbow joint, which supports the lens disks, rotates on the upright standard in such a manner that the lenses can be placed before either eye of the patient without any change of position.

FIG. 271.—MARPLE’S SKIASCOPE.

These skiascopes are designed to be held by the patient before the eye during retinoscopic examination. Each contains a series of six lenses, ranging from 1 to 6 dioptries, plus and minus respectively. In addition to these lenses there is on one side a movable slide containing a 6 D. lens, which can be quickly slipped up over the other lenses once after the other, making further combinations from 7 D. to 12 D. To determine smaller errors within 1 D. a slide containing three lenses, 0.25, 0.50, and 0.75 D., respectively, is placed on the other side and can easily be brought before the other lenses. On the skiascope containing the plus lenses the movable slide carries minus fractional lenses, and vice versa.
Fig. 272.—The Javal-Schiötz Ophthalmometer.

By this the corneal astigmatism is measured directly. (See page 723.)

Fig. 273.—Placido's Keratoscope. (See page 723.)
FIG. 374.—A PERIMETER.

The perimeter consists essentially of a graduated arc along which the test object is carried. (See page 30.) This arc is capable of rotation through all meridians, the meridian which it occupies and the position of the test object on the arc being marked upon the diagram, which, as shown on the left side of the cut, is attached to the instrument. The patient sits with his chin in the chin rest sliding in the upright, shown on the right-hand side of the cut.
INSTRUMENTS FOR MUSCLE TESTING.

FIG. 275.—STEVENS'S PHOROMETER. (See page 618.)

FIG. 276.

a, Maddox rod. (See page 617.) Consists of a hard-rubber disk, which holds in the center a glass rod. The effect of this transparent cylinder is to cause an apparent elongation of a single flame into a thin line of light, quite dissimilar from the flame itself. The line is always at right angles to the axis of the rod, so that to produce a vertical line, with which to test horizontal deviations, the rod is placed horizontally, and to produce a horizontal line, to test vertical deviations, it is placed vertically.

b, Maddox rod composed of a series of cylinders.
FIG. 277.—Stevens's Tropometer for measuring the Various Rotations of the Eyeball.

It consists essentially of an achromatic telescope in which the inverted image of the examined eye is found at the eyepiece where, either as an aerial image or as an image upon the ground glass, its movements can be accurately observed. A graduated scale near the eyepiece is set in a rotating cell, which by means of a small lever can be placed horizontally, vertically, or obliquely, and, by means of the two graduations, measurements in opposite directions can be made.

One of the essential points in taking these measurements is a correct and rigid position of the head in both perpendicular and lateral directions. To obtain the perpendicular position two points of contact are devised, which touch at the glabella, or ridge just above the root of the nose, and at the upper lip, just below the nose. The lateral adjustment is obtained by means of an adjustable arc bearing a point that is brought in contact with the occipital protuberance.
INDEX.

Abduccens, 570, 585, 590; nucleus, 590; paralysis of, 600, 606, 607, 611.
Abduction, 578, 580; measurement of, 587; mistaken application of term to signify divergence, 592.
Ablatio retinae, 488.
Ablation of staphyloma, 217; of zone of hair follicles, 786.
Ablepharia, 559.
Abscess of cornea, see ULCUS SERPENS; of lids, 521, 556; retrobulbar, 647, 648.
Absces sus siccus, 172.
Absolute far point, 685; hypermetropia, 710; near point, 685; range of accommodation, 685; scotoma, 33; visual acuity, 674.
Accidents to eye, frequency of, 243; summary of lesions found in, 632.
Accommodation, 674; abrogated by cataract extraction, 796; amount of, not proportionate to the extent of the region of accommodation, 681; amplitude of, 680, 682; anomalies of, 728; availability of, measured by the region of accommodation, 685; changes of, in age, 686; concealment of hypermetropia by, 707; contraction of pupil associated with, 375; disturbance of its relations with convergence causing heterophoria, 613; little employed by myopes, 694; measurement of, 679–684; mechanism of, 678; nucleus for, 589; paralysis of, 728; range of, 680, 682; reduced in glaucoma and sympathetic ophthalmia, 731; region of, 680, 683; relation of, to convergence, 613, 679; relative, 684; spasm of, 731; spasm of, macropsia in, 730; spasm of, simulating and producing myopia, 697, 732; spasm of, treatment, 726, 732; tested with reference to central vision, 27; weakness of, after severe diseases, 731.
Accommodation theory of the production of myopia, 703.
Accommodative asthenopia, 711; convergence excess, 619; convergence insufficiency, 631.
Acetate of lead, see LEAD.
Acetic acid in vernal catarrh, 106.
Acne rosacea conjunctiva, 102.
Acromegaly, 487.
Acuity, visual, 27, 670; absolute, 674; relative, 674.
Adaptation of the retina, 35.
Adduction, 578, 580; how measured, 587; how reduced by tenotomy of the internus, 777; mistaken application of term to signify convergence, 592.
Adenoma of choroid, 356; of glands of the lids, 558; of lachrymal gland, 571.
Adhesions between iris and cornea, see SYNCHIA, ANTERIOR; between iris and lens, see SYNCHIA, POSTERIOR; between lids and eyeball, see SYPHLEPHARON.
Adnexa bulbi, operations upon, 705.
Advancement, 773, 775, 776, 777; of levator palpebræ superioris, 602.
After-cataract, 766.
After-treatment of eye operations, 738, 745.
Age, changes of accommodation in, 686; changes of myopia in, 689; changes of refraction in, 688.
Air, beneath conjunctiva, 124; in anterior chamber, 754; in orbit, 651; in tissues of lids, 554, 556.
Albinism, 16, 361.
Albinus, luminosity of pupils in, 9.
Albuminuric amaurosis, 449; oedema of
lids, 123, 555; optic neuritis, 487; retini-
ritis, 449.
Alcoholism producing hemeralopia, 498;
producing nuclear paralysis of ocular
muscles, 610; producing retrobulbar
neuritis, 491.
Alternate paralysis, 610.
Alternating strabismus, 628, 634.
Alum, 58, 74.
Aluminated copper, 53.
Anaurosis, 495; albuminuric, 449; cere-
bral, 485; how causing mydriasis, 332;
of central origin, 499; partialis fugax, 499;
produced by quinine, 443; spinal, 493;
uremic, 449.
Anamortie cat’s-eye, 350, 464; luminosity
of pupil in, 8.
Amblyopia, 495; alcoholic, 491; con-
genital, 493; ex anopia (from disuse). 496,
629; how producing nystagmus, 639;
hysterical, 500; nicotinica, 493; of
central origin, 499; tobacco, 496.
Ametropia, 699.
Ammon’s scleral protrusion, 245, 247,
300.
Amotio retinae, 458.
Amplitude of accommodation, 680, 682;
of convergence, 592.
Amyloid degeneration of conjunctiva, 106.
Anæmia causing arterial pulsation in
retina, 14; from loss of blood produc-
ing optic neuritis, 485; of retina, 443;
pernicious, producing retinal hemorrhages, 445.
Anaesthesia in operations, 734; produced
by cocaine, 278, 734.
Anel’s probe, 808; syringe, 567, 808.
Aneurisms of the orbit, 656.
Angioma of the conjunctiva, 127; of the
lids, 556; of the orbit, 656.
Angioma lipomatodes of the orbit, 659.
Angioneurotic oedema, 524.
Angle a, 635; metre, 593; of the anterior
chamber, 261; of the sphincter, 730;
visual, 670, 671; visual, minimum, 672.
Angulus visorius, 671.
Aniridia, 335; traumatica, 323.
Anisocoria, 279, 331.
Anisometropia, 726.
INDEX. 825

Areal choroiditis, 341.
Argyll-Robertson pupil, 281, 492.
Argyria, 49.
Argyrosis, 49.
Arlt's method of median tarsorrhaphy, 794; method of performing enucleation, 781; method of performing tenotomy, 772; modification of Gaillard's suture for entropion, 795; ointment, 101; operation for trichiasis, 787, 790, 791; test types, 673.
Arsenic in conjunctivitis eczematosa, 98.
Arteria centralis corporis vitrei, 286; centralis retinae, 13, 473.
Arteria hyaloidea, 286.
Arterial pulse in vessels of optic nerve, 13.
Arteries, ciliary, 265; retinal, how distinguished from veins, 13.
Arterio-venous aneurism causing exophthalmus, 658.
Artery, central, 13, 473; central, embolism of, 445; central, laceration and compression of, 447; central, of the vitreous, 286; hyaloidal, 286, 431, 433.
Artificial eye, 782, 784; leech, 318, 349; pupil, situation of, in cataract extraction, 792; pupil, situation of, in iridectomy for increase of tension, 751; pupil, situation of, in iridectomy for optical purposes, 750; pupil, vision with, 753; ripening of cataract, 752; vitreous, see MULES's Operation.
Aspersis in eye operations, 733; importance of, 740.
Aspersgilus glaucescent causing suppuration of cornea, 167, 171.
Aspiration theory of Weber and Hasner, 564.
Assimilation of visual substances in retina, 505.
Associated movements, 589; reaction of the pupil, 275.
Association centers, 580, 589; of ocular movements, 580.
Astatic needle, 243.
Asthenic ulcer of cornea, 146.
Asthenopia, accommodative, 711; hysterical, 501; in astigmatism, 721; muscular, 614, 695; nervous, 501; panorama-, 625.
Astigmatism, 716; acquired, 719; against the rule, 718; apparent change of shape of papilla in, 24; asthenopia in, 721; cause of, 719; compound hypermetropic, 719, 721; compound myopic, 719, 721; congenital, 719; corneal, 719, 720, 723; determination of, 721-723; hypermetropic, 719, 721; increased after atropinization, 723; irregular, 18, 720; lenticular, 719, 720; mixed, 719, 721; myopic, 719, 721; objective determination of, 24, 723; physiological, 718, 720; produced by cataract extraction, 719; produced by dislocation of the lens, 497, 490, 719; produced by iridectomy, 719, 752; regular, 24, 716, 721; simple hypermetropic, 719, 721; simple myopic, 719, 721; treatment of, 720, 721, 723; vision in, 717, 721; with the rule, 718.
Astringents in conjunctivitis catarrhalis chronica, 53.
Atheroma of lids, 596.
Atheromatous ulcers of the cornea, 159.
Atonia sacci lacrimalis, 568.
Atrophia bulbi, 305.
Atrophic crescent, 343; excavation, 365.
Atrophy of eyelid, 305, 306, 351, 783.
Atrophy of optic nerve, 491; descending, 492, 494; genuine, 491; inflammatory, 492; neuritic, 492; non-inflammatory, 491; primary, 491; progressive, 491; retinotic, 492; simple, 491, 499.
Atrophy of retina, 454.
Atropine, action of, 276, 281; applied in substance, 276, 318; causing convergence excess, 619; diminution of mydriatic effect produced by irritation of iris, 318; employed in convergent strabismus due to hypermetropia, 631, 725, 726; employed in determining refraction, 725; employed in diagnostically posterior synechiae, 292; employed in diagnosticating adhesions, 725, 732; employed in superficial keratitis, 228; employed in ulcers of the cornea, 155; employed in wounds of the cornea, 201; employed to rupture synechiae, 320; improper use of, 298, 321; increase of astigmatism af-
INDEX.

Beer's cataract-knife, 768, 812; cataract needle, 811; method of cataract extraction, 768, 812; method of performing iridectomy, 748; operation for staphyloma, 217.
Biconcave and biconvex lenses, 664.
Bifocal lenses, 668.
Binocular diplopia (or double vision), 582, 591; fixation, 590; single vision, 582, 590; vision, 581, 590.
Blackboard for testing field of vision, 29.
Black cataract, 413, 424, 496.
Black-white visual substance, 505.
Blenorrhoea acuta aditorum, 54; canthoplasty in, 793; chronic, 56, 79; complications, 56, 61; course, 55; etiology, 57, 59; inoculation of, for cure of pannus, 61; prognosis, 57; stages, 53; subacute, 56; symptoms, 53; treatment, 58, 62; ulcers of cornea in, 58, 61, 159; varieties, 56.
Blenorrhoea neonatorum, 62.
Blenorrhoea of the lacrimal sac, 564, 572.
Blepharitis ciliaris, 526; squamosa, 526; ulcersosa, 527.
Blepharo-adenitis, 526.
Blepharophimosis, 544; in conjunctival disease, 51, 96.
Blepharoplasty, 798.
Blepharospasm, 548; canthoplasty in, 793; essential, 549, 550; hysterical, 549, 551; in conjunctivitis eczematosa, cases of blindness after, 101; in conjunctivitis eczematosa, results of, 101; in conjunctivitis eczematosa, treatment of, 101; interfering with the examination of the eye, 1; senile, 549, 552; symptomatic, 549.
Blepharostat, 735, 805; Knapp's, 786, 806.
Blindness, after blepharospasm, 101; blue-yellow, 506; color, 501; day-, see Nyctalopia; green, 502; how causing mydriasis, 332; night-, see Hemeralopia; red, 503; red-green, 506; simulation of, 35; snow, 112; violet, 502.
Blind spot, Mariotte's, 32.
Bloodletting in diseases of the eye, 346; in iritis, 318; in optic neuritis, 485; in superficial scleritis, 298.
Blood-vessels, ciliary system of, 265; conjunctival system of, 39, 41; new for-
INDEX.

Capillary fistula, 574.
Capsular cataract, 401, 402, 403.
Capsule, anterior of lens, 395; Bonnet's, 642, 780; of lens, 395; of lens, changes in, after removal of lens, 765; of lens, opening of, in cataract extraction, 762; of Tenon, 585, 642.
Capsule forceps, 762.
Capsulo-lenticular cataract, 397, 412.
Capsulotome. See Cystitome.
Carbonic acid in eye operations, 733.
Carbon disulphide producing retrobulbar neuritis, 491.
Carcinoma of choroid, 356; of lacrimal gland, 571; of lids, 557; of orbit, 656.
Carnivora, luminoes of the pupils in, 9.
Carotid, compression and ligation of, for pulsating exophthalmus, 658.
Caruncle, 41; diseases of, 129; sinking in of, after tenotomy, 779.
Cataract, 397; after-, 766; anterior cortical, 406, 408; anterior polar, 402, 406; astigmatism after operation for, 719; Beer's operation for, 768, 812; black, 413, 434, 496; Brisseau's discovery of seat of, 424; calcareous, 411; capsular, 397, 401, 402, 403; capsulo-lenticular, 397, 412; central, 403; central capsular, 403, 403; cholelalic, 431; clinical forms of, 402; complicated, 419; congenital, 402, 403, 417, 430; cortical, 406, 408; coiding of, 767; cystic, 416; Daniel's original operation for, 768; depression of, 767; diabetic, 417, 430; dilaceration of, 759; discission of, 756; displacement of, 767; etiology of, 359, 417-420; extraction of, see Cataract Extraction; flap operation for, 761; fluid, 411; glaucomatous, 378, 419; green, 369; hard, 412; hemeralopia in, 497; history of operations for, 767; history of our knowledge concerning, 424; hypermature, 410, 416; immature, 409, 414; immature, artificial ripening of, 752; immature discission of, 757; incipient, 409, 414; intumescent, 409, 415; Jacobson's operation for, 769; lamellar, 404, 407; lenticular, 397; linear extraction of, 760; mature, 410, 419; membranous, 411; membranous, discission (or dilaceration of), 759; membranous, simple
INDEX.

linear extraction of, 761; milky, 411;
Morgagnian, 411; muscae volitantes in, 398; myopia developing in the early stages of, 399, 414; naphthalinic, 421; nephritic, 417; nuclear, 417; nucleus of, how measured, 418; nyctalopia in, 497; objective signs of, 397; operations for, see Cataract Extraction, Discussion, Depression, and Reclination; partial, 402; partial stationery, 402; pathological anatomy of, 400; perinuclear, 404, 407; perinuclear, discission of, 757; polar, 402, 403, 406; polypia monocularis in, 398; posterior cortical, 406, 408; posterior polar, 403, 406; progressive, 408; pyramidal, 403; reclamation of, 767; ripening of, 415; ripening of, artificial, 753; seat of, discovered by Brissau, 424; secondary, 766; senile, 409, 417, 420; soft, 412; soft, discussion of, 756; soft, simple linear extraction of, 780; spindle-shaped, 408; spontaneous restoration of sight in, 416, 418; stages of, 409; stationary, 402; subjective symptoms of, 399; swelling, 409, 415; traumatic, 417, 428; traumatic, produced by iridectomy, 754; treatment, 422 (see also Cataract Extraction, Discussion, Depression, and Reclination); tremulous, 412; unripe, 409, 414; unripe, artificial ripening of, 752; unripe, discussion of, 757; Von Graefe's operation for, 768-770; zonular, 404.

Cataracta accreta, 306, 419, 767; arida siliquata, 416; calceata, 411; capsulolenticularis, 412; complicata, 306, 419; congenita, 417; corticalis, 406, 408; cystica, 416; dura, 412; fluida, 411; fusiformis, 403; glaucomatosa, 373, 419; gypsea, 411; hypermatura, 410, 412; incipient, 409, 412; in oculo glaucomatoso, 411; intumescens, 409, 412; lactea, 411; matura, 410, 412; membranacea, 411; mollis, 412; Morgagni, 411; natans, 427; nigra, 413; nuclearis, 417; polaris anterior, 402, 406; polaris posterior, 403; punctata, 403; secundaria, 766; secundaria accreta, 767; senilis, 417; spuria, 399; traumatica, 417, 422; tremula, 412.

Cataract extraction, 760; accidents in, 764; appearance of eye after, 764; astigmatism of, 768, 812; combined, 76; erythroformance of, 760; histori for, 767; infl in, 782, 783; after, 767, 76; Küchler's method, 771; linear, 760, 7 in, 764; max steecher's met reous in, 76; simple after, 767, 76; after, 762; V zeo's method 771; with an 762, 763, 769; Von Graefe, Cataract knife, Cataract needle Cataract prick Cataract prick Cataract, atropi see Conjunctival, see cavitis cataris puscular for vesicular for: Cataractal conj cavitis cataris nea, 46, 48, 1 Cataractus siccu Cat's-eye, amau Cat's-eye pupil Caustics, injuri 110; injuries Cauterization 157; in kers conus, 224; 155, 161; ir vascular fas keratitis, 183 Cavernous sin Cavernous tum Cellulitis of th
INDEX.

Centering of glasses, importance of, 668.
Centers, cortical, for ocular movements, 588; for associated movements of the eye, 588; for movements of the ocular muscles, 588; visual, 473.
Central artery (of the optic nerve), 473; artery, embolism of, 445; artery, laceration and compression of, 447; artery of the vitreous, 286, 421, 433; canal of the vitreous, 369, 286, 431, 434; choroiditis, 340; non-irritative ulcer of the cornea, 159; ophthalmoplegia, 610; parenchymatous infiltration of the cornea, 194; scotoma, 32; vein of the optic nerve, 473; vein, thrombosis of, 447; vision, 27.
Cerebral amaurosis, 495.
Chalazion, 533, 535.
Chamber, see Anterior Chamber, Posterior Chamber.
Chemosis, 55.
Chemotaxis, 168.
Chiasm, 474.
Children, comparative infrequency of corneal ulcers in, 158; operations in, 745, 757; watered-silk reflex in, 14.
Chloral producing retrobulbar neuritis, 491.
Chloroform in eye operations, 785.
Chloromata of lacrimal gland, 571.
Choked disk, 482, 484, 486, 494.
Cholera, cataract in, 421.
Cholesterol in degenerated lenses, 411, 416; in vitreous, 434.
Chorio-capillaris, 294.
Choroid, 362; appearance of, with ophthalmoscope, 14; carcinoma of, 356; changes of, in myopia, 343; coloboma of, 357; detachment of, 352; diseases of, 337; functions of, 278; inflammation of, 387; layers of, 263; rupture of, 352; sarcoma of, 353; tuberculosis of, 356; tumors of, 353; vessels of, 15, 266; vessels of, how distinguished from those of retina, 15.
Chorioidial ring, 10.
Choroiditis, 337; anatomical changes in, 350; anterior, 341; causing cataract, 419; causing glaucoma, 392; centralis, 340; diffuse, 341; disseminata, 341; exudativa, 338; metastatic, 348, 349, 351; non-suppurativa, 338; senile, 341; serous, 380; suppurativa, 346; syphilitic, 341.
Chorio-retinitis, 341, 449.
Chromidrosis, 528.
Cicatricial ectropion, 543; ectropion, operations for, 798; entropion, 541; entropion, operations for, 797; pterygium, 116.
Cicatrix, ectatic, of cornea, 147, 151; of operation wounds, rupture of, 739.
Cicatrization, cystoid, 233, 234, 739.
Cilia, 510; blanching of, in irido-cyclitis, 300.
Ciliary arteries, 265.
Ciliary body, 256; changes of, in glaucoma, 377, 384; development of, 287; diseases of, 289, 293, 326, 728; function of, 278; tumors of, 327, 331.
Ciliary injection, 42; a constant accompaniment of keratitis, 141.
Ciliary muscle, 257, 290; action of, in accommodation, 678; in emmetropia, hypermetropia, and myopia, 701; paralysis of, 728; spasm of, 731; tone of, 731; tumors of, 331.
Ciliary nerves, 265.
Ciliary processes, 251.
Ciliary staphyloma, 248.
Ciliary system of vessels, 365.
Ciliary zone of iris, 252.
Cilio-retinal vessels, 289.
Ciliun forceps, 530, 806.
Circle of vessels of Zinn, 266.
Circulus arteriosus iridis major, 252, 266; arteriosus iridis minor, 253, 266.
Circumcorneal injection, 42.
Circumental space, 381, 394.
Cleansed ulcer of cornea, 138, 146.
Clearing of corneal cicatrices, 152, 206.
Cloquet’s canal, 286, 431, 434.
Closure of lids, how effected, 511.
Coated ulcer of cornea, 138, 146.
Cocaine, anesthesia from, 278, 734; effects of, 277; employment of, in examining the eyeball, 1; employment of, in relieving blepharospasm and photophobia, 1, 101, 105; producing glaucoma, 372; tending to produce collapse of cornea, in operations, 744.
Cod-liver oil in conjunctivitis eczematosa, 98; in parenchymatous keratitis, 190.
Cold applications in blennorrhoea of the conjunctiva, 58; in diphtheritic con-
INDEX.

junctivitis, care in use of, 88; in
dissension with excessive swelling, 758;
in injuries of the iris and traumatic
iritis, 318, 324.
Cold cream, 530, 531.
Collapsus corneae, 135, 744.
Collecting lens, 692.
Colloryum adstringens luteum, 53, 157;
Horst’s, 53; Romershausen’s, 59.
Coloboma, bridge, 336, 754; of the chori-
icid, 337; of the iris, 334, 336, 360; of
the iris, artificial, see Iridectomy; of
the lids, 558; of the macula, 339, 361;
of the optic nerve, 359.
Color blindness, 501; acquired, 507;
congenital, 501; diagnostic importance of,
34, 506, 507; in atrophy of the optic
nerve, 33, 493, 507; tests for, 33, 506.
Color perception, theories of, 502, 505.
Color scotoma, 53.
Color sense, 27; limits of field for, 34;
quantitative determination of, 507.
Color value, 505.
Comitant, term preferable to concomi-
tant, 620.
Commisuro, externæ, 509.
Commotio retinae, 467.
Complicated cataract, 419.
Compositors, prevalence of myopia
among, 703.
Compound hypermetropic astigmatism,
719, 721; myopic astigmatism, 719, 721.
Compresses, cold, see Cold, Application
of; moist warm, 155 (see also Warmth,
Application of).
Concave cylindrical lens, 665; lens for
correction of myopia, 18, 691; lens,
properties of, 662.
Concentric contraction of the visual
field, 32.
Concomitant (or comitant) heterophoria
and squint, 620, 622, 623, 626, 627.
Concusión of retina, 467; of the eye
producing cataract, 423.
Confuent form of diphtheria, 89.
Confusion colors, 504.
Congenital amblyopia, 495; anisometro-
pia, 726; anomalies of the chorioid,
387; anomalies of the conjunctiva, 124,
129; anomalies of the cornea, 210, 225;
anomalies of the iris, 334; anomalies
of the lachrymal passages, 564; anomali-
es of the lens, 492, 493, 417, 430, 428;
anomalies of the levator palpebrae su-
erioris, 551, 552; anomalies of the lids,
538, 539, 548, 551, 552, 538; anomalies
of the muscles of the eye, 610, 611;
anomalies of the optic disk and nerve,
359; anomalies of the orbit, 655; anomali-
es of the retina, 496, 494; anomalies
of the sclera, 245; anomalies of the su-
erior rectus, 611; anomalies of the vitreous,
493; astigmatism, 719; cata-
ract, 402, 403, 417, 420; dislocation of
the lens, 428; narrowness of the lids,
548; opacities of the cornea, 210; pa-
ralyses, 551, 552, 610, 611; ptosis, 551,
552; tumors, 124, 464, 655.
Conglobated tuberculosis of the choroid,
357.
Conjugate paralysis, 601, 609; spasm,
640.
Conjunctiva, 38; acne rosacea of, 102;
amyloid degeneration of, 106; anatomy
of, 38; angioma of, 127; blood-vessels
of, 39, 41; bulbi, 40; burns of, 110;
cicatrices of, following burns and cau-
terization, 111, 118; cicatrices of, follow-
ing diphtheritic conjunctivitis, 87;
cicatrices of, in trachoma, 67, 138;
congenital anomalies of, 124, 129; cor-
nea, 40; cyst of, 126; dermoid tumor
of, 124, 127; diphtheria of, see Con-
junctivitis diphtherica; diseases of,
38; divisions of, 38; ecchymoses of,
123; emphysema of, 124; epitheliums of,
125, 127; examination of, 2; fibro-
ama of, 129; follicles in, 53; foreign
bodies in, 119; fornices, 38; fornix of,
38, 40; granulations of, in diphther-
itic conjunctivitis, 87; granulation tu-
mor of, 127; herpes iridis of, 91; hya-
line degeneration of, 107; hyperemia
of, 59; inflammation of, see Conjun-
tivitis; injuries of, 110; lepra of,
105; limbus of, 40; lipoma of, 126;
upus of, 108, 108; lymphangiomata of,
129; myxoma of, 129; oedema of, 122;
of the eyeball, 40; of the fornix, 38,
40; of the lids, 38; of the region of
transition (restromal fold), 38, 40; of
the sclera, 40; palpebral, 38; papillary
condition of, 43, 79; papillary hyper-
trophy, 79; papilloma of, 127; pem-
phigus of, 102; polypi of, 127; producing
infection in eye operations, 741;
INDEX.

sarcoma of, 125, 127; scarification of, in acute blennorhoea, 62; sclera, 40; syphilitic inflammation of, 103; syphilitic ulcers of, 110; tarsi, 38; tuberculosis of, 107; tumors of, benign, 124, 126; tumors of, malignant, 125, 127; ulcers of, 109; xerosis of, 120.
Conjunctival cataract, see Conjunctivitis catarrhalis; division of the cornea, 133, 154; flap, 735, 763, 769; injection, 41, 141; system of vessels, 41, 42.
Conjunctivitis blennorrhoeica acuta, 54; catarrhalis acuta, 44; catarrhalis acuta, diagnosis of, from iritis, 85; catarrhalis chronica, 50; caused by acne rosacea, 102; caused by atropine, 85, 281; caused by bacteria, 48, 54, 62, 63, 85, 86; caused by dazzling, 112; caused by dermatitis herpetiformis, 103; caused by diptheria, 86; caused by eye strain, 52; caused by foreign bodies, 52; caused by gonorrhoea, 54; caused by hay fever, 48; caused by herpes iridis, 103; caused by ichthyosis, 103; caused by inverted cilia, 52; caused by irritable liquids and vapors, 112; caused by lachrymal diseases, 52; caused by lepra, 103; caused by measles, 48, 102; caused by pemphigus, 102; caused by pityrias is, 103; caused by psoriasis, 103; caused by scrofula, 92, 99; caused by syphilis, 103; caused by vitiated air, 52; chronic, 50; crouposa, 91; diptheric, 86; ezematosa, 92–101; ex acne rosacea, 102; exanthematica, 92, 102; follicularis, 53, 85; follicularis, relation of, to trachoma, 84; gonorrhoeica, 55; granulosa, 79; lymphatics, 92, 99; membranacea, 91; phlyctematoso, 92, 98; pustulosa, 92, 93; scrofulosa, 92, 99; simplex, 47; trachomatosa, 64; traumatic, 112; tuberculous, 107; variolous, 102.
Consensual reaction of the pupils, 275, 279.
Constant strabismus, 629.
Contact glasses, 724.
Contraction, concentric, of visual field, 39; of pupil, 274, 275; sector-shaped, of visual field, 51, 52.
Contraction furrows of iris, 255.
Contracture of antagonists in paralysis of the ocular muscles, 599.

Contusion of the eye, 233, 352, 467, 692; producing paralysis of accommodation, 729.
Conus, 343.
Convergence, amplitude of, 592; capacity for, how tested, 592; far point of, 592; latent, 618; near point, 592; prism, 618.
Convergence-excess, 619.
Convergence insufficiency, 621, 697.
Convergence paralysis, 601.
Convergence theory of the production of myopia, 704.
Convergent squint, 628, 629, 734.
Convex cylindrical lens, 664; lenses for the correction of hypermetropia, 10, 707; lenses, properties of, 662.
Convulsions causing cataract, 421.
Copioptia hysterica, 501.
Copper aluminated in conjunctival cataract, 53; sulphate in chronic blennorhoea, 59; sulphate in trachoma, 73.
Coquille glasses, 664, 665.
Corectopia, 335.
Corelysis, 321.
Cornea, 130; abscess of, see Ulcus ser-perosus; affection of, in acute blennorhoea, 56, 159; affections of, in acute catarrhal conjunctivitis, 95, 159; affections of, in chronic catarrhal conjunctivitis, 51; affections of, in conjunctivitis eczematosa, 94, 158, 159, 207; affections of, in glaucoma, 161, 162, 209, 389, 373, 383; affections of, in herpes zoster, 182, 522; affections of, in irido-cyclitis, 192, 293, 301, 307; affections of, in trachoma, 66, 68, 71, 159; anatomy of, 130; annular abscess of, 57; asthenic ulcer of, 146; atheromatous ulcer of, 161; blennorhoeal ulcer of, 159; burns of, 201; catarhhal ulcers of, 46, 48, 159; central non-irritative ulcer of, 159; central parenchymatous infiltration of, 194; changes in, producing astigmatism, 719, 720, 729; changes in, producing hypermetropia, 709; changes in, producing myopia, 693; cleansed ulcer of, 138, 140; cloudiness of, in glaucoma, 389, 377, 389; coated ulcer of, 138, 146; collapse of, 135, 744; congenital anomalies of, 210, 225; con-
INDEX.

Corneal astigmatism, 719, 720, 723; corneal ulcers, 132; incisions, 735; reflex examination of, 3.

Corneitis, (see Keratitis); scrofulous, 193.

Corona ciliaris, 257.

Corpus ciliare, 431.

Corpuscles of the cornea, 132.

Corrosive sublimate in diseases of the eye, 58, 75, 88, 155, 163; in eye operations, 733, 741.

Cortex of lens, 334.

Cortical cataract, 406, 408; centers for the ocular movements, 588; paralyses of the ocular muscles, 601, 609.

Coryza producing blennorrhea of the lacrimal sac, 565.

Couching, 767.

Couching needle, 811.

Crab's eyes inserted into the eye, 112.

Credé's method of prophylaxis of blennorrhea neonatorum, 63.

Crescent, 343, 344, 345.

Crossed diplopia, 538.

Croup and diphtheria, relations of, 90.

Croupous conjunctivitis, 91; form of diphtheria, 86.

Crusta lactea, 530.

Cryptophthalmus, 559.

Crypts of the iris, 252.

Crystalline body, crystalline lens. See Lens, Crystaline.

Crystalline swelling of Soemmering, 765.

Cuignet's tests for simulation, 36.

Curetting of ulcus serpens, 173.

Curvature of the cornea, how tested, 134.

Cutaneous diseases accompanied by conjunctivitis, 92, 102; diseases of lids, 518; horns on lids, 556.

Cyclical hull, 307.

Cyclitis, 203; (see also Iritis and Irido-cyclitis); diagnosis from iritis, 297; simple, 298.

 Cycloplegia, 728.

 Cycloplegien, 728; and the correction of refractive errors, 724.

Cylindrical lens, 664.

Cylindromata of conjunctiva, 129; of lacrimal gland, 571; of orbit, 639.

Cysts of conjunctiva, 126; of iris, 328, 338; of lids, 556; of orbit, 655.

Cystic cataract, 416.
INDEX.

Cysticer cus in anterior chamber, 329; in conjunctiva, 126; in vitreous, 435; subretinal, 463.
Cystitome, 770, 812.
Cystoid cicatrization, 124, 234, 739.

Dacryocystitis, 571.
Dacryoadenitis, 571, 574; catarrhalis, 573; phlegmionosa, 572.
Dacryops, 571.
Daltonism, 501.
Davelio's discovery of the method of cataract extraction, 768; scoop, 534, 746, 747, 761, 782, 812.
Dazzling cause of, in opacities of the cornea, 210; producing conjunctivitis, 112; producing retinitis, 435.
Decussation of the optic nerve, 474, 477.
Degeneration, glaucomatosus, 379, 373; of cataractous lenses, 401, 411; of corneal opacities, 209; pigmenary, of retina, 454.
Delirium after eye operations, 745.
Deposits on cornea, 293, 300.
Depressio cataractae, 767.
Depression of cataract, 767; of eye, how effected, 580.
Dermatitis herpetiformis causing conjunctivitis, 103.
Dermic graft for ectropion, 800.
Dermoid cysts of lids, 556; cysts of orbit, 655, 657; tumors of conjunctiva and cornea, 134.
Descemetitis, 301.
Descemetocoele, 148.
Descemet's membrane, 133.
Descending atrophy of the optic nerve, 492, 494; neuritis, 485.
Desmarre's elevators (or lid retractors), 2, 735, 804; entropion forceps, 806.
Detachment of the choroid, 352; of the retina, 458; of the retina, sclerotomy in, 748; of the vitreous, 433.
Development of the eye, 288.
Deviation, comitant, 620, 622, 623, 626; conjugate, 601, 604, 640; insuperable, 636; noncomitant, 620, 622, 623, 629; of eye behind a screen, 595, 612, 627; primary and secondary, in comitant squat, 628; primary and secondary, in paralytic squat, 595, 596; superable, 612, 626.

De Wecker's method of performing iridotomy, 755; method of sclerotomy, 747; operation for staphyloma, 217; operation for trichiasis, 790; scissors forceps, 748, 755, 810.
Diabetic cataract, 417, 420; iritis, 311; paralysis of the accommodation, 729; retinitis, 450; retrobulbar neuritis, 491.
Diaphoresis, 289; in chorioiditis, 340; in detachment of the retina, 460; in opacities of the vitreous, 432; in optic neuritis, 485; in retinitis, 442; in rheumatic paralyses, 602; in superficial scleritis, 228.
Dieffenbach's blepharoplasty, 800; method of tenotomy, 770.
Differentiation, minimum of, 35.
Diffusion circles, 673–677, 717.
Diffusion images in astigmatism, 717.
Diffusion of light by opacities of cornea, 205, 211.
Dilaceratio cataractae, 759.
Dilaceration, 759.
Dilatation of cavities adjoining orbit, 659; of pupil, governed by sympathetic, 274; of pupil, necessary in examining fundus, 9, 16; of pupil, pathological, see Mydriasis; of lachrymal strictures, 567.
Dioptry, 663, 666.
Diphtheria and croup, relations of, 90; and diphtheritis, difference between, 90; confluent, 89; en plaques, 89; of the conjunctiva, 86.
Diphtherial and diphtheritic, difference between, 90.
Diphtherial paralysis of the accommodation, 728; paralysis of the ocular muscles, 602, 610.
Diplopia, binocular, 582, 591; character of, in paralytic squint, 598; crossed, 583; developing after tenotomy, 635; heteronymous, 583; homonymous, 582; in strabismus, 628, 634, 635; left, 607; measurement of, 591; monocular, 585, 593; paradoxical, 635; right, 607; tabular view of, in paralysis, 606, 607; tests, 617; vertical (with difference of level), 583; with obliquity, 584.
Diplobacillus causing acute conjunctivitis, 48.
Direct method of examination with the ophthalmoscope, 6, 18; vision, 36.
Disassimilation of visual substances in retina, 508.
Discissio cataractae, 758.
Discussion, Bowman's method of, 760; instruments for, 811; of membranous cataract, 759; of soft cataract, 756.
Discussion needle, 756, 811; employed for capsuleotomy, 760, 770.
Dislocation of the eyeball, 649, 650; of the lens, 425; of the lens in cataract extraction, 764.
Dispersing lens, 662.
Displacement of cataract, 767; paralactic, 7, 25.
Disseminated choriodiitis, 341; sclerosis producing optic-nerve atrophy, 492; tuberculosis of the choroid, 356.
Distichiasis, 538; operations for, 786.
Distraction crescent, 343.
Divergence, function of, 592, 650; latent, 613; prism-, 618; vertical, 618.
Divergence-excess, 622.
Divergence-insufficiency, 630.
Divergence-paralysis, 601.
Divergent squint, 628, 630; squint, operation for, 775.
Donders scheme of eye, 669; theory of glancoma, 380; work in refraction, 661.
Double images, double vision, see Diplopia.
Double pupil, produced in iridectomy, 734; pupil, vision with, 583.
Dransart's operation for ptosis, 802.
Dressing in eye operations, 734, 743.
Drop of lachrymal sac, 566; of maxillary and frontal sinuses, 639.
Duboisine, 282.
Duct, lachrymal (or nasal), 582.
Ductus lacrimalis, 562.
Dural sheath of optic nerve, 471.
Dynamic squint, 619.
Dyslexia, 501.
Écarteurs, 735.
Ecchymoma subconjunctivale, 123.
Ecchymoses of conjunctiva, 123; of lids, 554, 555.
Ectasia, lymphatic, 124; of cornea, 212; of sclera, 244.
Ectatic cectatrix of cornea, 147, 151.
Ectogenous infection in suppurative choroiditis, 348.
Ectopia lentis, 438; pupilla, 335.
Ectropion, 541; cicatricial, 543, 798; how developed in blepharitis, 538; in trachoma, 71; in conjunctivitis catarhalis chronic, 51; luxurians, 542; mechanicum, 548; operations for, 797; paralytic, 545, 798; sarcomatosis, 549; senile, 542, 798; spastic, 542, 797; tarsorrhaphy for, 794.
Eczema of lids, 530, 533.
Efflorescences of conjunctivitis eczematosa, 90.
Egyptian ophthalmitis, 73, 77.
Electric light producing conjunctivitis, 112; light producing retinitis, 453; ophthalmitis, 112.
Electricity for clearing up corneal opacities, 211; in blepharospasm, 552; in optic-nerve atrophy, 492; in paralysis of the accommodation, 729; in paralysis of the ocular muscles, 603; in paralysis of the ocularis, 550; in retinitis pigmentosa, 457.
Electrolysis in trichiasis, 538; in tumors of the lids, 557; in tumors of the orbit, 656.
Electromagnet for removing foreign bodies, 243, 809.
Elephantiasis of lids, 523.
Elevation of eye, how effected, 580.
Elevators, 735; Desmarre's, 2, 735, 805.
Embolism of central artery, 445.
Embryology of eye, 283.
Emmetropia, 699; character of ciliary muscle in, 701.
Empyema of lids, 554, 556; of orbit, 651; subconjunctival, 124.
Empyema of the frontal and maxillary sinuses, 659.
Encanthis benigna, 129; maligna, 129.
Encephalocoele of orbit, 657.
Enchondroma of lids, 558.
Endogenous infection in suppurative choroiditis, 348.
Endothelioma of orbit, 659.
Endothelium of cornea, 133; of lymph passages of the eye, 270.
Engorgement neuritis, 484, 486, 494.
Enophthalmus, 645.
Entozoa in vitreous, 435.
Entropion, 539; canthoplasty for, 797; cicatricial, 541, 797; how developed in
INDEX.

trachoma, 71; operations for, 795; organicum, 540; spastic, 539, 705.
Entropion forceps, 806.
Enucleation, 789; dangerous in panophthalmitis, 349; indications for, 183, 218, 237, 238, 247, 320, 322, 328, 330, 349, 355, 357, 388, 392, 429, 453, 461, 465, 558, 657, 782; instruments for, 807; method of performing in case of malignant growths, 783; not an absolute preventive of sympathetic ophthalmia, 322; primary, 783; secondary, 783.

Ephebridine, 382.
Epicanthus, 538.
Epidermic graft for ectropion, 800.
Epilating forceps, 530, 806.
Epilation in blepharitis ulcerosa, 530, 531; in trichiasis, 538.
Epiphora, 594, 575.
Episcleral tissue, 40, 237.
Episcleritis, 227; periocclusa fugax, 382.
Epithelioma of conjunctiva, 125, 227, of lids, 557.

Epithelium, anterior, of cornea, 131, pigment-, 265, 284, 437; posterior of cornea, 133.

Equator of lens, 394.
Equatorial staphyloma of sciera, 244.
Equilibrium of ocular muscles, 612; test for insufficiency, 615, 618.
Erect image, examination with, 6.
Ergotism, cataract in, 421.
Erosions of cornea, 183, 199, 290.

Errors of refraction and accommodation, 601.

Erysipel of lids, 519, 534; causing thrombosis of central vein, 474.

Erythropsia, 771.

Eserine, action of, 277, 282 (see also Miotics); in fistula of cornea, 157; in glaucoma, 388; in keratoconus, 224; in paralysis of accommodation, 729; in posterior synechia, 321; in ulcer of cornea, 162.

Esophoria, 613, 615, 619; operation for, 626, 775.

Essential blepharospasm, 549, 551; phthisis, 593.

Ether in eye operations, 735.

Ethmoid cells, distention of, 659, 660.

Eucaine, 283.

Eversbusch’s operation for ptosis, 802.

Eversion of border of lid, 528, 541; of lids, necessity of, in examining eye, 2; of puncta, 528, 541, 572.

Evisceration of eye, 784.

Exacerbation, evening, in conjunctivitis catarrhalis, 45; morning, in conjunctivitis eczematosa, 95.

Examination, general, of patient, 1; objective of, eyes, 1; of anterior chamber, 3; of conjunctiva, 2; of cornea, 3, 134; of corneal reflex, 2; of eyeball, 1; of field of vision, 28, 749, 753; of fundus, 9; of iris, 3; of lens, 3; of lids, 1; of malingers, 35; of refracting media, 16; of refraction, 18, 690, 750, 721, 724; of sensitiveness of eye, 8; of tension, 4, 273; with erect image, 6; with inverted image, 7; with ophthalmoscope, 4.

Exanthemata of lids, 520, 522, 523.

Exanthematous conjunctivitis, 92, 102.

Excavation, atrophic, 365; glaucomatous, 365, 384; partial, 12, 365; physiological, 11, 364; total, 13, 365.

Excursion range of eye in squint, 637.

Excursions of eyeball, how measured, 587, 637.

Exenteratio bulbi, 784; orbita, 780, 785.

Exenteration of eyeball, 784; of orbit, 780, 785.

Exophoria, 613, 614, 621; producing myopia, 697; operation for, 626, 775.

Exophthalmic goitre, see Basedow’s Disease.

Exophthalmometer, 644.

Exophthalmus, 648; after tenotomy, 770; character of, in tumors of optic nerve, 494; due to dilatation of frontal and maxillary sinuses, 659; due to haemorrhage and emphysema, 650, 651; due to oculo-motor paralysis, 600; in Basedow’s disease, 652; intermittent, 658; pulsating, 658.

Exostosis eburnea, 659.

Externa, insufficiency of, see Espohoria; true, 620.

Extrirpation bulbi, 780.

Extrirpation of eyeball, 780; of lachrymal sac, 569.

Extsion, 578.

Extractio cataractae, 760.

Extraction of cataract, see Cataract Extraction; of dislocated lens, 429.
Extrinsic muscles of eye, 576.
Exudate, chorioidal, distinguished from atrophic spots, 340; gelatinous, in anterior chamber, 290; into vitreous, in cyclitis, 297, 301; lenticular, in anterior chamber, 299; spongy, in anterior chamber, 299.
Eye, appearance of, after cataract extraction, 764; artificial, 782, 784; development of, 383; hygiene of, in chorioiditis, 340; hygiene of, in conjunctivitis, 47, 93, 76; hygiene of, in iritis, 319; hygiene of, in myopia, 699, 703; hygiene of, in retinitis, 442; injuries of, summarized, 652; lymph passages of, 269; nutrition of, 270; objective examination of, 1; optical properties of, 669; reduced, 669; refraction of, 669; schematic, 669.
Eyeball, atrophy of, 305, 308; axes of, 577; conjunctiva of, 40; contusions of, 233, 352, 467, 692, 729; dislocation of, 643, 650; ectasia of, see Sclera, Staphylyoma of, and Cornea, Staphylyoma of; elongation of, in myopia, 695, 699; enucleation of, 780; evisceration of, 784; examination of, 1; exenteration of, 784; extirpation of, 780; foreign bodies in, 235, 241; hemorrhage from, 783, 789; injuries of, 322, 332, 352, 653, 783; luxation of, 643, 650; moistening of, effected by various agencies, 563; operations upon, 746; perforation of, 233–236, 239; phthisis of, 347, 351; position of in orbit, 643; rupture of, 233, 239; shape of, in hypermetropia, 712; shape of, in myopia, 695, 699; tumors of, causing glaucoma, 392; tumors of, necessitating enucleation, 782.
Eyestones, inserted into the eye, 112.
Eye-water. See Collyrium.
Facet of cornea, 147, 204.
Faculative hypermetropia, 710.
Falling bodies, Hering's test with, 591.
False image, 384; orientation, in paralytic squint, 555.
Far point, 679; absolute, 685; determination of, 683; of convergence, 592; in hypermetropia, 706; recession of, in old age, 688; relative, 683; virtual, 706.
Far sight, 705.
Fascia bulbi, 577, 642; of ocular muscles, 577, 585; of orbit, 642; of Tenon, 571; tarsos-orbital, 573, 642.
Fascicular keratitis, 94, 159; paralysis of the ocular muscles, 601, 610.
Fasciculus, vascular, 94.
Fibroma of the conjunctiva, 129; of lids, 558.
Fibroma molluscom of lids, 556.
Field of fixation, 588, 619; of single vision, 618.
Field of vision, determination of, 28, 749, 753; diagnostic importance of, in localizing brain lesions, 481; extent of, 39, 31; for colors, 39; in detachment of the retina, 459, 461; in glioma, 32, 368, 374; in retinitis pigmentosa, 455; necessity of determining, in opacities of refracting media, 749, 752; pathological alterations of, 31, 32 (see also Scotoma and Hemianopsia); projection of, 29.
Filamentous keratitis, 182.
Filaria oculi humani, 415.
Filtration ulema, 123.
Fingers as a test for vision, 673.
Fissure, fistal ocular, 285.
Fistula, capillary, 574; lacrymal, 572, 574; of cornea, 151, 157, 163, 751.
Fixation, 581; field of, 588.
Fixation forceps, 735, 805.
Fixed corpuses of the cornea, 132; scotoma, 33.
Flap, conjunctival, 735, 763, 769; non-pediculate, 791, 800; pediculate, 791, 799.
Flap extraction of cataract, 760.
Flap incisions, 735.
Flap operation for cicatrical ectropion, 769; for trichiasis, 791.
Flarer's operation for trichiasis, 765.
Fluid cataract, 411.
Fluorescein used in diagnosis of corneal ulcers, 143.
Focal distance, principal, 663; illumination, 2.
Focus, principal, 662; virtual, 663.
Fetal, ocular eleft, 385.
Fold, semilunar, 41, 129.
Follicles in the conjunctiva, 53.
Follicular cataract, 53.
Foramen sclerae, 227.
Forceps, fixation, 735, 805.
INDEX.

Foreign bodies in the conjunctiva, 110; in the cornea, 198; in the eye, 235, 241; in the vitreous, 433; sclerotomy for, 748.

Foreign-body hook, 809; needle, 199, 809.

Fornix conjunctivae, 38, 40.

Förster’s operation for ripening cataract, 752; perimeter, 30; photometer, 35.

Fossa glandula lacrimalis, 569; patellaris, 431; sacci lacrimalis, 561.

Foul ulcer of cornea, 138.

Fourth nerve, 576, 585, 590; paralysis of, 600, 611.

Fovea centralis, 437, 438.

Fracture of base of skull, ecchymosis of lids in, 653; of bones of orbit, 650.

Franklin glasses, 668.

Fricke’s blepharoplasty, 799.

Frontal axis of eye, 578.

Frontal sinus, dilatation and inflammation of, 650.

Fuchs’s method of tarsorrhaphy, 793.

Fulminating glaucoma, 371.

Functional causes of heterophoria, 613; testing, 27.

Fundus oculi, appearance of, with ophthalmoscope, 10 et seq.; changes of, in myopia, 343-346, 699; measurement of depressions and projections of, 23; tessellated, 13, 263.

Fungi causing ulcer of cornea, 167, 171.

Funnel, muscular, 576; vascular, 11.

Fusion of double images, 591.

Gaillard’s suture for entropion, 793.

Galvanocautery in conjunctivitis eczematosa, 97; in corneal ulcers, 155, 161, 169; in exenteration of orbit, 785; in vascular tumors of lids, 557.

Gaultheria oil in rheumatic iritis, 319.

Gelatinous exudate into anterior chamber, 290.

Gelsemine, 282.

Genuine atrophy of optic nerve, 491.

Germans predisposed to myopia, 703.

Gerontoxon (cornes), 130, 209; lentis, 414.

Glands, Henle’s, 43; Krause’s, 38, 558, 569; lacrimal, 560; Meibomian, 38, 39, 515; Moll’s, 515; mucous, of Waldeyer, 38, 39; of Zeiss, 39, 513.

Glandula lacrimalis, 560.

Glasses, 662; biconcave, 664; biconvex, 664; bifocal, 668; centering of, important, 668; collecting, 662; concave, 662; contact-, 724; convex, 662; coquille, 664, 665; cylindrical, 664; dispersing, 662; for astigmatism, 665, 721; for correction of vision in dislocation of lens, 439; for hypermetropia, how prescribed, 712, 725; for myopes, rules governing their prescription, 698, 725; for opacities of the cornea, 206, 665; for paralysis of accommodation, 729; for presbyopia, 688; for strabismus, 631; Franklin, 668; hyperbolic, in keratoconus, 225; minus, 663; numbering of, 663, 666; periscopic, 664; plano-concave and plano-convex, 664; plus, 663; prescriptions for, how written, 721; prismatic, 665; protective, 665; spherical, 664; stenopasic, 665; strength of, how determined, 667; strength of, how varying with distance from eye, 667; theory of, 662.

Glaucoma, 362; absolutum, 370; acute, 368; anatomy of, 377, 383; aqueous in, 383; attack of, 368; atropine in, baneful action of, 283, 321, 389; cataract in, 375, 419; cause of increase of tension in, 379; ciliary body in, 372, 384; cornea, cloudiness of, in, 377, 383; cornea, degeneration, 370, 373; cornea, ulcer of, in, 161; course of, 369, 374; diagnosis of, 365, 366; eserine in, 388; etiology of, 371, 374, 375, 379; evolution, 368; excavation of optic nerve in, 395, 394; field of vision in, 32, 398, 374; frequency of, 364, 371; fulminans, 371; hemorrhage after iridectomy in, 389; hemorrhagic, 392; history of our knowledge concerning, 364; importance of diagnosis of, 364; increase of tension in, cause of, 379; inflammatorium, 367; inflammatorium acutum, 367; inflammatorium chronicum, 371; inflammatory, its relations to glaucoma simplex, 375; iridectomy in, 385-388, 389, 392, 751, 754; iris changes of, in, 377, 383; lens in, 373; malignum, 387; medicinal treatment of, 388; miotics in, 372, 388; mydriatics in, 372, 389; oedema of cornea and iris in, 377, 383; ophthalmoscopic appearances in, 365, 366; pain
INDEX.

in, 372; paracentesis in, 748; pilocarpine in, 388; pathological anatomy of, 376, 388; posterior sclerotomy in, 748; primary, 367; prodromal stage of, 367; pulsation of retinal vessels in, 14; reduction of accommodation in, 731; relations of, to hypermetropia and myopia, 701; sclerotomy in, 747, 748; secondary, 391; simplex, 378; simplex, efficacy of iridectomy in, 387, 390; simplex, its relations to inflammatory glaucoma, 375; simplex, sclerotomy in, 747; stages of, 367; symptoms of, 367, 374, 378; theories of, 376, 383; treatment of, 385; visual acuity in, 386; visual field in, 32, 368, 374.

Glaucomaticous attack, 368; cataract, 373, 419; degeneration, 370, 378; excavation, 365, 384.

Glioma retinae, 464.

Gonococci producing acute blepharitis, 54, 55.

Gonorrheal conjunctivitis, see BLENNORRHAGIA ACUTA ADULTORUM; iritis, 310; ophthalmia, see BLENNORRHAGIA ACUTA ADULTORUM.

Graefe (Alfred), method of performing evisceration of eye, 784; test for simulation, 37.

Graft, dermic, for ectropion, 800; epidermic, for ectropion, 800; Thiersch's, 801.

Granular conjunctivitis, see TRACHOMA; form of trachoma, 68, 79; lids, see TRACHOMA.

Granulations of conjunctiva after diphtheritic conjunctivitis, 87; of conjunctiva occurring in various diseases, 85; of conjunctiva, ordinary (papillary form of trachoma), 79; trachomatous, 79.

Granulation tumor of conjunctiva, 127.

Granuloma of iris, 330.

Graves's disease, 654.

Green, diminution in perception of, a sign of optic-nerve disease, 34.

Green blindness, 502.

Green cataract, 369.

Häab's magnet, 243.

Habitus glaucomatosus, 360.

Hæmophthalmus, 233.

Hæmorrhage ex vacuo, 745; into anterior chamber, 233, 338, 324, 737, 745; into orbit, 650, 6 into vitreous due to reduction, 738; for, 799; into cornea, 14; aloid, 443.

Hæmorrhagic 451.

Halo glaucoma

Hand used for Hard cataract

Hasner's valve

Hay fever, cor

Healing after 739.

Helmholtz's di

darkness of oblique illu

the ophthalmiter, 723; t

678; theory

Hemeralopia, in cataract, 4

Hemianopia, 4

Hemipia, 31,

Hemipiea pup

Henle's glands

Hering's test

theory of co

Hernia cærebra

LAPSE OF.

Herpes conjun

brilis (febrilii

zoster (zoster

conjectu

519, 522;

519.

Herpetic ulcer

Heteronymous

Heterophasia,

626, 775.

Heurteloup's a

Himly's operat

Hippus, 333.

Histology. St

History of ca

our knowled

our knowle

of our know

Holmgren's w

ness, 507.
INDEX.

Holocaine, 283.
Homentropine, 282, 734; producing glaucoma, 372.
Homonymous diplopia, 582; hemiopia, 476.
Honey cysts of orbit, 657.
Hook, foreign-body, 809; Reisinger's 764; Sédillot's, 805; sharp, for capsulotomy, 770; squint-, 807; Tyrrel's, 770, 812; Weber's, for capsulotomy, 812.
Hordeolum, 532; externum, 532; internum, 532; meibomianum, 532; zeissianum, 532.
Horner's muscle, 517.
Horns on lids, 556.
Horse's eye water, 53.
Hotz's operation, 788, 790, 792, 796.
Humor, aqueous, see Aqueous; vitreous, see Vitreous.
Hutchinson's teeth, 188.
Hyalin, 107.
Hyaline degeneration of conjunctiva, 107; degeneration of cornea, causing arcus senilis and zonular opacity, 209, 210; of corneal opacities, 209.
Hyalitis, 435.
Hyaloid artery, 286, 431; artery, persistence of, 431; canal, 269, 431, 494; membrane, 431.
Hydromeningitis, 301.
Hydrophthalmus, 245, 374; enucleation for, 717; iridectomy in, 300; sclerotomy for, 747.
Hydrops sacci lacrimalis, 566; vaginae nervi optici, 484.
Hygienic treatment of choroiditis, 340; treatment of conjunctivitis, 47, 52; treatment of iritis, 319; treatment of myopia, 699, 703; treatment of optic neuritis, 485, 490; treatment of retinitis, 442; treatment of trachoma, 76.
Hyoscine, 282.
Hyoscyamine, 282.
Hyperemia of the conjunctiva, see Conjunctivitis catarrhalis chronica; of the optic nerve, 483; of the retina, 443.
Hyperbolic glasses in keratoconus, 225.
Hypermature cataract, 410, 416.
Hypermetropia, 705; absolute, 710; axial, 709, 710; causes of, 709; character of eye in, 712; ciliary muscle in, 701; concealment of, by accommodation, 707; confounded formerly with presbyopia, 713; correction of, by convex lens, 19, 707, 713, 735; determination of, 19, 22, 706; developing in old age, 689; eyeball in, 712; facultative, 710; far point in, 706; fundus visible from distance in, 24; latent, 708; lenticular, 709; manifest, 708; objective determination of, 19, 22, 706; produced by cataract extraction, 766; producing asthenopia, 711; producing convergent squint, 710; producing early presbyopia, 711; region of accommodation in, 714; relation of, to glaucoma, 371, 382, 701; relative, 710; relief of, by glasses as a cure for convergent strabismus, 631; simulating myopia, 714; subjective determination of, 708; total, 708; treatment, 712, 725; typical, 710.
Hypermicroscopic astigmatism, 719, 731.
Hyperphoria, 616, 628; operations for, 626, 775.
Hypertony, 273.
Hypertrophie périkratique, 105.
Hyphäma, 225, 258, 324.
Hypoochyma, 424.
Hypopryon, 141, 144, 290.
Hypopyon keratitis, 163.
Hypostatic congestion of lungs after eye operations, 745.
Hypotony, 378, 392.
Hysterical ambyopia, 500; asthenopia, 501; blepharospasm, 549, 551; paralysis, 602; spasm of ocular muscles, 640.
Ice compresses, in acute blennorrhoea, 58; in discission, 758; in traumatic iritis, 318, 324.
Ilethysis causing conjunctivitis, 103.
Ilecrtrimatio, 564.
Illumination, focal, 2; lateral (or oblique), 2.
Image, apparent (or false), 584; real (of a lens), 662; real (or true), in diplopia, 584; reflex of Purkinje-Sansou, 4; retinal, size of, 670; virtual (of a lens), 663.
Incarceration of iris, 204, 739, 743.
Inch system of numbering lenses, 696.
Incipient cataract, 409, 414.
Incision of staphyloma, 216, 218; of ulcer serpens, 167, 747.
INDEX.

Incisions, varieties and shape of, 733; varieties in cataract operation, 761, 763, 768-770; varieties in iridectomy, 750, 751.

Inclined double images, 584.

Inclusion of iris, 204, 736, 743.

Indirect method of ophthalmoscopy, 7, 20: vision, 27.

Infarcts of Meibomian glands, 535.

Infection, ectogenous, and endogenous, 348.

Inferior lachrymal gland, 561; oblique, see Oblique, Inferior; rectus, see Rectus, Inferior; tarsal arch, 39.

Infiltrated ulcer of cornea, 138.

Inflammation after operations, 740; of choroid, see Chorioiditis; of ciliary body, see Cyclitis; of conjunctiva, see Conunctivitis; of cornea, see Keratitis, Ulcer (Corneal), and Ulcer Sereps; of iris, see Iritis and Irido-cyclitis; of lids, see Blepharitis; of optic nerve, see Neuritis, Optic; of orbit, see Orbit, Cellulitis of; of retina, see Retinitis; of sclera, see Scleritis; of uvea, see Iritis, Irido-cyclitis, Cyclitis, and Chorioiditis; pathology of, illustrated by the morbid anatomy of keratitis, 144, 167.

Inflammatory atrophy of optic nerve, 492; glaucoma, 367; edema, 122, 124, 523, 534.

Influenza, producing paralysis of accommodation, 759; producing neuritis, 487.

Injection, ciliary, 42, 141; circumcorneal, 42; conjunctival, 41, 141; pericorneal, 42.

Injuries of conjunctiva, 110; of cornea, 198; of eye, 232, 312, 332, 652, 783; of eye, enucleation for, 237, 238, 783; of eye, frequency of, 242; of eye, summary of, 652; of iris, 322; of lens, 417, 422, 754; of lids, 554; of optic nerve, 493; of orbit, 630; of retina, 466.

Inoculation keratitis, 168.

Instruments, disinfection of, 733; for cataract extraction, 812; for discission, 811; for ectropion operations, 806; for entropion operations, 806; for enucleation, 207; for examining eye, 814-821; for extraction of foreign bodies, 809; for iridectomy and iridotomy, 810; for keeping eye open and in place, 805; for lachrymal stricture, 808; for operations upon lachrymal apparatus, 808; for operations upon lens, 811, 812; for operations upon lids, 806; for operations upon muscles, 807; for paracentesis, 811, 812; for ptosis operations, 806; for squint operations, 807; for tattooing cornea, 809; for tenotomy, 807; for trichiasis operations, 806.

Insufficiency of externi, see Esophoria; of externi, real, 620; of interni (false), 618; of interni (real), 622; of ocular muscles, see Heterophoria; vertical, see Hyperphoria.

Insuperable deviation, 626.

Intercalary staphyloma, 248.

Interior muscles of eye, 576.

Intermarginal strip, 510.

Intermittent strabismus, 632, 633, 634, 640.

Internal canthal ligament, 513, 515, 517; canthus, 509; operation wound, 741; rectus, see Rectus, Internal.

Interni, insufficiency of false, 613; real, 622.

Interpalpebral spot, 41; zone, 518.

Intervaginal space, 270, 472.

Intorsion, 578.

Intracranial paralyses of ocular muscles, 601, 609; section of optic nerve, 473.

Intra-ocular division of optic nerve, 468; pressure, 272.

Intrapeduncular paralysis, 610.

Intrascleral division of optic nerve, 469.

Intrinsic muscles of eye, 576.

Invaginations, lateral, of ocular muscles, 577, 585.

Inversion of iris, 324-326.

Inverted image, determination of refraction with, 20; image, examination with, 7; image, paralactic displacement with, 23.

Iodides and iodine in chorioiditis exsulativa, 340; in conjunctivitis eczematosa, 98; in deep scleritis, 230; in detachment of retina, 460; in iritis, 319; in opacities of vitreous, 482; in optic nerve atrophy, 492; in optic neuritis, 485; in parenchymatous keratitis, 190;
in retinitis, 442, 457; in scleritis, 228, 230; in syphilitic paralyses of ocular muscles, 602; in syphilitic periostitis of orbit, 647; in tobacco amylopia, 490.

Iodform in tuberculous conjunctivitis, 108; in ulcers of cornea, 155, 162; in wounds of cornea, 201.

Iodiferous in enucleation, 782; in exenteration of the orbit, 783; in operation for orbital periostitis, 647.

Iridectomy, 748; accidents in, 754; astigmatism after, 752; contra-indications for, 750; difficulties in performance of, 385, 389, 754; for corneal opacities, 749; for dislocation of lens, 429, 450; for ectatic prolapse of iris, 157; for fistula of cornea, 157, 751; for foreign bodies of iris, 753; for glaucoma, 357, 389, 390, 751; for hydrophthalmus, 390; for increase of tension, 387, 389, 390, 751; for irido-chorioiditis, 332; for iritis, 318; for keratocytosis, 233; for keratitis vesiculosa, 183; for lamellar cataract, 465, 749; for occlusio pupillae, 322; for optical purposes, 206, 749; for ripening a cataract, 752; for scleritis, 300; for staphyloma of cornea, 318, 751; for total posterior synchia, 321; for tumors of iris, 752; hemorrhage after, in glaucoma, 389, 758; how preventing prolapse of iris in operations, 744; in cataract extraction, 753, 762, 763, 769; indications for, 749; injury of iris and lens in, 754; instruments for, 810; iridodialysis in, 754; preliminary to cataract extraction, 752; prolapse of vitreous in, 755.

Iridectomy forceps, 810.

Iridectomy scissors, 810.

Irideremia, 335; traumatica, 323.

Irido-chorioiditis, 392, 339; chronic, 311; chronic, iridectomy in, 322; plastic, 346; serosa, 346; suppurativa, 346.

Irido-cycitis, see Iritis.

Iridodialysis, 322; in iridectomy, 755; spontaneous, 306.

Iridodonesis, 351, 256.

Iridotomy, 755, 810.

Iridotomy, 755, 810.

Iris, 251; anatomy of, 251; atrophy of, in glaucoma, 384; atrophy of, in iritis, 303, 307; coloboma of, 334, 336, 360; color of, 253, 256; congenital anomalies of, 324; contraction furrows of, 255; crypts of, 253; cysts of, 326, 328; development of, 287; diseases of, 289; disorders of motility of, 331; examination of, 3; foreign bodies of, 328, 752; formation of gaps in, 306; function of, 274; granuloma of, 330; great circle of, 352; hernia of, see Prolapse of Iris; hyperemia of, 289; incarceration of, in corneal cicatrices, 204; incarceration of, in operation wounds, 736, 743; inflammatory edema of, in glaucoma, 377, 383; injuries of, 322; inversion of, 324, 326; laceration of, 323; lepra of, 331; lesser circle of, 352; limiting membrane of, 233; melanoma of, 330; morbid changes of, in glaucoma, 369, 370, 377, 383; nodulation of, in leucocythaemia and pseudo-leucocythaemia, 330; pearl cysts of, 328; pigment layer of, 253, 356; prolapse of, see Prolapse of Iris; protrusion of, in iritis, 308; reposition of, in operations, necessity of, 757; retinal pigment layer of, 253, 356; sarcoma of, 377; sphincter of, 352; stroma of, 352; transfixion of, 756; tuberculous of, 326, 389; tumors of, 326–321; tumors of, iridectomy for, 752.

Iritis, irido-cycitis, 289; after operations upon eye, 740; atrophy of iris in, 303, 307; causing glaucoma, 591; classification of, anatomical, 301; classification of, etiological, 308; condylomatosa, 315; course and termination, 302; diabetica, 311; diagnosis of, 297, 298; etiology of, 308; gonorrhoica, 310; gummosa, 309; idiopathica, 311, 346; in acute conjunctivitis, 45; in acute infectious diseases, 310, 316; in keratitis, 141; morbid anatomy of, 289, 293, 300; myopia in, 299; papulosa, 309; plastic, 302; primary, 309; purulent, 302; recurrent, iridectomy in, 751; recurrent, not dependent upon presence of synechiae, 303; rheumatica, 310, 319; scrofulosa, 310; secondary, 315; serous, 302, 311; sympathica, 312, 316, 320; symptoms of, 289; syphilitica, 309, 315, 317; traumatica, 312, 319; treatment of, 317; tuberculosa, 310.
Irrigation of anterior chamber, 770.
Irritants for clearing opacities of cornea, 206; for clearing up ulcers of cornea, 157; for keratits profunda, 195; for parenchymatosus keratitis, 189.
Irritation, sympathético, 313.
Jacobson's method of cataract extraction, 789.
Jaeschke's operation for trichiasis, 787, 790.
Jäger's horn plate, 788, 806; test types, 673.
Jäger, Eduard, his method of cataract extraction, 771.
Jaunval and Schlotz's ophthalmometer, 728, 818.
Jequirity ophthalmia, 76; treatment of pannus, 76, 85.
Jews, especially prone to suffer from trachoma, 76; predisposed to glaucoma, 871.
Koenig's treatment for trachoma, 75.
Keratoactasia, 222; e pannus, 72, 272; excise, 222.
Keratitis, 136; bullosa, 182; centralis annularis, 191; complications of, 141; deep, 184, 196; dendritica, 160; diagnosis of, 139, 143; diffusa, 184; excentratous, 99; e lagophthalmo, 174, 179, 180; fascicularis, 94, 150; filamentous, 182; fletal, 210; general features of, 136; hypopyon-, 163; implication of neighboring organs in, 141; interstitialis, 184; marginalis, profunda, 197; marginalis superficialis, 161; neuroparalytica, 177; non-suppurative, 137, 180; parenchymatosus, 184; parenchymatosos circumspecta, 194; parenchymatous, 184; phlyctenular, see Conjunctivitis excentratous, 194; profunda, 184, 194; punctata, 301; punctata profunda, 192; punctata superficialis, 183; punctata syphilitica, 192; rheumatica, 194; selenging, 193; serofulosa, 193; springing from posterior surface of cornea, 193; stages of, 136; stellata, 160; subdivisions of, 144; suppurative, 137, 145; symptoms, 142; see also the varieties; syphilitic, 188, 192, 193; syphilitica, 183; traumatic, 183; vascularization of cornea in, 139; vesiculosa, 182; with formation of vesicles, 181; xeroteca, 178, 180.
Keratocele, 148, 157, 222.
Keratoconus, 223, 225.
Keratoglobus, 224.
Keratomalacia, 175, 180.
Keratonyxis, 756, 759.
Keratoscope, Placido's, 723, 818.
Keratoscopy, 20, 816.
Knapp's blepharostat, 786, 806; cystome, 812; foreign-body hook, 809; knife needle, 758, 811; operation for symblepharon, 119; roller forceps for trachoma, 74; thread operation, 779.
Knie's and Weber's theory of glaucoma, 881.
Knife, Beer's, 768, 812; lancet-, 748, 748, 789, 810; lance-, concave, of Weber, 771, 812; linear, of von Graefe, 747, 748, 755, 755, 761, 786, 819; Stillings', 574, 808.
Knife needle, Knapp's, 758, 811.
Koch's serum in tuberculosi of the conjunctiva, 108.
Kostomyria's operation for trichiasis, 790.
Krause's glands, 38, 558, 560.
Küchler's method of cataract extraction, 771; method of incising staphyloma, 217.
Kuhn's operation for ectropion, 796; operation for symblepharon, 129.
Lachrymal duct, 562; development of, 288; sounding of, 567, 573; stricture of, 564.
Lachrymal fistula, 572, 574.
Lachrymal gland, anatomy of, 560; development of, 288; diseases of, 571; extirpation of, 571; inferior and superior, 561.
Lachrymal organs, anatomy and diseases of, 560; papilla, 560; passages, 560; probes, 808.
Lachrymal sac, 561; a source of infection in eye operations, 733; blennorrhea of, 564, 572; destruction of, for blennorrhea, 568; extirpation of, 569; injections into, 573; obliteration of, 569; trachoma of, 573; tuberculosis of, 573.
Lachrymal secretion, 562; secretion, ato- lition of, 575; sounds, 567, 806.
INDEX.

Lachrymation, absence of, 575; excessive, 575; marked, in conjunctivitis eczematoso, 95.
Lacrymalis, 563.
Lagophthalmus, 546; tarsorrhaphy for, 794.
Lamellar cataract, 404, 407.
Lamina basilis, 264; cribrosa, 468, 470; vitrea, 264.
Lance knife, 810; concave, of Weber, 771, 812; for iridectomy, 748; for paracentesis of cornea, 746; for simple linear extraction, 760.
Lantern tests for color sense, 507.
Lapides cancrorum, 113.
Lapis divinus, 53.
Latent disturbances of equilibrium (convergence and divergence), 619; hypermetropia, 718; squint, 613.
Lateral hemiopia, 476; illumination, 2; invaginations of ocular muscles, 577, 685, 778; tarsorrhaphy, 763.
Lead acetate in catarhal conjunctivitis, 50; acetate in follicular conjunctivitis, 50; incrustation, 54; poisoning, producing neuritis, 485, 491.
Lebrun’s method of cataract extraction, 771.
Leech, artificial, 318, 346.
Leeches in acute blennorrhcea, 58; see also Bloodletting.
Lemon juice in diphtherial conjunctivitis, 88.
Lens, see Glasses.
Lens, crystalline, 394; anatomy of, 394; capsule of, 394, 395; changes in capsule after cataract extraction, 763; changes in, producing astigmatism, 710, 720; changes in, producing hypermetropia, 706; changes in, producing myopia, 396, 414, 689; changes of position in, 425; changes of shape in accommodation, 478; cortex of, 394; development of, 283, 306; dislocation of, 425; examination of, 3; excessive swelling of, after discission, 757; expulsion of, in cataract extraction, 762; growth of, continuing all through life, 381, 397; histology of, 395; inflammation of, not existing, 402; in glaucoma, 373; injuries of, 417, 423, 754; injury and swelling of, causing glaucoma, 391, 754, 758; luxation of, 426, 764, 767; nuclear zone of, 396; nucleus of, 394, 401; nutrition of, how affected, 371; opacity of, see Cataract; removal of, for myopia, 689; sclerosis of, 394; subluxation of, 425; supplemental, 681; swelling of, in traumatic cataract and dissection, 418, 756.
Lens capsule, 394, 395; after cataract extraction, 765; discission of, in aftercataracts, 759, 767; extraction of, with lens, 771; opening of, in cataract extraction, 762, 770; simple linear extraction of, in aftercataracts, 761, 767.
Lens star, 395.
Lens vesicle, 383.
Lenticicous, 430.
Lenticular astigmatism, 719, 730; exudate in anterior chamber, 299; myopia, 399, 414, 693; reflex, 4.
Leontiasis ossea, 648.
Lepra of conjunctiva, 103; of iris, 331.
Leucaemic retinitis, 457; tumors of orbit, 659.
Leucoma adherens, 150.
Leucoscarcoma of choroid, 355.
Levator palpebrae superioris, 513; paralysis of, 550, 552.
Lice causing conjunctivitis eczematoso, 101; in eyebrows, 521.
Lids, abscess of, 521; adenoma of, 558; anatomy of, 506; angiomata of, 556; anomalies of position and connection, 537; atheroma of, 556; carbuncle of, 521; carcinomata of, 557; cavernous tumors of, 557; closure of, how affected, 511; coloboma of, 558; congenital narrowness of, 546; conjunctival portion of, 515; cutaneous horns in, 556; cutaneous portion of, 515; cysts of, 556; dermoid cysts of, 556; development of, 298; diseases of, 509; diseases of glands of, 532, 558; diseases of muscles of, 548; distortion of, in trachoma, 69; echymoses of, 554, 555; eczema of, 530, 533; elephantiasis of, 523; emphysema of, 554, 556; enchondroma of, 558; epithelioma of, 557; erysipelas of, 518, 534; examination of, 1; exanthemata of, 530, 522, 523; fibroma of, 558; fibroma molluscum of, 556; furuncle of, 521; glands of, 38, 49, 515; glands of, diseases of, 532, 537, 558; granular, see Trachoma;
herpes zoster, 519, 522; hyperemia of border of, 526; inflammation of borders of, 526; inflammation of skin of, 518; injuries of, 554; lipoma of, 558; lupus of, 522; malignant pustule of, 521; milium of, 556; molluscum contagiosum of, 556; molluscum simplex of, 556; movements of, 510; muscles of, 512; edema of, 523; phlegmonous inflammation of, 531; phthisis of, 531; rodent ulcer of, 556; sarcoma of, 557; spasm of, see BLEPHAROSPASM; telangiectasis of, 557; tumor cavernosus of, 557; tumors of, 556; ulcers of, 522, 523, 558; warts of, 556; xanthelasmas (or xanthoma) of, 556.

Lid clamp, 786, 806.
Lid retractors, 733, 805.
Lid specula, 733, 805.
Liebreich's method of cataract extraction, 771.
Ligamentum canthi externum, 513, 517; canthi internum (or mediale), 518, 516; pectinatum, 259, 261; suspensorium lentis, 394.
Ligation of carotid for pulsating exophthalmus, 658.
Light, action of, in producing conjunctivitis and retinitis, 112, 453.
Light perception, how tested, 749, 752.
Light, reaction of pupil to, 273, 279.
Light sense, 27, 34.
Lightning causing cataract, 427; causing optic neuritis and atrophy, 498.
Limbus conjunctivae, 40.
Limitation of motility after squint operations, 777; of motility in paralysis of ocular muscles, 594.
Limiting membrane of iris, 233.
Linear extraction, 760, 769; incisions, 735; incisions in cataract extraction, 768; knife, Graefe's, 747, 748, 755, 756, 761, 769, 812; measurement of lateral excursions of eye, 587, 636.
Lipo-dermoid, 126.
Lipoma of lids, 554; subconjunctivale, 126.
Liquefaction of vitreous, 432.
Liquor MORGAGNI, 401.
Lithiasis conjunctivae, 535.
Lithographers, prevalence of myopic among, 703.
Löffler's bacillus, 86, 88.
Loop, Weber's, 764.
Luminosity of pupil, 8.
Lungs, hypostatic congestion of, after eye operations, 745.
Luscinias, 595.
Luxatio bulbi, 643; bulbi traumatica, 650.
Luxation of eyeball, 643, 650; of lens, 426; of lens, artificial, for cataract, 767; of lens, in cataract extraction, 764.
Lymphadenoma of lachrymal gland, 571.
Lymphangioma of conjunctiva, 129; of lids, 558; of orbit, 630.
Lymphatic conjunctivitis, see CONJUNCTIVITIS EXEMMATOSA; ectasia, 124.
Lymph channels of eye, 288.
Lymphoma conjunctivae, 85.
Lymphosarcoma of orbit, 652.
Lymph passages and lymph spaces of cornea, 132; of eye, 296.
Macropsia in miosis, 279; in spasm of accommodation, 730.
Macula corneae, 293.
Macula lutea, 14, 437; changes in, in myopia, 345; coloboma of, 359, 361.
Madarosis, 528.
Maddox rod, 617, 620.
Magnes, 243.
Malarial hemeralopia, 498.
Malignant pustule of lids, 521.
Malingeringers, examination of, 33.
Manifest hypermetropia, 708.
Manometer for determining intra-ocular tension, 273.
Marginal keratitis, 161, 197; network of the cornea, 41; ulcers of cornea, 159.
Marriott's blind spot, 32.
Massage in superficial scleritis, 228; of cornea for cicatrazed ulcers, 138; of eye for embolism of retina, 447; of lens for ripening cataract, 732; of lids for tylosis, 331.
Mature cataract, 410, 412.
Measles, conjunctivitis in, 48, 102.
Median tarsorrhaphy, 794.
Medullated fibers in fiber layer of retina, 442.
Megalocornea, 245.
INDEX.

Meibomian glands, 38, 39, 515; glands, adenoma of, 538; glands, cysts of, 535; glands, infarcts of, 535; stv, 532.
Melanoma of iris, 330.
Melanosarcoma of chorioid, 333.
Melicercis, 637.
Membrana capsularis, 286; pupillaris, 286; pupillaris perseverans, 334, 335; Rüschii, 264.
Membranous cataract, 411; conjunctivitis, 91.
Meningiocele of orbit, 657.
Meniscus, 664; negative, 664; positive, 664.
Mercury, ammoniated, in blepharitis, 530; ammoniated in conjunctivitis, 53, 74, 98, 106; ammoniated, in eczema of lids, 530; chloride, see Corrosive Sublimate; in chorioiditis, 340; in iritis, 319; in opacities of vitreous, 432; in optic-nerve atrophy, 463; in optic neuritis, 485; in parenchymatous keratitis, 189; in retinitis, 442; in syphilitic paralysis of ocular muscles, 692; in syphilitic periotics of orbit, 647; in union of, 319, 340, 442; red oxide of, in blepharitis, 530; yellow oxide of, in conjunctival and corneal diseases and blepharitis, 74, 97, 157, 189, 530.
Metamorphopsia in chorioiditis, 338; in detachment of retina, 462.
Metastasis of gonorrhoea producing acute blennorrhoea, 59.
Metastatic chorioiditis, 348, 349, 351; gonorrheal conjunctivitis, 59; ophthalmia, 349, 351; retinitis, 447; uleus serpens, 166.
Method, Credé’s, 63; direct, 6; indirect, 7.
Metre-angle, 393.
Metre-lens, 663.
Meyer’s tissue-paper test, 507.
Microphthalmus, 357, 360.
Microphthalmia in mydriasis, 279; in paralysis of accommodation, 730.
Microscopic anatomy of chorioid, 362; of ciliary body, 257; of conjunctiva, 38, 43; of cornea, 131; of iris, 232; of lachrymal passages, 560; of lens, 395; of optic nerve, 471; of retina, 438; of sclera, 236.
Miliary tuberculosis of chorioid, 356.
Milium of lids, 556.
Milky cataract, 411.
Miner’s nystagmus, 639.
Minimum of differentiation, 35; stimulus (of light sense), 34; visual angle, 672.
Miosis, 276, 332; paralytic, 333; spastic, 332; spinal, 281, 333, 492.
Motics, 276, 282, 283; see also Esserine and Pilocarpine; in glaucoma, 372, 383; in iritis, 318; in keratoconus, 224; in paralysis of accommodation, 739; producing spasm of accommodation, 732.
Mirrors of feeble illumination, 5; of strong illumination, 6.
Mixed astigmatism, 719, 721; nystagmus, 638; trachoma, 79, 80.
Modified linear extraction, 769.
Moist, warm compresses; see Warmth Application of.
Moll’s glands, 515.
Molluscum contagiosum of lids, 556; simplex of lids, 536.
Monocular diplopia, 385, 509; polyopia, 398.
Monolateral squint, 628.
Morgagnian cataract, 411.
Motile scotomata, 33.
Motility, disturbances of, 576.
Movement of readjustment (or redress), 612.
Mule’s operation, 783.
Müller’s operation for strabismus, 798.
Müller’s orbital muscle, 644; palpebral muscles, 513; palpebral muscles, paralysis and spasm of, 653; portion of ciliary muscles, 257, 678, 701.
Muscle volitantes, 432, 434; in cataract, 398; in myopia, 695.
Muscle, ciliary, see Ciliary Muscle; Horner’s, 517; orbital of Müller, 644; palpebral of Müller, 513.
Muscles, ocular, action of, 578; action of, how varying in different positions of the eye, 586; advancement of, 773, 775, 776; anatomy and physiology of, 576; disturbances of motility of, 576; extrinsic, 576; fascic of, 585; insertion of, 585; insufficiency of, see Heterophoria; interior (or intrinsic), 576; limitation of motility of, after tenotomy, 777; limitation of motility of, in paralysis, 594; paralysis of, 594; tenotomy of, 772, 774, 776.
INDEX.

Muscles of lids, 512; affections of, 548.
Muscular equilibrium, 612; funnel, 576.
Musculus ciliaris Riolani, 517; orbitalis, 644; tarsalis inferior and superior, 513, 538; subtarsalis, 517.
Mydriasis, 276; effect of, in causing glaucoma, 382; in amaurosis, cause of, 383; in glaucoma, cause of, 379; paralytic, 383, 388; spastic, 382; traumatic, 329, 392.
Mydriatics, 276, 281, 293; see also Atro- pine: harmful in glaucoma, 372, 389.
Myodesopsia, 432.
Myoma of ciliary muscle, 381.
Myopia, 690; apparent, produced by spasm of accommodation, 697, 732; apparent, simulated by hypermetropia, 714; axial, 693, 694; cause of, 693, 696; causing cataract, 419; causing divergent squint and exophoria, 621, 622, 630; causing glaucoma, 392; changes of choroid in, 339, 343-345; ciliary muscle in, 701; complications of, 696; correction of, by a concave lens, 18, 692, 698, 735; correction of, by stenoptic aperture, 677; determination of, 18, 20, 690; developing in conjunction with senile cataract, 399, 414; developing in lamellar cataract, 408; diminishing in old age, 689; elongation of eye in, 693, 699; fundus visible from distance in, 24; hemorrhages in, 346; hereditary tendency to, 697; hygienic regulations for, 699, 703; incapacitating for military service, 702; in schools, 703; lenticular, 389, 414, 693; monocular diplopia in, 394; morbid anatomy of, 343-345, 699; muscles volitantes in, 865; objective determination of, 18, 20, 693; origin of term, 694; predisposition to, 867; prevalence among certain professions and races, 703; progressive, 696; prophylaxis of, 703; relation of, to glaucoma, 701; rules for prescribing glasses in, 698, 725; staphyloma posticum in, 693, 701; stationary, 696; subjective determination of, 601; symptoms of, 694; theories of its production, 703; transient in iritis, 299; treatment of, 698, 723; treatment of, operative, 699, 757; typical, 694.
Myopic astigmatism, 719, 721.

Myo-sarcoma of ciliary muscle, 351.
Myositis. See Morris.
Myotis. See Morris.
Myxoma of conjunctiva, 129.
Navi iridis, 355.
Naphthalinic cataract, 421.
Nasal duct, 562.
Near point, 679; absolute, 685; determination of, 680, 683; recession of, 686; relative, 685.
Near point of convergence, 592.
Near work, excessive, producing myopia, 697, 702.
Nebulization, 158.
Needle, cataract, 811; couching, 767, 811; discission, 811; foreign-body, 199, 406; knife, 759, 811; paracentesis, 811; tattooing, 207, 809.
Negative meniscus, 664; portion of relative accommodation, 685; scotoma, 33.
Nerve centers, 688.
Nerve nuclei of the individual ocular muscles, 589.
Nerve, optic, 420. See Optic Nerve.
Nerves of cornea, 133; of ocular muscles, 588; of orbit, 643.
Nerve stretching in senile blepharoepism, 552.
Nervous asthenopia, 501.
Nervus opticus, 468.
Neurasthenia, disturbances of vision in, 500.
Neuritic atrophy of optic nerve, 482, 492.
Neuritis descendens, 482; intra-ocularis, 482; optica, 481; optic, morbid anatomy of, 494; retrobulbar, 498.
Neuro-epithelioma, 465.
Neuro-fibroma of lids, 558.
Neuroma plexiforme and simplex of orbit, 638.
Neuro-retinitis, 448, 485.
Neurotic edema, 524.
Neurotomy, optico-ciliary, 785.
Night blindness, 496.
Nitrate of silver. See Silver Nitrate.
Noncomitant deviations, 620, 622, 623, 626.
Non-inflammatory atrophy of optic nerve, 491; edema, 122, 123, 523, 525.
Non-irritative central ulcer of cornea, 150.
Non-suppurative keratitis, 137, 180.
INDEX.

Nourishment of eye, 270.
Nubeculae cornes, 203.
Nuclear cataact, 417; paralyses of ocular muscles, 601, 610; sclerosis, 414; zone of lens, 886.
Nuclei for nerves of the individual ocular muscles and of the pupil, accommodation, and convergence, 588.
Nucleus of cataact, 401, 412, 417; of cataract, size, how determined, 413; of lens, 394.
Numbering of lenses, 663, 666.
Nyetalopia, 497; in cataact, 399; in tobacco amblyopia, 480.
Nystagmus, 638; miner's, 639; mixtus, 638; oscillatorius, 633; rotatorius, 638.

Objective determination of astigmatism, 24, 733; determination of hypermetropia, 19, 22, 709; determination of myopia, 18, 29, 603; examination of the eyes, 1; orientation, 581.
Oblique, inferior, 576, 589; action of, 579; paralysis of, 606, 607.
Oblique position of head in paralytic squint, 578; in strabismus, 637.
Oblique, superior, 576, 589; action of, 578; paralysis of, 606, 606, 607.
Obliteration of lachrymal sac, 583.
Oclusio pupillae, 291, 299, 304.
Ocular cleft, fistul, 285; muscles, see MUSCLES, OCULAR; vesicle, primitive, 283; vesicle, secondary, 284.
Oculo-motor nerve, 588; nucleus, 588; paralysis, 600, 611.
Edema calidum, 132, 523; filtration, 123; frigidum, 122, 523; fugax, 523; inflammatory, 122, 123, 523, 524; neurotic, 524; non-inflammatory, 122, 123, 523, 525; of lids, 523; of mastoid process in thrombosis of cavernous sinus, 649; recurrent, 324; subconjunctival, 192.
Oettingen's operation for trichiasis, 790.
Oil cysts of orbit, 657.
Ointment, ammoniated-mercury, see OINTMENT, WHITE-PRECIPITATE; Arlt's, 101; Pagentecher's, see OINTMENT, YELLOW-OXIDE; white-precipitate, 98, 530, 530, 351; yellow-oxide, yellow-precipitate, 97, 137, 189, 530.
Old paralyses of ocular muscles, 599, 603; system of numbering lenses, 606.

Oleum fagi and oleum rusei in blepharitis, 531.
Onyx, 171.
Opacitates corporis vitrei, 431.
Opacities in the refractive media, how recognized by means of the ophthalmoscope, 9, 17; of the cornea, 203-212; of the cornea, clearing of, 152, 206; of the cornea, congenital, 210; of the cornea, how recognized, 186; of the cornea, from pressure, 210; of the cornea, ribbon-shaped, 209; of the cornea, striate, 197; of the cornea, zonular, 209; of the lens, see CATARACT; of the vitreous, 431, 434.
Opaque nerve fibers in retina, 442.
Operations (or operation), 733, 740; after-treatment of, 728, 745; anesthesia for, 734; antiseptic in, 733; Antyllus-Kuhnt's, for ectropion, 798; Arlt's, for enucleation, 781; Arlt's, for tarsorrhaphy, 794; Arlt's, for tenotomy, 773; Arlt's, for trichiasis, 787, 790, 791; Arlt's modification of Gaillard's, for entropion, 790; asepsis in, 733, 740; avoided in diphtherial conjunctivitis, 89; Beer's, for cataact, 768; Beer's, for staphyloma, 217; blepharoplasty, 798; Böhm's, for tenotomy, 777; Bonnet's, for enucleation, 780; David's, for cataract, 768; delirium after, 745; De Wecker's, for iridotomy, 755; De Wecker's, for slerotomy, 747; De Wecker's, for staphyloma, 217; De Wecker's, for trichiasis, 790; Dietzenbach's, for blepharoplasty, 799; Diefenbach's, for division of ocular muscles, 776; Dransart's, for ptosis, 802; dressing after, 734, 740; Eversbusch's, for ptosis, 802; flap, for cicatricial ectropion, 798; Flarer's, for trichiasis, 786; for cataract, see DISCUSSION, CATARACT EXTRACTION, DEPRESSION, AND RECLINATION; for cicatricial ectropion, 798; for cicatricial entropion, 797; for discussion, see DISCUSSION; for distichiasis, 786; for ectropion, 797; for entropion, 795; for enucleation, 790; for evertation (or evisceration) of eyeball, 784; for evertation of orbit, 795; for glaucoma, see Iridectomy, PARAESTHESIS, SCLEROTOMY; for heterophoria, 626, 775; for iridectomy, for irido-
tomy, for paracentesis, see Indirectomy, Iridotome, Paracentesis; for paralytic ectropion, 708; for paralytic squint, 603, 773; for ptosis, 801; for senile ectropion, 709; for spastic ectropion, 797; for spastic entropion, 785; for squint, 632, 774; for staphyloma, 216-219, 221; Forster's, for ripening a cataract, 752; for symblepharon, 118, 119; for tarsorrhaphy, 791; for trachoma, 74; for trichiasis, 788; Fricke's, for blepharoplasty, 799; Fuch's, for tarsorrhaphy, 789; Gaillard-Arl's, for entropion, 795; general rules for, 739; healing of wound after, 728; Hotz's, 788, 790, 793, 794; inflammation after, 740, 741; irregular healing in, 739; Jaegisson's, for cataract, 769; Jæckel's, for trichiasis, 787, 790; Jäger's, for cataract, 771; Knapp's, for increasing effect of tenotomy, 778; Knapp's, for symblepharon, 119; Knapp's, for trachoma, 74; Kosmotyris's, for trichiasis, 790; Küchler's, for cataract, 771; Kühnt's, for entropion, 798; Kühnt's, for symblepharon, 120; Le Brun's, for cataract, 771; Liebreich's, for cataract, 771; Mule's, 785; Müller's, for entropion, 798; Oettingen's for trichiasis, 790; Pagenstecher's, for cataract, 771; Pagenstecher's, for ptosis, 802; Panas's, for ptosis, 803; Panas's, for trichiasis, 790; Petit's, for opening lacrimal sac, 508; prolapse of iris in, 736, 743; sliding flap, for ectropion, 799; Sellen's, for entropion, 767; Sellen's, for entropion, 797; Sellen's, for symblepharon, 120; Sellen's, for trichiasis, 789, 792; Spencer Watson's, for trichiasis, 791, 792; Stellwag's, for entropion, 797; Stellwag's, for symblepharon, 119; suppuration after, 740; Teale's, for symblepharon, 119; thread, 777, 778; upon the adnexa bulbi, 772; upon the eyeball, 746; Van Millingen's, for trichiasis, 791; Von Graefe's, for cataract, 788-770; Von Graefe's, for ptosis, 801; Von Graefe's, for strabismus, 777; Von Walther's, for tarsorrhaphy, 793; Warlomont's, for trichiasis, 790; Webber's, for cataract, 771; Wenzel's, for cataract, 771; Wolfe's, for symblepharon, 119.

Operation wound. See Wound.

Ophthalmia, 45, 46; electrica, 112; Egyptian, 73, 77; gonorrhoeal, see Blephorrhoea acuta adultorum; jequirity, 76; metastatic, 349, 351; neonatorum, see Blephorrhoea neonatorum; nodose, 42, 359; purulent, 79; sym pathetic, 312, 316, 320.

Ophthalmomacular, 393.

Ophthalmometer of Helmholtz, 723; of Javal and Schütz, 723, 818.

Ophthalmoplegia, central, 610; congenital, 610; exterior (or externa), 600, 610; interior (or interna), 601, 728; recurrent, 611; totalis, 600, 610.

Ophthalmoscopy, 4, 819; application of, 9; determination of refraction by, 18; examination with, 4; invention of, 4; principle of, 5; visibility of opacities in the refractive media by means of, 9, 16.

Ophthalmoscopic examination with the erect image, 6; with the inverted image, 7.

Ophthalmoscopy, 4.

Optic disk, 9, 437, 470; coloboma of, 359.

Optic nerve, anatomy of, 468; arachnoid sheath of, 472; atrophy of, 491; atrophy of, morbid anatomy of, 490; diseases of, 468; dural sheath of, 471; excavation of, 11, 364, 384; head of, 9, 437, 470; hyperaemia of, 485; inflammation of, 481; injuries of, 493; intracranial section of, 473; intraocular division of, 468; intrasceral portion of, 469; non-inflammatory atrophy of, 492; orbital division of, 471; pial sheath of, 471; primary atrophy of, 492; sheaths of, 471; simple atrophy of, 492; trunk of, 471; tumours of, 493; vessels of, 13, 473.

Optic neuritis, 481; neuritis, morbid anatomy of, 494; papilla, 9, 437, 470; tracts, 473.

Optical area, 474; memory pictures, 474; properties of eye, 669.

Optico-ciliary tomotomy, 785.

Optometer, 692; rod, 683.

Ora serrata, 437.

Orbicularis palpebrarum, 512, 517; fibrillary contraction of, 552; paralysis of, 541; spasm of, 548.
INDEX.

Orbiculus ciliaris, 337, 265.
Orbit, anatomy of, 641; aneurism of, 656; angioma of, 656; angioma lipomatodes of, 659; carcinoma of, 656; cavernous tumor of, 656; cellulitis of, 647, 648; cylindroma of, 659; cysts of, 653, 657; diseases of, 641; emphysema of, 650; encephalocoele of, 657; encephalhema of, 659; exenteration of, 780, 785; fasciae of, 585, 642; fractures of bony walls of, 651; hemorrhage into, 650, 652; herniae cerebri of, 657; inflammation of bones and periosteum of, 645, 648; inflammation of cellular tissue of, 647, 648; injuries of, 650; leukocystic tumors of, 659; lymphangioma of, 659; lymphosarcoma of, 659; meningoele of, 657; muscle of, 644; nerves of, 648; neuroma plexiforme of, 659; osteoma of, 659; phlegmon of, 525, 647, 648; position of eye in, 643; psammoma of, 659; sarcoma of, 656; septum of, 515, 642; telangiectasis of, 650; tumors of, 638.
Orbital cellulitis, 525, 647; division of optic nerve, 471; muscle of Müller, 644; paralysis of ocular muscles, 601, 611; peribulbar, 645, 648; phlegmon, 525, 647, 648; portion of orbicularis, 519; septum, 515, 642. Organic causes of heterophoria, 613; entropion, 540.
Orientation, 580; false (in paralytic squint), 506; how facilitated by peripheral vision, 28; objective, 581; subjective, 581.
Orthophoria, 619.
Osteoma of conjunctiva, 129; of orbit, 659.
Ozena producing blebennorrhoea of lacrimal sac, 565.
Paget'sch's method of catarrh extraction, 771; ointment, see OINTMENT, YELLOW-OXIDE; operation for ptosis, 892.
Palpebra tertia, 41.
Palpebral conjunctiva, 38; glands, 38, 43, 515; glandulae, diseases of, 582, 558; muscles, 512; muscles, diseases of, 548; muscles of Müller, 518; portion of orbicularis, 512.
Panus's operation for ptosis, 803; operation for trichiasis, 790.
Pannus, 180; cornus, 81; crassus, 81; eezematous (in conjunctivitis 'eezematosa'), 95, 100; sarcomatosus, 82; serofolius, 95, 100; siccus, 82; simulating pterygium, 117; tenuis, 81; trachomatous, 66, 68; trachomatous, anatomical character of, 81; trachomatous, causes of, 82; trachomatous, treatment of, 62, 85; trachomatous, ulcer of cornea in, 159; vascularus, 81.
Panophthalmitis, 152, 347, 349; diagnosis of, 525.
Panorama asthenopinoa, 625.
Papilla nervi optic, 9, 437, 470; apparent change of shape of, in astigmatism, 24; changes of, in myopia, 690.
Papilla lacrimales, 560.
Papillary condition of conjunctiva, 43; form of trachoma, 65, 78; hypertrophy of conjunctiva occurring in many eye diseases, 79.
Papillitis, 481.
Papilloma of conjunctiva, 127.
Papilloma-macular bundle, 480; region, 480.
Papilla retinits, 483.
Paracentesis of cornea, 746; after cataract dissection, 746, 758; for embolism of retina, 447; for increase of tension, 746; for iritis, 318; for opacities of vitreous, 432; for removal of hypopyon, 746; for staphyloma, 216, 218, 746; for ulcers of cornea, 155, 740, 747; how affecting tissue metamorphosis, 274; instruments for, 811.
Paracentesis of sclera, 747.
Paracentesis needle, 811.
Paradoxic dilatation, 635.
Parallactic displacement, 17, 25.
Parallax test, 617.
Paralysis, alternate, 610; basal, 601, 610; causation of, 601, 609; combined, 609; congenital, 610, 611; conjugal, 601, 609; cortical, 600, 609; diagnosis of, 602, 603, 606, 607; fascicular, 601, 610; hysterical, 602; intracrural, 601, 609; intrapeduncular, 610; measurement of, 608; nuclear, 601, 610; oculo-motor, 600, 611; of abducens, 595, 600, 606; of accommodation, 600, 728; of associated movements, 601; of ciliary muscle,
INDEX.

600, 728; of convergence, 601, 609; of divergence, 601, 609; of external rectus, 595, 600, 606, 607; of fourth nerve, 602, 606, 607; of inferior oblique, 606, 607; of inferior rectus, 600, 606, 607; of internal muscles, 600; of internal rectus, 606, 607; of levator palpebrae superioris, 550, 552; of muscular tarsalis superior, 533; of ocular muscles, 594; of oculo-motor nerve, 600, 611; of orbicularis, 549; of sixth nerve, 593, 600, 606, 607; of sphincter pupillae, 333, 333, 600; of superior oblique, 600, 606, 607; of superior rectus, 606, 608, 607, 611; of sympathetic, 333; of third nerve, 600, 611; of trochlear nerve, 600, 608, 607; orbital, 601, 611; post-diphtheritic, 603, 610, 729; relation of double images in, 606, 607; rheumatic, 608; site and etiology of, how diagnosed, 600; syphilitic, 603, 610; tabetic, 603, 610.

Paralytic ectropion, 548, 798; miosis, 333; mydriasis, 332, 333; squint, 395, 775.

Parenchymatous keratitis, 184; xerosis, 121.

Pars ciliaris retinae, 250, 439; iridica retinae, 250, 439; lacrimalis musculi orbicularis, 517; retinalis iridis, 253; uvealis iridis, 253.

Partial tenotomy, 779.

Pearl cysts of iris, 328.

Pellagra causing cataract, 421.

Pemphigus conjunctivus, 122.

Perception of colors, 502, 503; of colors, rapid diminution of, a sign of optic nerve disease, 34; of light, always retained in uncomplicated cataract, 390; of light, how tested in opacity of the refractive media, 749, 752.

Perforation of cornea, 147; of cornea, treatment, 156; of eye, symptoms of, 233–236, 239.

Perichoroidal space, 269.

Pericorneal injection, 42.

Perimeter, 30, 819; for measuring degree of paralysis, 588, 609; for measuring excursions of eye, 588.

Perinuclear cataract, 404, 407; discussion in, 577.

Periodic strabismus, 629, 634.

Pergorilla, 642.

Periosteal abscess, 645.

Periostitis of orbit, 645, 648.

Peripheral scotoma, 32; vision, 26.

Periscopic glasses, 664.

Peritonitis, 85.

Perivasculitis, 443.

Persistent hyaloid artery, 433; pupillary membrane, 384, 385.

Petit’s canal, 397; method of opening the lacrymal sac, 568.

Phakitis, 402.

Phlegmon of orbit, phlegmon retrobulbar, 523, 647.

Phlyctena palidia, 105.

Phlyctenular conjunctivitis and keratitis. See Conjunctivitis Eczematosa.

Phorometer, 618, 830.

Photometer of Förster, 35.

Photophobia in conjunctivitis eczematosa, 48, 95, 101.

Photopsia in choroiditis, 339; in detachment of retina, 462.

Phthisis pulmonalis, 531.

Phthisis bulbi, 347, 377, 783; cornea, 150; essential, 393.

Physiological astigmatism, 718, 729; excavation, 11, 364.

Physostigmine. See Eserine.

Pial sheath of optic nerve, 471.

Pigment, retinal, 253, 255, 266, 288; stroma, 253, 265.

Pigmentary degeneration of retina, 454, 458.

Pigment epithelium, 265, 284, 437; atrophy of, 340.

Pigment layer of iris, 253, 256.

Pilocarpine, 277, 282; in fistula of cornea, 157; in glaucoma, 372, 388; in keratoconjunctivitis, 224; in paralysis of accommodation, 729; in tobacco amblyopia, 490; used in producing diaphoresis, 282. See also Diaphoresis and Miotics.

Pince ciseaux, 748, 755, 810.

Pinguecula, 41, 44.

Pityriasis causing conjunctivitis, 103.

Placido’s keratoscope (or disk), 723, 818.

Plano-concave lens, 664.

Plano-convex lens, 684.

Plica semilunaria, 41; diseases of, 129.

Pneumococcus causing acute conjunctivitis, 48, 91; causing ulcer serpens, 165, 167.
INDEX.

Point, far, 629; near, 629; pressure, 552.
Points, visibility of, dependent upon their brilliancy, 617.
Poisons producing paralysis of accommodation, 729.
Polioencephalitis superior, causing ophthalmoplegia, 610.
Polyopia monocularis in cataract, 398.
Polyopii of conjunctiva, 127.
Portio orbitalis, 513; palpebralis, 512.
Position of eye in orbit, 643.
Positive lens, 663; menisces, 664; portion of relative accommodation, 683; scotoma, 53.
Post-diphtheritic paralysis of accommodation, 739; paralysis of eye muscles, 602, 610.
Posterior chamber, 200, 283; conjunctival vessels, 41; cortical cataract, 406, 408; detachment of vitreous, 433; lenticular reflex, 4; polar cataract, 408, 406; scleral protrusion of Ammon, 245, 247, 300; slerotomy, 748; staphyloma, 344; synchia, 291, 296, 299, 309, 320.
Precipitates on cornea in cyclitis, 293, 300.
Preterinal hemorrhage, 443.
Presbyopia, 687; formerly confounded with hypermetropia, 713; occurring early in hypermetropia, 711; occurring late in myopia, 694.
Prescriptions for glasses, how written, 721.
Pressure, intra-ocular, 272.
Pressure bandage, 154; in detachment of retina, 460; in enucleation, 781, 782; in exophthalmus due to extravasation or emphysema, 651; in keratectasis, 223; in operations upon eyes affected with increase of tension, 745; in prolapse of iris, 157; in staphyloma of the cornea, 218.
Pressure points in hysterical blepharospasm, 552.
Priestley Smith’s lamp, 3; theory of glaucoma, 381.
Primary atrophy of optic nerve, 491; deviation in concomitant squint, 628; deviation in paralytic squint, 505, 506; enucleation, 783; glaucoma, 367; ulcers of the cornea, 153.
Primitive ocular vesicle, 288.
Principal focal distance, 663.
Prisms, 665; exercise with, 625; exercise with, for increasing effect of tenotomy, 778; for measuring heterophoria, 615, 617, 618; for measuring paralysis, 699; for treatment of heterophoria, 614, 623; for treatment of paralysis, 603; overcoming of, 591.
Prism convergence, 618.
Prism divergence, 618.
Probes, lacrymal, 808.
Prodomal stage of glaucoma, 367; of sympathetic irido-cyclitis, 312.
Progressive atrophy of optic nerve, 492; cataract, 408; myopia, 696; paralysis producing optic-nerve atrophy, 492; pterygium, 113; ulcer of cornea, 138, 146.
Projection of field of vision on a hollow sphere, 30; of field of vision on a plane, 29; of retinal images externally, 581, 597.
Prolapse of iris, 149, 736; diagnosis of, 736; evil consequences of, 737; how averted by iridectomy, 744; mode of occurrence in operations, 743; treatment, 156, 737, 744.
Prolapse of lens, 428, 429.
Prolapse of vitreous in cataract extraction, 764; in iridectomy, 755; in iridotomy, 756.
Prophylaxis in acute blennorrhoea, 58; in blennorrhoea neonatorium, 63; in diphtherial conjunctivitis, 89; in sympathetic ophthalmia, 320; of trachoma, 76.
Protection of sound eye in acute blennorrhoea, 38, 60; in diphtherial conjunctivitis, 89.
Protective bandage, 154, 745.
Protective glasses, 664, 665; for physicians and nurses in acute blennorrhoea, 60; for workers in factories, 248.
Prothesis, 782.
Provisional canthoplasty, 792; tarsorrhaphy, 795.
Psammoma of orbit, 639.
Pseudo-epiphriinae, 282.
Pseudo-glioma, 350.
Pseudo-isochromatic diagrams of Stilling, 507.
Pseudo-ptyerygium, 116.
INDEX.

Psoriasis causing conjunctivitis, 103.
Pterygium, 112; carnosum, 115; cicatrical, 116; crassum, 115; membranaeum, 115; progressive, 118; sarcomatosum, 115; stationary, 118; tenue, 115; vasculosum, 115.
Ptoinaines producing paralysis of accommodation, 729.
Ptosis, 550, 552; acquired, 550, 553; adiposa, 553; apparent, 553; congenital, 551, 553; in trachoma, 88; operations for, 501.
Pulmonary congestion after eye operations, 745.
Pulsating exophthalmus, 658.
Pulsion in vessels of optic nerve, 18.
Punctum lacrimalis, 560; eversion of, 528, 541, 572; stricture of, 572.
Punctum proximum, 679; remotum, 679.
Pupil, 531; Argyll-Robertson, 281, 492; artificial, situation of, in iridectomy for various purposes, 750, 751; artificial, vision with, 753; cat’s-eye, 755; consensual reaction of, 273, 279; contraction of, from action of light, 275; contraction of, governed by oculo-motor nerve, 274; contraction of, in convergence and accommodation, 275; dilatation of, causing micropsia, 279; dilatation of, governed by sympathetic nerve, 274; dilatation of, necessary for examining the fundus, 9, 16; dilatation of, produced by sensory stimuli, 273; distortion of, in anterior synechiae, 150; distortion of, in posterior synechiae, 292; distortion of, in prolapse of iris, 737; double, causing diplopia, 593; double, produced in iridectomy, 754; excentric, vision with, 753; inequality of, always pathological, 279, 331; irregularity of, in anterior synechiae, 150; irregularity of, in iridodialysis, 322; irregularity of, in miosis, 279; irregularity of, in posterior synechiae, 292; luminosity of, 8; occlusion of, 291, 299, 304; reaction of, associated, 275; reaction of, nervous mechanism governing, 279; reaction of, consensual, 275, 279; reaction of, reflex, 275; reaction of, to light, 275; reaction of, to light an evidence of light perception, 279; reaction of, to poisons, 276; reaction of, to sensory stimuli, 275; seclusion of, 283, 299, 321; size and shape of, influencing the character of diffusion circles, 676, 677.
Pupillary membrane, persistent, 334, 335.
Pupilloscopy, 20.
Purkinje-Sanso reflex images, 4.
Purple, visual, 440.
Pustular cataract of conjunctiva, 48.
Pyæmic opthalmia, 349, 351; retinitis, 447.
Pyorrhoea, 55.
Qualitative vision, 673.
Qualitative perception of light, 673; vision, 673.
Quinine producing amaurosis, 443.
Radical treatment of lachrymal disease, 568, 571; treatment of trachoma, 74.
Rami perforantes, 39.
Range of accommodation, 680, 682.
Reaching test, 597.
Reaction of exhaustion, 500.
Real image, 584; of a lens, 602.
Reaper’s keratitis, 165.
Recession of far point, 688; of near point, 688.
Reclinatio cataracte, 767.
Rectus, external, 576, 585, 590; external action of, 578; external, insufficiency of, see Esornoria; external, paralysis of, 593, 600, 606, 607; external, tenotomy of, 626, 633, 773, 778; inferior, 578, 585, 589; inferior, action of, 578; inferior, paralysis of, 600, 606, 607; inferior, tenotomy of, 626, 725, 776; internal, 578, 585; internal action of, 578; internal, insufficiency of, 619, 622; internal, paralysis of, 606, 607; internal, tenotomy of, 626, 632, 772–776; superior, 578, 585; superior, action of, 578, 586; superior, congenital absence of, 611; superior, paralysis of, 600, 606, 607; superior, tenotomy of, 626, 775, 776.
Recurrent erosion of cornæ, 183, 200.
Recurrent edema of lids, 524.
Red, diminution in perception of, a sign of optic-nerve disease, 34.
Red blindness, 502.
Red-green blindness, 506; visual substance, 505.
Redress, movement of, 612.
INDEX. 853

Reduced eye, 669.
Reflex images of Purkinje-Sanson, 4; reaction of pupil, 375; streak, 13.
Reflex, corneal, 2; lenticular, 4; wateredsilk, 14.
Refractions, examination of, 9, 16.
Refraction of eye, 18, 668; anomalies of, 661; correction of rules for, 698, 712, 720, 723, 725; determination of, by direct method, 18; determination of, by inverted image, 20; determination of, by objective methods, 18 et seq.; determination of, by ophthalmometer, 735; determination of, by ophthalmoscope, 18; determination of, by spectrometer, 692; determination of, by skiascopy (or shadow test), 20; determination of, by subjective methods, 691, 708, 721; tested with reference to central vision, 27.
Refractive power of eye, diminishing in old age, 683; greatly decreased by cataract extraction, 760; slightly reduced by atropine, 731.
Regimen of eyes. See Hygienic Treatment.
Region of accommodation, 680, 683; of transition, 40.
Regressive ulcer of cornea, 138, 146.
Regular astigmatism, 716.
Reisinger's double hook, 784.
Relative accommodation, 684; far point, 685; hypermetropia, 710; near point, 685; range of accommodation, 685; scotoma, 33; visual acuity, 674.
Relaxation of lateral invaginations, 778.
Resorption in keratitis, 137; of lens, after injury, 418, 757; of hypopyon, 144.
Retina, 437; adaptation of, 35; affection of, in infants, 433; anemia of, 443; anatomy of, 437; appearance of, with ophthalmoscope, 14; arteries of, how distinguished from veins, 13; atrophy of, 454; concussion of, 467; detachment of, 458; detachment of, sclerotomy in, 748; development of, 284; diseases of, 437; function of, 439; glioma of, 464; hemorrhages into, 899, 443; hemorrhages into, causing glaucoma, 393; hyperemia of, 443; inflammation of, see Retinitis; injuries of, 466; nutrition of, how effected, 271, 439; opacity of, from presence of medullated nerve fibers, 442; position of, influencing character of astigmatism, 731; position of, influencing size and shape of diffusion circles, 676, 716; rupture of, 462, 466; sensitiveness of, in cataract, etc., how determined, 749, 752; situated in focal plane of normal eye, 669; tumors of, 404; vessels of, 13, 439; vessels of, how distinguished from those of choroid, 10.
Retinal images, size of, how calculated, 670; pigment layer of iris, 253, 256, 288; system of vessels, 265, 439.
Retinitis atrophic of optic nerve, 492.
Retinitis, 440, 457; albuminurica, 449; circinata, 453; diabetica, 450; from dazzling, 453; hemorrhagica, 451; leucemica, 451; metastatic, 447; morbid anatomy of, 457; nystagmatica, 489; oxaluric, 450; pigmentosa, 454, 458; proliferans, 452; punctata albescens, 457; pyemic, 447; septica, 451; striata, 453; supplicative, 447; syphilitica, 453.
Retinoscopy, 20.
Retrobulbar abscess, 647; neuritis, 488; phlegmon, 647.
Rhephania, cataract in, 421.
Rhaphe palpebral space, 513.
Rheumatic iritis, 310, 319; paralyses of ocular muscles, 662.
Rhinitis causing blennorrhea of lacrimal sac, 553.
Rhytidosis corneae, 135.
Ribbon-shaped opacity of cornea, 209.
Rickets causing lamellar cataract, 407.
Riders, 404, 408.
Rind, choroidal, 10; scleral, 10.
Ripening of cataract, 409, 415; by iridectomy, 752.
Rock-crystal glasses, 668.
Rods and cones of retina, 437.
Roden ulcer of cornea, 159; of lids, 558.
Rodeur, the slave ship, trachoma on, 78.
Rod optometer, 683.
Romershausen's collyrium, 53.
Rupture of choroid, 352; of cicatrix in eye operations, 759; of cornea, 202; of retina, 462, 466; of sclera, 232, 239.
INDEX.

Saccus lacrimalis, 561.
Saemisch’s method of paracentesis for ulcus serpens, 157, 172, 747.
Sagittal axis of eye, 578.
Salicylates and salicylic acid as diaphoretics, see DIAPHORESIS; in rheumatic paralyses of the ocular muscles, 602; in superficial scleritis, 238.
Salines in opacities of the vitreous, 422; in retinitis, 442.
Salt solution in eye operations, 738, 741.
Sarcoma of chorion, 353; of ciliary body, 327; of conjunctiva, 125, 127; of iris, 332, 331; of lacrimal gland, 571; of lids, 537; of orbit, 656; of sclera, 230.
Sattler’s treatment of trachoma, 74.
Scarification of conjunctiva in acute blennorrhoea, 62; of superficial scleritis, 238.
Scheiner’s experiment, 594.
Schematic eye, 660.
Schizomycetes causing suppuration of cornea, 167.
Schlemm’s canal, 239, 262, 269, 276.
Schmidt-Rimpler’s method of determining refraction by the inverted image, 20; test for simulation, 36.
Schools, myopia in, 703.
Scintillating scotoma, 499.
Scissors, iridotomy, 810; strabismus, 807.
Scissors forceps, 748, 753, 810.
Sclera, 226; anatomy of, 226; diseases of, 236; ectasia of, 245; ectasia of, causing glaucoma, 391; inflammation of, see SCLERITIS; injuries of, 232; paracentesis of, 747; rupture of, 238, 239; staphyloma of, see STAPHYLOMA; tumors of, 230; ulcers of, 230.
Scleral circle of vessels of Zinn, 266; conjunctiva, 40; division of cornea, 133, 134; discission, 759; incisions, 733; paracentesis, 747; protrusion of Ammon, 245, 247, 360; ring, 10.
Scleritis, deep, 229; superficial, 227.
Sclero-chorioiditis, 230; posterior, 704.
Scleronyxis, 739.
Sclerosing keratitis, 193.
Sclerotomy anterior, 747; posterior, 747.
Sclerotomy, 747.
Scoop, Davis’s, 334, 746, 747, 761, 762, 812.
Scopolamine, 282, 724.
Scotoma, 31, 32; absolute, 33; annular, 32; central, 32, 340, 453, 488, 489; color, 38; fixed, 38; in chorioiditis, 388; in detachment of retina, 459; in glaucoma, 367; in retinitis, 440; in retrobulbar neuritis, 488; in tobacco amblyopia, 488, 489; motile, 33; negative, 38; positive, 38; relative, 33; scintillans, 499.
Screen test for paralysis, heterophoria, and squint, 595, 612, 617, 627.
Seroflula producing blennorrhoea of lachrymal sac, 565, 566.
Serofluous conjunctivitis, 92, 99; diathesis, signs of, 98; iritis, 310; pannus, 95, 100.
Sea baths in conjunctivitis eczematosa, 98.
Sclerio pupillae, 293, 299; causing glaucoma, 391; treatment of, 321.
Secondary cataract, 766, 767; deviation in concomitant squint, 628; deviation in paralytic squint, 596; enucleation, 783; glaucoma, 391; ocular vesicle, 294.
Sections. See INCISIONS.
Sector-shaped contraction of field of vision, 31.
Sédillot’s double hook, 805.
Semi-decussation, 474, 477 et seq.
Semitocular fold. See Plica semilunaris.
Senile blepharospasm, 549, 552; cataract, 409, 417, 420; ectropion, 542, 768; reflex, 395.
Sensitiveness of cornea, how tested. 3, 136.
Sensory stimuli, reaction of pupil to, 275.
Septic retinitis, 451.
Septum orbitale, 515, 642.
Seros iris, 302, 311; tenonitis, 650.
Serpent ulcer. See ULcus SERPENS.
Serpiginous ulcers of cornea, 146.
Shadow test, 30; of cataract, 409, 416.
Short-sightedness, 690.
Sideroscope, 248.
Siderosis bulbi, 242.
Sight. See Vision.
Silver nitrate, discoloration produced by, 49; excessive use of, producing croupous and diphtheritic conjunctivitis, 90, 91; in acute blennorrhoea, 38.
INDEX.

in acute catarhal conjunctivitis, 46; in blennorrhoea neonatorum, 63; in blepharitis ulcerosa, 530; in conjunctivitis catarhalis chronic, 52; in diphtherial conjunctivitis, 88; in eczema of face, 98; in eczema of lids, 520; in keratitis vesiculosa, 183; in trachoma, 73; in ulcers of cornea, 134; method of application of, 46, 49; rationale of action in conjunctival disease, 49; rules for application of, 47, 49.

Simple astigmatism (hypermetropic and myopic), 719, 721; atrophy of optic nerve, 491, 499; extraction, 760, 762, 763; glaucoma, 373; linear extraction, 760.

Simulation of blindness, 35.

Sinus of anterior chamber, 239, 261; venous sclera, 239.

Site of lesion causing paralysis, how diagnosed, 609; of opacity, how diagnosed, 17.

Sixth nerve, course of, 590; nucleus of, 590; paralysis of, 600, 666, 667, 611.

Skiascope, 23, 816.

Skiascopy, 20, 816.

Skin-grafting for entropion, 800.

Skull, fractures of base, ecchymosis of lids in, 555, 652.

Sliding-flap operation for entropion, 799.

Slitting of canalculus, 567, 573.

Smallpox, conjunctivitis in, 102; producing ulcer, serpens, 168, 173.

Snellen’s operation for symblepharon, 120; operation for trichiasis, 759, 792; suture for entropion, 797; suture for entropion, 797; test types, 672, 673; test types for determination of simulated blindness, 37.

Snow blindness, 112.

Soemmering’s crystalline swelling, 765.

Soft cataract, 412; dissection of, 756; simple linear extraction for, 760.

Solitary tuberculosis of choroid, 357.

Sound eye, how protected in acute blennorrhoea, 58, 60; when requiring enucleation, 784.

Sounding, 567, 573.

Sounds, lachrymal, 567, 808.

Space, circumventral, 381, 384; intervaginal, 270, 472; perichoroidal, 269; subarachnoid, 472; subdural, 472; Tenon’s, 369.

Space sense, 27.

Spasm of accommodation, 731; macropsia in, 730; simulating and producing myopia, 697, 732; treatment of, 726, 732.

Spasm of lids, see BLEPHAROSPASM; of musculus tarsalis superior, 533; of ocular muscles, 640; of orbicularis, see BLEPHAROSPASM.

Spastic ectropion, 543, 797; entropion, 539, 793; miosis, 372; mydriasis, 382.

Spatula, 812.

Spectroscope in testing color blindness, 507.

Specula, 735, 805.

Spencer Watson’s operation for trichiasis, 791, 792.

Spheres of Morgagni, 400.

Spherical lens, 664.

Sphincter iridis, 232; angles of, 736; palpebrarum, 512.

Spinal amaurosis, 485; atrophy of optic nerve, 492; disease, neuritis in, 487; miosis, 291, 492.

Spongy exudate in anterior chamber, 296; iritis, 296.

Spot, interpalpebral, 41; yellow, see Macula lutea.

Spring speculum, 735, 805.

Squeezing for trachoma, 74.

Squint. See STRABISMUS.

Squint hook, 772, 807.

"Staar," origin and various applications of term, 424.

Staphylococci causing suppuration of cornea, 167; in conjunctivitis eczematosa, 90; in diphtheria, 90.

Staphyloma (of cornea), 151, 312; conical, 213, 213, 219; operations for, 216, 221; partial, 213, 218; pellucidum, 225; spherical, 312, 213, 219; total, 212, 216, 221.

Staphyloma (of sclera), 344; annular, 344, anterior, 344; ciliary, 248; equatorial, 244; intercalary, 248; of Ammon, 245; posterior, 244; posticum (Scarpo), 343, 344, 693, 701.

Stationary cataract, 402; myopia, 696; pterygium, 113.

Statometer, 644.

Steam in treatment of cicatrizing ulcer of cornea, 158; of parenchymatous keratitis, 189.
Stellate figure of lens, 305.
Stellwag’s operation for entropion, 797; operation for symblepharon, 119; symptom in Baselow’s disease, 633; theory of glaucoma, 380.
Stenopnic aperture, vision with, 677; slit in testing for astigmatism, 721; spectacles, 580, 665.
Stereoscopic vision, 591; absent in strabismus, 636; Hering’s test for, 591.
Stevens’ phorometer, 820; tenotomy hook, 807; tenotomy scissors, 807; tropometer, 821.
Stillicidium, 564.
Stillig’s knife, 574, 808; pseudo-isochromatic diagrams, 507.
Stimulus, minimum (of light sense), 34.
Stop needle, 811.
Strabismus, or squint, 627; alternans, 628, 634; apparent, 635; concomitans, 637, 774; constant, 629; convergents, 628, 629, 774; deorsumvergens, 634; divergents, 628, 630, 775; dynamic, 613; intermittent, 632, 633, 634, 640; latent, 613; measurement of, 627, 636; monolatéralis, 628; operations for, 633, 774; paralyticus, 595, 773; periodic, 629, 634; sursumvergens, 634; temporary, in young children, 633; vertical, 634.
Strabismus forceps, 807.
Strabismus scissors, 807.
Straightening of tarsus, 789.
Stramonium producing retrobulbar neuritis, 491.
Streak, reflex, 13.
Streptococcus causing acute conjunctivitis, 48, 91; causing suppuration of cornea, 167; in diphtheria, 90.
Streptothrix Fuerstii occluding canaliculus, 572.
Restrictions of canaliculus, 572; of lachrymal duct, 565; dilatation of, 567, 573; division of, 574.
Stroma pigment, 233, 263.
Strychnine in keratitis neuroparalytica, 178; in optic-nerve lesions, 401; in retinitis pigmentosa, 457; in tobacco amblyopia, 400.
Sty, 332.
Subarachnoid space, 472.
Subconjunctival ecchymosis, 123; emphysema, 124; injections, 155, 162; œdema, 122.
Subdural space, 472.
Subhyaloid hemorrhage, 448.
Subjective method of determining hypermetropia, 708; of determining myopia, 691; orientation, 581.
Subluxation of lens, 423.
Subtarsal groove. See Sulcus subtarsalis.
Suffusio, 424.
Sulcus subtarsalis, 40, 110.
Sulphate of copper, sulphate of zinc. See Copper Sulphate, Zinc Sulphate.
Superable deviation, 616.
Superior lachrymal gland, 560; oblique, see Oblique, Superior; rectus, see Rectus, Superior; tarsal arch, 39.
Superraction crescent, 343.
Supplemental crystalline lens, 681.
Suppuration of wound after eye operations, 740.
Suppurative keratitis, 137, 145.
Suprachoroid, 263.
Supravaginal space, 270.
Sursuccion, 618.
Sursumvergence, 618.
Suspensory ligament of lens, 391.
Suture, Gaillard’s, for entropion, 799; Snellen’s, for entropion, 797; Snellen’s, for entropion, 797; tobacco bag, 217, 781.
Swelling cataract, 409, 415.
Symblepharon, 117; anterius, 117; posterior, 71, 117; prevention of, in diphtheritic conjunctivitis, 89; total, 117.
Sympathetic inflammation, 313; iridocycitis, 312; irritation of eye, 313, 316; ophthalmitis, 312, 316.
Sympathetic, paralysis of, 333.
Synchysis corporis vitrei, 432; scintillation, 434.
Synecchia, annular posterior, 293, 304, 321, 322; anterior, 150; anterior, occurring without perforation of cornea, 298; anterior, 291, 296, 299, 308; posterior, treatment, 320; total, posterior, 296, 304, 321.
Syphilis, hereditary, symptoms of, 188, 193; producing blemorrhage of lachrymal sac, 565, 566; producing optic neuritis, 485; producing parenchymatous keratitis, 188, 193.
INDEX.

Syphilitic disease of skin causing conjunctivitis, 103; iritis, 309, 315, 317; keratitis, 188, 192, 193; neuritis, 485; paralysis of accommodation, 729; paralysis of ocular muscles, 602, 610; retinitis, 453; tarsitis, 536; ulcers of conjunctiva, 110; ulcers of cornea, 159.

Syringe, Anel’s, 567, 808.

Tabes, Argyll-Robertson pupil in, 492; causing paralysis of accommodation, 729; causing paralysis of exterior muscles of eye, 602, 610; causing simple atrophy of optic nerve, 491; miosis in, 492.

Tapetum of the carnivora, 9.

Tar, preparations of, in blepharitis, 531.

Tarsal arches, inferior and superior, 59, 517; muscles, 513, 533.

Tarsitis syphilitica, 596.

Tarsorrhaphy, 793; in ectropion, 798; lateral, 793; median, 794; provisional, 795.

Tarsus, 514; diseases of, 536; straightening of, 789.

Tattooing of cornea, 207, 211, 809.

Tattooing needles, 207, 809.

Teale’s operation for symblepharon, 119.

Tears, abolition of secretion of, 575; composition of, 562; conduction of, to nose, 563; excessive secretion of, 575; secretion of, 563; secretion of, in xerosis conjunctiva, 123.

Teichopsia, 499.

Telangiectasis of lids, 557; of orbit, 656.

Temporal hemiopia, 477.

Tendency to fusion of double images, 591.

Tenectomy, 777.

Tenonitis, 525, 649.

Tenon’s capsule, 577, 643; space, 269.

Tenotomy, 772, 774, 776; accidents after, 779, 780; bilateral, when indicated, 778; effect of, how diminished, 779; effect of, how increased, 778; effect of, how estimated, 772, 773, 778; exophthalmus after, 779; final result of, 779; graduated, 779; how acting, 777; instruments for, 807; partial, 779; sinking in of caruncle after, 779.

Tenotomy hook, 807.

Tenotomy scissors, 807.

Tension, intra-ocular, 273; diminution of, 392; how affected by miotics and mydriatics, 283; increase of, causing ectasia of sclera, 245; increase of, following discission, 758; increase of, how causing mydriasis, 332; increase of, how produced in glaucoma, 379; increase of, in primary and secondary glaucoma, 362; increase of, in staphyloma of cornea, 215, 220; increase of, why reduced by iridectomy, 388; in ciclitis, 297; measurement of, 4, 273.

Tensor tarsi, 517; chorioidae, 257.

Tessellated fundus, 15, 263.

Testing, functional, 27.

Test types, Arlt’s, 673; Jäger’s, 673; Kühler’s, 673; Snellen’s, 673, 673; Snellen’s, for detecting malingerers, 37.

Theobald’s lacrimal probe, 808.

Thermo-cautery in conjunctivitis eczematosa, 97; in corneal ulcers, 155, 166; in extirpation of orbit, 785; in vascular tumors of lids, 557.

Thiersch’s grafts, 891.

Third nerve, course of, 589; nucleus of, 588; paralysis of, 600, 611.

Thread operation, 777, 778.

Thrombosis of cavernous sinus, 525, 649; of central vein, 447.


Tissue-paper test, 507.

Tobacco-amblyopia, 489.

Tobacco-bag suture, 217, 781.

“Toilet” of the eye in cataract extraction, 702.

Tone of ciliary muscle, 731.

Tonic spasms of ocular muscles, 640.

Tonometers, 273.

Torpid ulcer of cornea, 146.

Torpor retinae, 176.

Torsion, 578.

Total color blindness, 506; ectasia of sclera, 245; excavation, 13, 365; hypermetropia, 708; posterior synechia, 296, 304, 321; staphyloma of cornea, 212, 216, 221.

Toxic amblyopia, 488-491.

Trachoma, 64; acute, 69; anatomical characters of, 64, 78; Arlt, 80; complications of, 66; complications of, treatment, 75; connection with follicular conjunctivitis, 84; course, 67;
INDEX.

dissemination of, 77; ectropion in, 71; endemic in Europe from the earliest times, 77; entropion in, 71; epidemic, 77; etiology of, 72, 85; folliculare, 80; gelatinous, 80; geographical distribution of, 73; granular form of, 65, 70; history of, 77; microbe of, 85; mixture, 70, 80; of lacrimal sac, 573; opacities of cornea in, 71; pannus in, 66, 68, 81; papillary form of, 65, 78; prophylaxis of, 78; ptosis in, 83; sequelae of, 69–72; sequelae, treatment of, 76; statistics of, 77; symblepharon in, 71; symptoms of, 64; treatment of, 73, 83; trichiasis in, 70; ulcers of cornea in, 67, 68, 77, 159; varieties of, 79, 84; verum, 90; xerosis in, 71.

Trachomatous conjunctivitis, 64; pannus, 66, 68, 81; ulcer of cornea, 67, 68, 77, 159.

Transection of iris, 756.

Transparency of cornea, 136; of refracting power, how determined, 9.

Transplantation of cornea, 206, 229; of zone of hair follicles, 787.

Traumatic cataract, 417, 422; conjunctivitis, 119; dislocation of lens, 326, 438; iritis, 312, 819; paralyses of ocular muscles, 602, 611; striate opacity, 158; ulcers of cornea, 159, 165.

Tremulous cataract, 419.

Trichiasis, 537; development of, in trachoma, 70; operations for, 786.

Trochlea, 576.

Trochlear nerve, 576, 578; nucleus of, 589; paralysis of, 600, 606, 607.

Tropometer, 821.

True image, 584.

Tuberculosis of choroid, 336; of conjunctiva, 107; of iris, 311, 326, 329; of lacrimal gland, 571; of lacrimal sac, 573; producing parenchymatous keratitis, 190.

Tuberculous iritis, 311, 326, 329; ulcers of conjunctiva, 107.

Tumor cavernous of lids, 557; lacrimalis, 564.

Tumors of brain producing choked disk, 484, 486; of choroid, 353; of ciliary body, 327, 331; of conjunctiva, 124; of cornea, 223; of eyeball, enucleation for, 782; of iris, 326; of lids, 556; of optic nerve, 493, 783; of orbit, 635.

Tunica vasculosa lentis, 286.

Tylosis, 528, 531.

Tyrell’s hook, 720, 812.

Ulcer (of conjunctiva), 109; tuberculous, 107.

Ulcer (corneal), 188, 145; asthenic, 146; atheromatous, 161; blennorrhoeal, 159; catarrhal, 46, 48, 159; central non-irritative, 159; cicatrization of, 139, 146, 149; cleansed, 138, 146; coated, 138, 146; diphtherial, 159; eczematous, 158; etiology of, 153; forms of, 136; foul, 138, 146; glaucomatous, 161; herpetic, 159; infiltrated, 138, 146; marginal, 156; perforation of, 147; primary, 159; prognosis of, 158; progressive, 138, 146; regressive, 138, 146; rodent, 139; secondary, 153; serpentine, see Ulcus serpens; serpiginous, 146; symptoms of, 145; syphilitic, 159; torpid, 146; trachomatous, 67, 68, 77, 159; traumatic, 159, 165; treatment of, 153, 161; variolous, 173.

Ulcer (of lids), 592, 593; rodent, 538.

Ulcus corneae, 138; cornea rodens, 159; corneae septicum, cornea serpens, see Ulcus serpens; rodens (cornea), 159; rodens (of lids), 538; septicum (cornea), see Ulcus serpens.

Ulcus serpens, 163–173.

Unguentum emolliens in blepharitis, 530, 531.

Unguis, 171.

Unripe cataract, 400, 414; artificial ripening of, 752; dissection of, 757.

Uremic amaurosis, 449.

Uvea, 251; condition of, in glaucoma, 377, 383; inflammation of, after operations, 740; participation of, in visual act, 274.

Uveal division of cornea, 133, 134: tract, 231.

Uveitis anterior, 184.

Uveo-scleritis, 230.

Vaccine ulcers in conjunctiva, 109.

Values of colors, 505.

Valve, Hasner’s, 564.

Valvulike closure of wounds in oblique incisions, 743.

van Millingen’s operation for trichiasis, 791.
INDEX.

Vapor hot, employed in cicatrizing ulcers of the cornea, 158; in parenchymatous keratitis, 189.

VARIOLA, producing conjunctivitis, 102; ulcer serpens in, 166, 173.

VASA hyaloidea propria, 286.

Vascular fasciculus, 94, 159; funnel, 11.

Vascularization of cornea in keratitis, 139.

Vein, central, 439, 473; thrombosis of, 447.

Veins vorticosae, 266.

Venous pulse in vessels of optic nerve, 13; Vernal catarrh, 163.

Vertical axis of eye, 577; diplopia, 583.

Vertigo in paralytic squint, 583.

Vesicle, ocular, primitive, 283; ocular, secondary, 284.

Vesicles upon cornea, 181.

Vesicular catarrh of conjunctiva, 48; keratitis, 182.

Vessels of choroid, etc. See Blood-vessels.

Vienna paste for obliteration of lacrimal sac, 569.

Violet blindness, 503.

Virtual far point in hypermetropia, 706; focus, 668; image, 965.

Visibility of opacities in the refractive media by ophthalmoscope, 9; of points, dependent on their brilliancy, 617.

Vision, after cataract extraction, 706; binocular, 581, 590; central, 27; direct, 27; disturbances of, without apparent lesion, 495; double, see Diplopia; in astigmatism, 717; in opacities of vitreous, variations of, 435; in strabismus, 628, 635; indirect, 27; peripheral, 27; qualitative, 673; quantitative, 673; restoration of, spontaneous, in cataract, 416; solid, 591; stereoscopic, 501; tests for, in opacities of the refracting media, 749, 752; with excentric pupil, 755.

Visual acuity, 27, 670; absolute, 674; diminution of, simulating and producing myopia, 673, 697; in cataract, 399; relative, 674; tested with reference to central vision, 27; tests for, 671, 749.

Visual angle, 670, 671; field, see Field of Vision; purple, 440; sensations, law governing cerebral localization of, 478; sphere, 473.

Vitiating air producing conjunctivitis, 46, 52.

Vitreous humor, 431; artificial, 785; cysticercus in, 495; detachment of, 433; development of, 285; diseases of, 431; enotoza in, 435; exudation into, in cyclitis, 297; favoring the growth of germs, 239; filaria in, 435; foreign bodies in, 433; hemorrhages into, 238, 435; liquefaction of, 432; luxation of lens into, 426, 427, 764; nutrition of, how effected, 271; opacities of, 431, 434; prolapse of, in cataract extraction, 764; prolapse of, in iridectomy, 755; prolapse of, in iridotomy, 796.

Vitreous lamina of choroid, 264.

Von Graefe’s cystitome, 812; discovery of iridectomy in glaucoma, 364; equilibrium test, 615; linear knife, 769, 812; linear knife, uses of, 747, 748, 755, 756, 761; method of cataract extraction, 768-770; method of performing advancement, 777; method of performing tenotomy, 777; operation for ptosis, 801; reaching test, 597; symptom (in Basedow’s disease), 653, 655; theory of glaucoma, 380; thread operation, 777, 778; tractor, 812.

Von Walther’s method of tarsorrhaphy, 793.

Vortices of the choroid, 266.

Waldau’s fixation forceps, 735.

Waldeyer’s mucous glands, 38, 39.

Warlomont’s operation for trichiasis, 790.

Warmth, application of, in conjunctivitis eczematosa, 97; in diphtheritic conjunctivitis, 88; in iritis, 318; in keratitis neuropteryalica, 178; in keratitis profunda, 194; in keratomaclacia, 177; in parenchymatous keratitis, 189; in ulcers of the cornea, 155; in ulcer serpens, 166.

Warts on lids, 556.

Watered-silk reflex, 15.

Weber’s canalliculus knife, 567, 608; concave lance, 771, 812; double hook, 812; loop, 764; method of cataract extraction, 771; sound for gradual dilatation, 574, 808.

Weeks’s bacillus, 48, 91.

Weeping, 575.
INDEX.

Wenzel's method of cataract extraction, 771.
Wernicke's hemiopic pupillary reaction, 481.
Wheel rotation, 578.
White-precipitate ointment in conjunctivitis, eczema, coryza, and blepharitis, 53, 74, 98, 106, 130, 530, 531.
Winking, 512; habitual, 552.
Wolfe's operation for symblepharon, 119.
Worsted test for color blindness, 507.
Wound, operation, external, 741; gaping of, 742; internal, 741; obliquity of, 742; suppuration of, 740.
Wounds of conjunctiva, 110; of cornea, 199; of eye, 232, 652; of eye, frequency of, 242; of iris, 323; of lids, 554; of optic nerve, 493; of orbit, 650; of sclera, 232; penetrating of eye, 232.

Xanthelasma, 556.
Xanthoma, 556.
Xerophthalmus, 71.
Xerosis, 120; bacillus of, 121; conjunctive, 71, 120; epithelialis, 121; general, 120; glabra, 121; in trachoma, 71; local, 120; of cornea, 175, 160; parenchymatous, 121; partialis, 121; squamosa, 121; totalis, 121.
Yellow spot. See Macula cutea.
Yellow oxide-ointment, yellow-precipitate ointment, 74, 97, 157, 189, 330.
Young-Helmholtz's theory of color perception, 502.

Zeiss's glands, 513.
Zeissian sty, 532.
Zinc oxide ointment in eczema of lids, 520.
Zinc sulphate in conjunctivitis, 53.
Zinn, scleral circle of vessels of, 266; zonula of, 394, 397.
Zona ophthalmica, 182, 519.
Zone, interpalpebral, 518; nuclear of lens, 396.
Zonula, zonula ciliaris, zonula Zinnii, 394, 397.
Zonular cataract, 404, 407; opacity of cornea, 209.
Zonule of Zinn, 394, 397.

THE END.
PRACTICAL DIETETICS,
WITH SPECIAL REFERENCE TO DIET IN DISEASE.

By W. GILMAN THOMPSON, M.D.,
Professor of Materia Medica, Therapeutics, and Clinical Medicine in the University of the City of New York; Visiting Physician to the Presbyterian and Bellevue Hospitals, New York.

LARGE OCTAVO, EIGHT HUNDRED PAGES, ILLUSTRATED.

Cloth, $5.00; sheep, $6.00.

SOLD ONLY BY SUBSCRIPTION.

"We commend to the critical attention of the medical profession this new and valuable work. We hesitate not to express the conviction that within the pages of this volume will be found more of explicit, reliable, and practical instruction with reference to the selection, preparation, and administration of foods appropriate to every age and condition, both in sickness and in health, than has hitherto been presented in any form to the medical profession."—North American Practitioner.

"The arrangement of this treatise is such that a busy practitioner can turn in a moment to a dietary which is adapted to any disease he may have under treatment and there find specific directions. We commend the book to every physician, believing that its frequent use will relieve him from a part of his professional work which has in the past been most unsatisfactory both to himself and to his patient."
—Brooklyn Medical Journal.

"This book strikes us as a very important contribution to medical literature. We are greatly mistaken if it does not meet with a very large sale. All classes of practitioners will find it of the greatest practical value to them in their daily work."
—Pacific Medical Journal.

"This is at once the best and most exhaustive book upon this subject with which we are familiar. The best, because, in the first place, it is written by a teacher of therapeutics who knows the needs of the practicing physician, and yet who has taught in previous years as a professor of physiology all that one needs to know in regard to the principles of digestion and assimilation. For this reason the author is unusually well qualified to prepare a useful manual, but it is not until one has perused the volume that he thoroughly grasps the scope and depth of the manner in which Dr. Thompson has treated his subject."—Therapeutic Gazette.

"Without any exception we believe this work to be one of the best, if not the best, for practical usefulness that has issued from any press by any author in the last ten years. It is particularly useful because it supplies a vacancy in the library which every physician finds whenever he has a case to treat, and where diet occupies a part in the treatment and the recuperation of the patient. . . . It is complete in every department, each chapter being a model of conciseness and perfectness. With a book like this at hand, many a day's sickness will be prevented by the attending physician being able to prescribe a proper diet."—Medical Current.

D. APPLETON AND COMPANY, NEW YORK.
THE DISEASES OF THE STOMACH.

By Dr. C. A. EWALD,
EXTRAORDINARY PROFESSOR OF MEDICINE AT THE UNIVERSITY OF BERLIN.

Translated and Edited, with numerous Additions, from the Third German Edition.

By MORRIS MANGES, A. M., M. D.,
ASSISTANT VISITING PHYSICIAN TO MOUNT SINAI HOSPITAL; LECTURER ON GENERAL MEDICINE, NEW YORK POLyclINIC, ETC.

This work has been thoroughly revised, rearranged, largely rewritten, and brought up to date from the most recent literature on the subject.

8vo, 602 pages. Sold by subscription. Cloth, $5.00; sheep, $6.00.

"In giving the medical profession this second revised translation of Prof. Ewald's treatise on the Diseases of the Stomach, Dr. Manges has placed the profession under even greater obligations than we owed for the first. The first translation was then an almost exhaustive treatise, and now, with so much new and valuable data added, the work is sine qua non."—Atlanta Medical and Surgical Journal.

"This work as it now stands is the best on the subject of stomach diseases in the English language. No physician's library is complete without it. It is in every way well adapted to the requirements of the general practitioner, although complete enough to meet also the requirements of the specialist."—American Medico-Surgical Bulletin.

"The present American edition is a peculiarly valuable one, as the editor, Dr. Manges, has done his work in a thoroughly creditable manner. His numerous notes, additions, and new illustrations have made the book a classic one. Under these circumstances it should find a place in the library of every American physician, as their clientele is composed of such a large proportion of patients suffering from gastric complaints and more or less improper medication which most often ends in failure. There is no doubt that more properly directed efforts in the proper direction, as outlined in Ewald's book, would soon remove from Americans the reputation of being a nation of dyspeptics."—St. Louis Medical and Surgical Journal.

"Dr. Ewald's book has met with a very cordial reception by the medical profession. Within a short period three editions have appeared, and translations published in England, Spain, France, Italy, and the United States. To the present edition the author has not only added considerable new matter, but he has also entirely rewritten the work. The arrangement of the chapters has been somewhat changed, and many new personal observations and therapeutic experiences added. The desirability of surgical interference is carefully considered, and the prob and cons given so far as would be necessary to enable a physician to determine whether the aid of the surgeon might be required. The translator has done his work well, and has incorporated much new matter into the text and footnotes."—North American Journal of Homoeopathy.

D. APPLETON AND COMPANY, NEW YORK.
THE PRINCIPLES AND PRACTICE OF MEDICINE.

Designed for the Use of Practitioners and Students of Medicine.

By WILLIAM OSLER, M.D.,
Fellow of the Royal College of Physicians, London; Professor of Medicine in the Johns Hopkins University, and Physician-in-Chief of the Johns Hopkins Hospital, Baltimore; formerly Professor of the Institutes of Medicine, McGill University, Montreal; and Professor of Clinical Medicine in the University of Pennsylvania, Philadelphia.


SOLD ONLY BY SUBSCRIPTION.

8vo. Cloth, $5.50; sheep, $6.50; half morocco, $7.00.

"The appearance of the second edition of this now classical text-book has called forth renewed expressions of the approval which followed its first publication. There is probably no medical work in the English language more widely and constantly consulted, and certainly none to which the physician and student may refer with more confidence. It must indeed be gratifying to the author to know that his work has been adopted as the standard text-book in the principal medical schools of America and Great Britain, and it is no exaggeration to assume that its translation would meet with equal appreciation in the medical centers of Europe."—Montreal Medical Journal.

"Professor Osler's work stands at the very beginning of the list of authoritative text-books in this country. There are many reasons for its holding so high a position. These pertain, on the one hand, to the recognized ability of the author, and on the other to the intrinsic worth of the work itself. Dr. Osler has for a long time commanded the esteem of the profession, both as a teacher and as a writer, but his greatest ability is in the latter field. The work is admirably arranged, the diseases being scientifically classified; the text is lucid, positive, and concise. . . . The improvements in this second edition refer chiefly to a general revision of the entire text, with especial attention to typhoid fever, malaria, diphtheria, septicaemia, pyæmia, cholera, syphilis, tuberculosis, diabetes, and a number of other affections. The work has thus the advantage of being the latest. It is in every respect one of the most excellent."—Ohio Medical Journal.

"The success of the first edition of this work was most pronounced, and deservedly so, for it was not merely a résumé of current literature, but an exposition of medical science based upon the extensive and carefully recorded clinical experience of a master in the profession. In the present edition the admirable arrangement of the original work has not been changed, but sixty four pages of new matter have been added to the text, and a number of new illustrations have been introduced. . . . Nearly every page shows the evidence of a thorough and careful revision, and those who consult this late edition will surely find the best that can be written at the present time upon the subject of internal medicine."—University Medical Magazine.

D. APPLETON AND COMPANY, NEW YORK.
THE DISEASES OF
THE NERVOUS SYSTEM.

A TEXT-BOOK FOR PHYSICIANS AND STUDENTS.

BY DR. LUDWIG HIRT,
PROFESSOR AT THE UNIVERSITY OF BRISLAW.

TRANSLATED, WITH PERMISSION OF THE AUTHOR, BY

AUGUST IIIOCH, M. D.,
ASSISTED BY
FRANK R. SMITH, A.M. (CANTAB.), M. D.,
ASSISTANT PHYSICIANS TO THE JOHNS HOPKINS HOSPITAL.

WITH AN INTRODUCTION

BY WILLIAM OSLER, M. D., F. R. C. P.,
PROFESSOR OF MEDICINE IN THE JOHNS HOPKINS UNIVERSITY, AND PHYSICIAN IN CHIEF TO THE
JOHNS HOPKINS HOSPITAL, BALTIMORE.

8vo, 683 pages. With 178 Illustrations.
Cloth, $5.00; sheep, $6.00.

"This work possesses many points which are sufficiently novel to justify its translation and publication in this country. The general practitioner is perhaps more in need of reliable text-books on diseases of the nervous system than is the specialist. . . . The volume before us admirably meets his requirements, and to a very great extent covers those parts of the study which have not been fully presented by former writers. . . . The work of the translators is perfect, leaving no trace of the German idioms."—Ohio Medical Journal.

"The profession of this country stands under the greatest obligation to the translators of this standard work for having thus furnished the opportunity of making use of one of the best works ever published upon the subject. As a work of reference to the physician it has no equal. To specialists in this branch of diseases it is invaluable. As features of especial commendation may be mentioned the author's clearness in the anatomical and symptomatological arrangement of diseases."—Nashville Journal of Medicine and Surgery.

"The translators of this volume have conferred a favor upon English-reading members of the profession by their excellent rendering of the work of Professor Hirt. The text is especially valuable for the clear, accurate, and well-ordered description of pathological anatomy and symptomatology. As regards treatment, the author may be accepted as a safe guide. . . . The typography and plates of this work are all that can be desired."—Medical Bulletin.

D. APPLETON AND COMPANY, NEW YORK.
LANE MEDICAL LIBRARY

To avoid fine, this book should be returned or before the date last stamped.

MAY 10 1938
form and circulated it far and wide. It is a good sermon. It tells so many good things that a middle-aged man would do if he could start over again and live differently. He would lead a simple, wholesome life; would make worthy friends; would read none but good books; would learn to sing if he could; would learn to play on some instrument and would make "a distinct provision for the joy side of life."

All of which is the most excellent. The true moral of the discourse, however, is one which the preacher has left out: If all those good things at 20, why not at 50? All sermons should not be preached or young men. The chances for improvement mental or moral are as good at one age as at another. There is a similar story of an old man of 70 who lived his son to plant an orchard, if the son would not do so, because he thought he might move or die before the trees came into bearing. Ereupon the old man planted an orchard himself, and, as the saying goes, he lived to eat fruit and drink cider made from the fruit of the trees for many a healthy year.

It was with that apple orchard, and with every kind of fruit tree, for his enjoyment that man who feels the relation and finds his father, or because he has nothing or other provision for himself, is wasting his own to consider what were 20 again. Seventy is not any time to understand really desires at 70, one learns more real, but it is also true that young as long as he is. The Oakland preacher his sermon "If I Were a Hundred," by a sequel with I am a Hundred."

OPHTH. HOME STUDY
MAR 2, 1970